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Abstract

Background: Electron Transfer Dissociation [ETD] can dissociate multiply charged precursor polypeptides, providing
extensive peptide backbone cleavage. ETD spectra contain charge reduced precursor peaks, usually of high
intensity, and whose pattern is dependent on its parent precursor charge. These charge reduced precursor peaks
and associated neutral loss peaks should be removed before these spectra are searched for peptide identifications.
ETD spectra can also contain ion-types other than c and z˙. Modifying search strategies to accommodate these
ion-types may aid in increased peptide identifications. Additionally, if the precursor mass is measured using a lower
resolution instrument such as a linear ion trap, the charge of the precursor is often not known, reducing sensitivity
and increasing search times. We implemented algorithms to remove these precursor peaks, accommodate new
ion-types in noise filtering routine in OMSSA and to estimate any unknown precursor charge, using Linear
Discriminant Analysis [LDA].

Results: Spectral pre-processing to remove precursor peaks and their associated neutral losses prior to protein
sequence library searches resulted in a 9.8% increase in peptide identifications at a 1% False Discovery Rate [FDR]
compared to previous OMSSA filter. Modifications to the OMSSA noise filter to accommodate various ion-types
resulted in a further 4.2% increase in peptide identifications at 1% FDR. Moreover, ETD spectra when searched with
charge states obtained from the precursor charge determination algorithm is shown to be up to 3.5 times faster
than the general range search method, with a minor 3.8% increase in sensitivity.

Conclusion: Overall, there is an 18.8% increase in peptide identifications at 1% FDR by incorporating the new
precursor filter, noise filter and by using the charge determination algorithm, when compared to previous versions
of OMSSA.

Background
Mass-spectrometry based proteomics is a major technique
for the identification of the constituents of complex pro-
tein mixtures [1]. Analysis of peptide and protein
sequences using gas-phase ion chemistry and tandem
mass spectrometry has been described by various groups
[2-5], where common methods of peptide identification
involve enzymatic digestion of proteins isolated from pro-
tein mixture, fractionation and fragmentation of the resul-
tant peptides, followed by MS/MS sequence search

algorithms to match the peptide sequence to the tandem
mass spectrometry data. Some of the widely used search
algorithms are OMSSA [6], X!Tandem [7], Sequest [8],
MyriMatch [9], SpectrumMill (Agilent) and Mascot [10].
A key step is the fragmentation method used to dissociate
the peptides obtained after enzyme cleavage. Techniques
currently used include Collision Activated Dissociation
[CAD], Electron Capture Dissociation [ECD] and ETD
[11]. The use of ETD is becoming increasingly prevalent
as it can be used on more common instruments such as
quadrupole ion trap.
ETD/ECD spectra can contain precursor peaks in var-

ious charge states, called charge reduced precursors.
Neutral losses from these precursors are shown to be
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prevalent among both ECD [12] and ETD spectra [13].
Some of the widely observed neutral losses in ETD are
ammonia (17 Da), water (18 Da), and carbon monoxide
(28 Da). Also, the presence of arginine in the peptide
sometimes leads to loss of a guanidino group (43 Da).
In an effort to reduce false positives and improve sensi-
tivity (true positives/total hits) in OMSSA, the intense
precursor and neutral loss peaks that can be present in
ETD MS/MS spectra should be removed before these
spectra are searched against the protein sequence
library. OMSSA currently has a precursor filter [14]
which removes these precursor peaks and neutral losses.
We employed modifications to this present routine to
accommodate higher charged precursor peaks and their
associated neutral losses.
ETD spectra can contain multiple ion types [13,15,16].

These studies have shown the occurrence of y ions
along with that of the more common c and z˙ ions in
the ETD MS/MS spectra. Protein sequence library
search algorithms should consider these ion-types in
their noise filtering and scoring algorithms. Here, we
accommodated such changes in OMSSA’s noise filter.
Figure 1 shows c, z˙ and y ions present in an ETD MS/
MS spectra.
ETD works exceptionally well on large multiply

charged peptides [17]. In the MS/MS dataset used in
this paper the precursor charge ranges from 3+ to 7+.
Unlike high resolution instruments, lower resolution
instruments, such as the linear ion trap used in this
experiment, are typically not used to determine a pre-
cursor charge. Peptide identification is generally done by
MS/MS database search algorithms, which generally
require either the precursor charge or a possible range
as input along with the precursor mass and the peak list
file. If the range option is used, the algorithm looks for
peptides with different possible precursor charge range
and molecular weights, which can be computationally
expensive and result in false positives. Determining the
precursor charge state accurately may improve sensitiv-
ity and specificity along with the sequence library search
times. Several algorithms have been developed [18-20]
to determine the parent precursor charge from the tan-
dem mass spectrometry data. Charger [18] uses 2 meth-
ods to infer precursor charge state. The first method
employs self-correlation analysis of product ions to infer
precursor charge from the peptide mass, obtained from
the complementary ions. When the 1st method fails,
Charger uses linear discriminant analysis [LDA] to pre-
dict charge states using different features of the ETD
spectra. The Charge Prediction Machine [19] employs
Bayesian decision theory to classify charge states using
the features found in the ETD spectra. Recently, another
algorithm to determine the precursor charge using sup-
port vector machine [SVM] has been developed [20].

The algorithm described in this paper uses LDA with a
unique set of features to estimate if a charge state can
be assigned to a spectrum, and if so, what charge states
are possible. The algorithm is trained not to assign a
charge state if the features do not warrant determination
of the precursor charge.

Results and discussion
In this study, we examined algorithms for pre-proces-
sing and charge determination of ETD spectra. To vali-
date these algorithms, we used a dataset consisting of
ETD MS/MS spectra of yeast phosphopeptides [21]. The
dataset has a total of 16901 spectra, of which 10000
spectra were used as training set, while the rest were
used as test set. We searched the spectra against a tar-
get-decoy library [22] using target sequences from the
NCBI 6298 yeast protein sequence library.

Spectral pre-processing
Spectral pre-processing prior to protein sequence library
search is an important step to identify high-confidence
peptide-spectrum matches. Generally, this pre-proces-
sing step involves removing possible noise peaks and
other non-product ion peaks, for example, precursor
peaks and their associated neutral losses in ETD spectra.
These pre-processing steps, which are already present in
OMSSA [14], were revised to accommodate more ion-
types and higher precursor charge states. For our analy-
sis here, we divided this spectral pre-processing step
into 2 stages of filtering – precursor filtering and noise
filtering.
Precursor filter
Other than the product ion fragmentation, MS/MS
spectra obtained from ETD can contain charge reduced
precursor peaks, usually of high intensity. This series of
charge reduced precursor peaks is distributed in n non-
overlapping bins of the MS/MS spectra where n is the
parent precursor charge. These bins are mass windows
around <MH(z+)>, where z ranges from 1 to n, M is
neutral mass of the peptide, H is mass of proton and
MH(z+)=(M+zH)/z. Figure 1b illustrates the precursor
peaks and their associated neutral losses observed in an
ETD spectrum. The width of the isotopic distribution of
these ions generally depends on their mass.
We looked at various options to remove these precur-

sors and their neutral losses, e.g.
(a) removal of a fixed window width around these pre-

cursor peaks,
(b) removal of a variable window width around these

precursor peaks, and
(c) removal of the neutral loss region (-60 Da or -18

Da, scaled to z) for the precursor and its reduced series.
The motivation behind using a variable window is to

make the algorithm applicable for both smaller peptides
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Figure 1 ETD MS/MS spectra. a. Charge reduced precursors (CP) and neutral losses (NL), along with fragment ion peaks are shown for peptide
KGsYVGIHSTGFK. The first serine is phosphorylated in this peptide and hence is shown in lower case. b. Precursor peaks and their associated
neutral losses are shown here. Removing these intense precursor and neutral loss peaks would aid in improving the sensitivity of sequence
search algorithms.
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(3+ parent charge) and larger peptides (7+ or higher
charged precursor peptides). If we use a “fixed” window
around the precursor, we may remove “product ion sig-
nal” regions for lower charged precursors (3+) or in
case of higher charged precursors (7+), we may retain
these precursor peaks, which could affect the scoring
adversely. We compared our results with a recently
developed spectral processing algorithm by Good et al
[23] and the previous OMSSA filter. Below is some ter-
minology used in this comparision:
W® Window upstream of monoisotopic precursor

peaks,
M® Neutral mass of peptide,
n® Parent precursor charge,
N1, N2® Width of neutral losses which are down-

stream to precursor peaks,
H® Mass of proton and
mz® Corresponds to the region where all the peaks

are removed.
Removal of precursor peaks

Good et. al.′s Algorithm : MH (z+) − 3.1 < mz < MH (z+) + 3.1, for z = 1 to n. (1)

OMSSA : MH (z+) < mz < MH (z+) + M/ (W ∗ z) , for z = 1 to n. (2)

Removal of neutral loss peaks

Good et. al.′s Algorithm : MH (z+) − N1/z < mz < MH (z+) , for z = 1 to n. (3)

OMSSA : MH (z+) − N1/z < mz < MH (z+) , for z = 1 and 2, (4)

MH (z+) − N2/z < mz < MH (z+) , for z = 3 to n.(5)

W, N1 and N2 are set to 500, 60 Da and 18 Da
respectively. We use these values for these variables as
they gave good performance with the training set. For
removal of neutral losses accompanying MH(1+) and
MH(2+) precursors, we removed all the peaks which fall
below 60 Da and 30 Da respectively from the precursor
peak. Similar reasoning has been employed by Sweet et.
al.,[24], but they did not consider a large neutral loss
window for MH(2+). In our analyses, we changed the
bin sizes around the precursor peaks (W, N1 and N2 in
equations above) to optimize sensitivity and specificity
for the training set. Combining (2), (4) & (5), we get the
overall equations to remove the precursor peaks and
their associated neutral losses in OMSSA spectral pre-
cursor filtering:

OMSSA : MH (z+) − N1/z < mz < MH (z+) + M/ (W ∗ z) , for z = 1 and 2, (6)

MH (z+) − N2/z < mz < MH (z+) + M/ (W ∗ z) , for z = 3 to n. (7)

To validate the algorithm, we did OMSSA searches on
the test set using the previous precursor filter in
OMSSA, the newer precursor filter, the Good et. al.

precursor filter and also using the “no precursor filter”
option in OMSSA. We then compared the sensitivity
and specificity of the peptide identifications using these
methods by looking at the ROC curves. Results of ROC
analysis is shown in Figure 2. A 1% FDR line is drawn
to show the differences in peptide identifications among
the various searches. At 1% FDR, OMSSA’s older ver-
sion of precursor filter identified 2118 true positives,
while Good et. al.’s filter identified 2143 true positives.
When the new precursor filter is introduced into
OMSSA, there were 2326 true positives, i.e., an increase
of ~8.5% in peptide identifications compared to Good
et. al.’s algorithm. Using OMSSA with “no precursor fil-
ter” option, we found only 1893 true positives, clearly
showing that removal of these precursor peaks and neu-
tral losses results in increased peptide identifications.
We incorporated the new precursor filter routine in
OMSSA for all other analysis described hereafter.
Noise filter
Apart from the precursor filtering routine, OMSSA
employs a noise filtering routine to remove noise peaks
found in the mass spectra prior to submitting the spec-
tra to sequence library search. In this noise filtering
algorithm, first step involves removing the isotope
peaks, other than the monoisotopic product ion-peak.
This is done by removing peaks which are 1-2 Da
upstream of the most intense peak. We did not make
any changes to this routine. The second step in this
noise filtering involves removing peaks that are too
close together. This is explained in detail in the original
OMSSA paper [6]. This filter retains the top 2 most
intense peaks in a sliding window of +/- 27 Da (or +/-
14 Da) when looking for 1+ (or 2+) product ion peaks.

Figure 2 Comparison of different variants of OMSSA precursor
filter. This figure compares the number of peptide identifications
using Good et al.’s algorithm and the OMSSA algorithm using the
new and older versions of precursor filter.
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The reason to pick 2 peaks is that the filter assumes
there is one forward ion series (c ions) and one reverse
ion series (z˙) in each region. Since it has been shown
that ETD spectra can also contain other ion types
[13,15,16], we modified this routine to accommodate for
extra ion-types present in the spectra. For example, if
we are looking for c, z˙ and y ions, then the probability
of any product ion being found in a +/- 27 Da window
would be more than if we are looking for only c and z˙
ions. In OMSSA, the number of 1+ product ion peaks
allowed in a window of +/- 27 Da is given by “h1”,
while the number of 2+ product ion peaks allowed in a
+/- 14 Da window is given by “h2”. By default, these
values are set to 2. Since we are using c, z˙ and y ions
in our peptide sequence library search, we ran OMSSA
searches on the training set to find that the optimum
value for “h1” and “h2” is 3. Hence, we made “h1” and
“h2” equal to the number of possible ions found in the
spectra. OMSSA users can change these values, if
needed.
We ran OMSSA searches on test set to understand the

differences caused by varying “h1” and “h2”. For this, we
considered 3 cases: h1, h2 = 2 (default value), h1, h2 = 3
(new noise filter) and also h1, h2 = 4. ROC curves for
these searches is shown in Figure 3. At 1% FDR, using the
previous version of noise filter (h1, h2 = 2), there were
2326 true positives. Using, h1, h2 = 3, we found that
OMSSA identified 2423 true positives, a 4.2% increase in
peptide to spectrum identifications when compared to the
previous version of the noise filter. For h1, h2 = 4, clearly
there was a loss of peptide identifications, which shows

that the optimum value for the number of peaks in a slid-
ing window (i.e., h1 and h2 in OMSSA) should be equal to
the number of ion-types searched for (here c, z˙ and y
ions). If the spectra are found to contain only 2 ion-types,
then h1 = h2 = 2 is an optimum value. These results show
the importance of spectral pre-processing in increasing
the number of peptide identifications at a given FDR. We
have incorporated this noise filter in OMSSA and make a
general recommendation to include y-ion in ETD
searches.

Precursor charge determination
Charge reduced precursor series
Feature selection is one of the important methods in
any classification problem. There are several features in
ETD MS/MS spectra that can be used to deduce precur-
sor charge. Some of the more important ones are charge
reduced precursor peaks and neutral losses. Figure 1
shows a MS/MS scan of a peptide KGsYVGIHSTGFK
with charge reduced precursor peaks and their asso-
ciated neutral losses. Manual validation of this spectrum
shows that the parent precursor charge is +3 with a pre-
cursor mass of 492.2 m/z (MH 3+). For this ion, other
charge reduced non-dissociated precursor series include
the peaks at 1474.6 m/z (MH 1+) and 737.8 m/z (MH 2
+). These m/z values match well with the intense peaks
found in the spectra in Figure 1. If the same precursor
mass was assumed to have precursor charge of 4+, then
charge reduced non-dissociated precursor series include
peaks at 1965.8 m/z (MH 1+), 983.4 m/z (MH 2+) and
655.9 m/z (MH 3+). These peaks do not overlap with
the +3 charged reduced precursors. The precursor
charge can be correctly identified using the correct pre-
cursor mass from the experiment and comparing it to
the charge reduced peaks in the spectra. Since we need
to extract precursor peak information from the MS/MS
spectra as input to the LDA, we used the following
equation to represent this feature:

MH (z+) − tolp/z < mz < MH (z+) + X (M, z) + tolp/z, z = 1 to n. (8)

where X(M, z) = M/(W*z) and W = 500. Parameter W
is taken from the precursor filter analysis. If M is 2000
Da, then X for MH(2+) will be 2000/(500*2) = 2 Da.
Similarly for MH(1+), X will be 4 Da. Parameter tolp is
set to 2 Da.
Similarly, neutral losses associated with these precur-

sor peaks can be calculated, depending on the types of
neutral losses, which is explained below in detail.
Neutral losses
There are scenarios where two precursors with different
charge states can have overlapping charge reduced pre-
cursor bins. A 2+ precursor has overlapping charge
reduced precursor peaks with those of 4+, 6+ and other

Figure 3 OMSSA noise filter improvements. This figure compares
the different options in OMSSA noise filter (h1 and h2) for spectra
searched for 3 ion species. By default, OMSSA sets a value of 2 for
these parameters. Looking at the ROC plot, we modified these
parameters “h1” and “h2” to be equal to the number of ions
searched for, to yield higher sensitivity without loss in specificity.
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multiples of 2+. Similarly a 3+ precursor will have over-
lapping charge reduced precursor peaks with 6+, 9+ and
so on, as 6+, 9+ etc. are multiples of 3+. Identifying
charge state in these cases is sometimes ambiguous.
Considering neutral loss peaks may circumvent this pro-
blem of identifying multiples. For example, a charge
reduced precursor mass of 300 Da, with precursor
charge of +2 will have MH+ precursor peaks around bin
centered at 599 Da, assuming a proton mass of 1 Da for
simplification. Similarly, a 4+ precursor charge will have
MH(2+) precursor peaks around the similar bin at 599
Da too. If we consider neutral losses (for example,
ammonia and water losses) along with the peaks of
reduced precursor series, then for a 2+ precursor charge
with 300 m/z precursor mass, neutral losses of the pre-
cursor peak MH+ are centered at 18 Da from precursor
peaks at 599 Da, which is approx. 581 Da. On the other
hand, for 300 m/z precursor mass with 4+ charge, MH
(2+) neutral losses are 9 Da away from its precursor
peaks at 599 Da, which is approx. centered at bins
around 590 Da, different than 581 Da for 2+ precursor
charge. So, the presence of neutral loss peaks at bin cen-
tered at 590 Da suggests there is a higher chance that
the precursor could be of 4+ charge, rather than a 2+.
Taking into account the neutral losses as a feature may
improve the sensitivity of the charge determination algo-
rithm. We have considered neutral losses of water and
ammonia, which are -18 Da and -17 Da (scaled to z)
respectively from their precursor peaks.

MH (z+) − N2/z − tol/z < mz < MH (z+) − N2/z + tol/z, if z = 1 to n (9)

where tol is the tolerance (bin width) around the neu-
tral losses window and N2 is the neutral loss considered
in this analysis. The values considered for N2 and tol
are 18 Da and 4 Da respectively. One of the differences
between this equation compared to (4) and (5) is that
here we removed only neutral loss peaks of water and
ammonia, instead of removing the entire region from
the precursor to these peaks, the reason being the iden-
tification of the precursor charge exactly rather than
spectral cleaning. All the features used in this study are
normalized with the total ion current present in the
spectra. OMSSA searches with assigned precursor
charges from the algorithm and by general range search
method are compared using ROC curves and the results
are described below.
For the charge determination algorithm, we used the

same training and test sets that we used for the spectral
pre-processing. There were some differences on how we
used the training set to build a LDA classifier. Our first
step in this analysis is to find a good set of peptide-
spectrum matches to classify the spectra into different
charge states based on the information obtained from

the MS/MS scan. We used OMSSA on the training set
to get peptide-spectrum matches. To have a reliable set
to input LDA, we used an OMSSA e-value cut-off of
1e-6 on the training set results to pick high-confidence
peptide-spectrum matches. We chose this e-value to
avoid any decoy assignments. In cases where OMSSA
results in identification of 2 peptides (for a ETD MS/MS
spectrum) with different precursor charges, we used the
top-most hit. We found 428 unique peptide-spectrum
matches that satisfy these criteria and are used as input
to LDA classifier.
Two features of interest i.e., charge reduced precursor

peaks and their associated neutral losses are extracted
from the spectra, as described in equations 8 and 9.
These are then used as inputs to the LDA. The output
of this LDA classifier is the best predicted charge state
and the posterior probabilities of each of the charge
states. These posterior probabilities could be used to
find the ascending order of predicted precursor charge
states. In cases such as mixture spectra, which contain
peaks generated by two peptides that could have differ-
ent precursor states, considering the top 2 possible
charge states predicted by LDA is helpful, and in cases
when there is not enough information obtained from
the ETD MS/MS scan, range search is considered. We
considered the following 3 scenarios:
1. Top 1: Only the best predicted charge state is used

to search for peptides using OMSSA.
2. Top 1/Top 2: Consider a threshold t1 for the pos-

terior probabilities obtained from LDA classifier and
then assign the top 2 predicted charges to the spectra
whose posterior probability of the best predicted charge
is below t1, while considering only the best predicted
charge for spectra above this threshold t1. This can be
considered similar to Charger [18], as it can assign 2
best predicted charge states if it cannot assign a single
best possible precursor charge.
3. 1/2/All: A third scenario is considered, where the 2

thresholds t1 and t2 are considered. If the posterior
probability of the best predicted charge is greater than
t1, only the best charge is considered. While if the prob-
ability falls between t1 and t2 (t1>t2), then top 2 charges
are searched. If the probability is less than t2, the spec-
tra is assigned the entire range to search for the prob-
able precursor charge states. This is similar to changing
the relaxation parameter in the Charge Prediction
Machine [19]. We determined the thresholds using the
training set. For the present analysis, we found that opti-
mum values for t1 and t2 are 0.99 and 0.9 respectively.
We varied the settings for t1 and t2 and selected the
values that worked best. Introducing few false positives,
rather than losing many true positives, is one of the cri-
teria in determining the above threshold values.
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To optimize features and thresholds, we compared
ROC plots. For the first analysis, we considered various
combinations of input features used in LDA and then
compared these results to the generally employed range
search method, which examines the entire possible
charge range (+3 to +7 here) for all of the spectra. In
the 1st OMSSA run, we considered only the precursor
peaks (CP) as the input features. For the 2nd run, we
considered both the precursor peaks and the neutral
losses (CP+NL) as the input features. For all these runs,
we considered the 1/2/All variant of the LDA charge
assignment. In other words, we assigned the top charge
found by LDA for spectra above a threshold t1, then
assigned the top 2 charges to spectra below t1 but
above t2 (t1>t2) and assigned range search (+3 to +7,
here) for the remaining spectra. Figure 4 shows the
ROC plot of these OMSSA searches.
Using the precursor peaks (CP) alone as an input fea-

ture did not result in an improvement in peptide identi-
fications compared to the general range search method,
although it did result in a significant decrease in search
time (see Table 1). Using both the precursor peaks and
neutral losses as input features resulted in more identifi-
cations compared to the general range search method
and also decreased search time. The increase in peptide
identifications using both features compared to using
only precursor peaks as feature could possibly be due to
some spectra having intense neutral losses compared to
precursor peaks or could be due to overlapping charge
reduced precursors. In the latter case, LDA classifier

could not differentiate between multiples. At 1% FDR,
CP + NL precursor charge assignment resulted in 2516
identifications, which is a 3.8% increase in identifications
compared to the range search method.
Since we identified the features (both precursor peaks

and neutral losses) that can classify ETD MS/MS spectra
into different precursor charge states, we then compared
the differences in ROC plots for different variants of
precursor charge assignments. In the 1st OMSSA run,
we considered only the best charge (top 1) given by
LDA to all the spectra in the test set. For the 2nd run,
we considered top 1/top 2 option, where we assigned
the best charge to spectra which have posterior prob-
ability above a certain threshold t1, while assigning top
2 charge states to the remaining spectra. For the 3rd

run, we considered 1/2/All variant. For the 4th run, we
considered range search option. Figure 5 shows 1/2/All
variant works well compared to the top1 or top1/top2
variants and also performs better over the range search
method. Using this LDA model on the training set
resulted in the misclassification error rates of 5.14%,

Figure 4 Comparison of different input LDA features for the
precursor charge determination algorithm. This plot compares
the differences between choosing input features for LDA. CP
represents charge reduced precursor peaks and NL represents
neutral losses. As a baseline, ROC curve using the OMSSA’s range
search is also provided. Using CP and NL as features shows an
increase in peptide identifications over the range search method.

Table 1 Table showing database search times for OMSSA
using different variants of precursor charge
determination algorithm.

Method Computational Time (minutes)

Range Search 91

CP+NL (Top 1) 9

CP+NL (Top 1/Top 2) 17

CP+NL (1/2/All) 26

This table shows the computation time for range search and for variants of
the precursor charge assignment algorithm. Database search times are faster
if we consider only few charge states for the spectra.

Figure 5 Comparison of different variants of the precursor
charge determination algorithm. This plot shows ROC curve for
range search and choosing different scenarios of the precursor
charge assignments in LDA classifier.
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3.03% and 2.33% for the Top 1, Top 1/Top 2 and 1/2/
All methods respectively. For the test set, the misclassifi-
cation error rates were 11.48%, 7.6% and 2.36% for the
Top 1, Top 1/Top 2 and 1/2/All methods respectively.
As we mentioned earlier, one of the reasons to deter-

mine precursor charge is to reduce the database search
time and to decrease the number of false identifications.
The computational times for the OMSSA range search
and the OMSSA search after precursor charge assign-
ments is shown in Table 1. It can be seen that if we
assign only the best charge to all of the spectra in the
test set, the search is almost 10 times (91/9) faster than
the range search method. However, this results in loss
of peptide identifications. Similarly, we lose some true
positives with top 1/top 2 option. Since it is important
not to lose any identifications, the 1/2/All variant looks
optimal and is 3.5 times faster than the range search
method.
Apart from the precursor peaks and neutral losses, we

also considered the density and distribution of product
ions as a feature. The density and distribution of the
product ion peaks in ETD spectra depends on the pre-
cursor charge i.e., a 3+ precursor charge peptide ion can
produce product fragment ions up to 2+ charge and a 4
+ precursor charge ion can produce up to 3+ charge. It
can be inferred that higher the charge of the precursor,
the denser the product ion peaks in the MS/MS scan,
although to a small degree this is counteracted by a
reduction in the intensity of the charge reduced precur-
sors. This kind of approach was used previously to dif-
ferentiate between 2+ and 3+ precursor charge states in
CAD data [25]. We also used a similar approach to see
if there is further increase in sensitivity using product
ion distribution as a feature. From our analysis, we
could not see any improvement using product ion distri-
bution as another input feature to LDA.
To summarize the effects of these spectral pre-proces-

sing steps and precursor charge estimation algorithm,
we plotted all the ROC curves in Figure 6. Table 2
shows the improvements in sensitivity with the new
modifications to the precursor and the noise filter and
with precursor charge determination.

Conclusion
ETD can dissociate precursor ions over a wide charge
range. MS/MS spectra of these peptides can have charge
reduced precursor peaks with corresponding neutral
losses, all of which are generally intense. To reduce false
positives and false negatives, these peaks should be
removed before submitting the spectra to a protein
database search algorithm for peptide identification. We
developed an algorithm to remove these precursor peaks
and neutral losses more effectively. We removed bins
upstream of precursor peaks of width proportional to

the molecular weight of the precursor. Similarly we
removed the possible neutral losses associated with
these precursor peaks in the ETD spectra. ROC plots
(see Figure 2) show better performance compared to the
previous OMSSA filter and the spectral pre-processing
algorithm developed by Good et. al. [23]. There was an
increase of at least 9.8% identifications at 1% FDR when
OMSSA’s precursor filter is compared to the original
OMSSA filter (see Figure 6).
An additional improvement to the spectral pre-proces-

sing was based on the observation that ETD spectra can
contain different ion-series such as y ions, depending on
the precursor charge of the peptide. We incorporated
this information into OMSSA’s noise filtering. This led
to a further 4.2% increase in peptide identifications at
1% FDR (see Figure 6). Charge reduced precursor peak
filtering along with the noise filtering should result in
increase in peptide identifications for MS/MS data
obtained from both the lower resolution and higher
resolution instruments. We did not test the filters on
data from a high resolution instrument.
Precursor charge is often not measured on lower reso-

lution instruments, although the distribution of charge
reduced precursor peaks in the MS/MS spectra has a
pattern that determines the precursor charge. In this
study, we used this pattern of charge reduced precursor
peaks and their neutral losses to determine the precur-
sor charge. Neutral loss peaks can aid in classifying the
ambiguous charge states, i.e., multiples such as 3+/6+
etc. We developed an algorithm to predict parent

Figure 6 Combined improvement by updating the precursor
filter, noise filter and estimating precursor charge state. This
ROC plot shows the improvement in sensitivity of peptide
identifications by employing different kinds of spectral pre-
processing steps. Overall, there is a 18.8% increase in identifications
at 1% FDR with the new precursor and noise filters and using
charge assignment, when compared to the older filters in OMSSA
using range search method.
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precursor charge state using statistical methods. Using
LDA, we determined that the intensity and pattern of
charge reduced precursor peaks and neutral losses were
found to be a good predictor of the precursor charge.
Using this precursor charge determination algorithm,
OMSSA’s run times were 3.5 times faster compared to
range search method, with a minor 3.8% increase in
peptide identifications at 1% FDR (see Figure 6). Pre-
vious charge determination algorithms did not report
any increase in sensitivity of peptide identifications,
while our algorithm clearly showed small increase in
sensitivity. MS/MS database search algorithms could
incorporate charge state determination algorithms as an
important tool in significantly reducing database search
times. Overall, using the new versions of the precursor
and noise filters in OMSSA and incorporating charge
determination algorithm, there was an increase of at
least 18.8% in peptide identifications and almost 3.5
times faster than the previous version of OMSSA. Such
improvement in sensitivity and the database search
times with the updated filters and precursor charge
determination could be useful for mass spectrometry
labs with lower resolution instruments.

Methods
ETD MS/MS spectra of yeast phosphopeptides is used for
this study [21]. These spectra were acquired using the
Finnigan LTQ mass spectrometer (Thermo Electron, San
Jose, CA). This spectrometer was equipped with a nano-
flow HPLC microelectrospray ionization source and was
modified to facilitate ETD. The dataset used for this
study has a total of 16901 spectra, of which 10000 spectra
were used as training set, while the rest were used as test
set. We compared the charge state breakdown of the
training set and test sets for hits with an e-value better
than 1e-6. There were 20.1%, 51.4%, 19.4%, 7.7% and
1.4% peptide hits of +3, +4, +5, +6 and +7 charge states
respectively in the training set. In the test set, there were
22.8%, 44.4%, 20.1%, 10.7% and 2.0% peptide hits of +3,
+4, +5, +6 and +7 charge states respectively. The charge
state distributions are approximately same for both train-
ing and test sets. Of the peptide identifications, there

were only 18 unique peptide hits that were common to
both training and test sets.
The OMSSA precursor and noise filtering algorithm was

prepared using the NCBI C++ toolkit. For precursor
charge determination, we used LDA, where precursor
charge states are the predefined classes. LDA is done
using MATLAB 7.8.0 [R2009a]. We wrote scripts in
MATLAB to extract features from the spectra to input
into LDA.
After the spectral processing is done and precursor

charge states assigned for the spectra, we used OMSSA
2.1.7 for peptide identification. Here is a brief outline of
the parameters and the sequence library used for the
OMSSA search. A static modification of alkylation with
iodoacetamide on cysteine, static modifications of methyl
ester formation on aspartic acid, glutamic acid and the
peptide C terminus, a variable modification of oxygen on
methionine and phosphorylation of serine, threonine and
tyrosine are considered. A precursor mass tolerance of 3.0
Da, and a fragment mass tolerance of 0.4 Da is used and c,
z˙ and y ions are searched in these ETD MS/MS spectra.
For all our analyses, we searched the MS/MS spectra
against a target-decoy library [22] using target sequences
from the NCBI 6298 yeast protein sequence library. Using
the target-decoy database strategy, we get decoy and the
forward database assignments. The number of false posi-
tives is generally considered equal to the decoy assign-
ments, while the number of true positives is the forward
database assignments minus the decoy database assign-
ments at the e-value considered. OMSSA search results
are then analyzed using the receiver operating characteris-
tic [ROC] curves. ROC curve is a plot of sensitivity (true
positives) plotted against 1-specificity (false positives). All
the OMSSA searches were run on a cluster of SuSe linux
machines.
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