
Data and text mining

Using drug descriptions and molecular structures for

drug–drug interaction extraction from literature

Masaki Asada*, Makoto Miwa and Yutaka Sasaki

Toyota Technological Institute, 2-12-1 Hisakata, Tempaku-ku, Nagoya 468-8511, Japan

*To whom correspondence should be addressed.

Associate Editor: Elofsson Arne

Received on May 28, 2020; revised on October 7, 2020; editorial decision on October 8, 2020; accepted on October 9, 2020

Abstract

Motivation: Neural methods to extract drug–drug interactions (DDIs) from literature require a large number of anno-
tations. In this study, we propose a novel method to effectively utilize external drug database information as well as
information from large-scale plain text for DDI extraction. Specifically, we focus on drug description and molecular
structure information as the drug database information.

Results: We evaluated our approach on the DDIExtraction 2013 shared task dataset. We obtained the following
results. First, large-scale raw text information can greatly improve the performance of extracting DDIs when com-
bined with the existing model and it shows the state-of-the-art performance. Second, each of drug description and
molecular structure information is helpful to further improve the DDI performance for some specific DDI types.
Finally, the simultaneous use of the drug description and molecular structure information can significantly improve
the performance on all the DDI types. We showed that the plain text, the drug description information and molecular
structure information are complementary and their effective combination is essential for the improvement.

Availability and implementation: Our code is available at https://github.com/tticoin/DESC_MOL-DDIE.

Contact: sd19501@toyota-ti.ac.jp

1 Introduction

When two or more drugs are administered to a patient at the same
time, the effects of the drugs may be enhanced or weakened, which
may also cause side effects. These kinds of interactions are called
drug–drug interactions (DDIs). DDIs are reported in biomedical
articles on a daily basis. Several drug databases, such as DrugBank
(Wishart et al., 2018), Therapeutic Target DB (Wang et al., 2019)
and PharmGKB (Whirl-Carrillo et al., 2012), have been provided to
integrate drug information including DDI information for research-
ers and professionals; however, not all interactions are registered in
the databases, and valuable outcomes are still buried in biomedical
articles. Therefore, automatic DDI extraction from biomedical lit-
erature is demanded.

Deep neural network-based DDI extraction methods have re-
cently drawn a considerable attention because of their high perform-
ance. The methods require a large amount of text that is annotated
by biomedical experts. Since the annotation efforts are costly and
time-consuming, it is unrealistic to prepare a sufficient amount of
annotated data. In addition, it is difficult to learn how to extract
DDIs from text only with the limited amount of annotated text be-
cause deep understanding of DDI interaction descriptions often
requires domain knowledge on drugs. Various drug information,
such as detailed descriptions and molecular structure information of
drugs, are registered in drug databases. Furthermore, models pre-

trained on large-scale raw text show significant improvements in
various natural language processing tasks (Devlin et al., 2019).
Effective use of such external information is necessary to reduce the
reliance on annotated text.

In this study, we propose a method to utilize such external drug
information in drug database DrugBank as well as large-scale raw
text information for the extraction of DDIs from text. We focus on
DrugBank because DDIExtraction 2013 shared task dataset is cre-
ated based on the DrugBank database. We leave the incorporation
of other databases for our future work. Specifically, we utilize the
description and molecular structure information of drugs in the
database. We also incorporate the information from large-scale raw
texts by using a Bidirectional Encoder Representations from
Transformers (BERT) model (Devlin et al., 2019) pre-trained on
large-scale raw text.

We illustrate the overview of the proposed method in Figure 1.
For our baseline model, we employ the convolutional neural net-
work (CNN)-based DDI extraction model (Asada et al., 2018) that
receives an input sentence with a target drug pair and classifies the
pair into a specific DDI type. We enrich the input sentence using
SciBERT (Beltagy et al., 2019), which is a BERT model trained on
large-scale biomedical and computer science text. We obtain the
drug description representation of the target drugs using SciBERT
and the molecular structure representation of the target drugs using
molecular graph neural network (GNN) model proposed by
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Tsubaki et al. (2019). We combine these drug description and mo-

lecular structure representation with the enriched input sentence

representation and classify the target drug pair into a specific DDI

type.

We evaluated our method on the DDIExtraction 2013 shared

task dataset (Segura-Bedmar et al., 2013). Experimental results

show that SciBERT boosts the performance of the baseline model.

As a result, the performance is already strong enough and better

than the previously reported performance. We show the drug data-

base information is complementary to the large-scale pre-trained in-

formation, and the simultaneous use of drug description and drug

molecular structure information can enhance the performance of

DDI extraction from texts with SciBERT.

This article is a substantial extension of our work in ACL 2018

(Asada et al., 2018) and we have following extensions:

• We replaced the token representation from word2vec to contex-

tualized vectors obtained by SciBERT. As a result, we remark-

ably improved the performance of the baseline with the state-of-

the-art performance.
• We employed the neural molecular GNN (Tsubaki et al., 2019)

that considers relatively large fragments of atoms and better rep-

resents molecular structures.
• We used drug descriptions registered in the drug database and

we show drug description information is useful for extracting

DDIs from corpus for some DDI types.
• We found the large-scale pre-training information, drug descrip-

tion and drug molecular information are complementary and

their effective combination can largely improve the DDI extrac-

tion performance.

2 Related work

Various neural DDI extraction methods have been recently proposed
using CNNs and recurrent neural networks since Liu et al. (2016)
tackled the DDI extraction using the neural network-based method
and outperformed various feature-based methods.

Especially in recent years, contextualized embeddings-based
methods have been drawn a great attention (Peng et al., 2019).
Contextualized embeddings are pre-trained by a deep transformers-
based method (Peng et al., 2019) on large-scale text corpora.
SciBERT is a model of the unsupervised pre-training method BERT
(Devlin et al., 2019), and it is pre-trained on a large multi-domain
scientific corpus of Semantic Scholar (Ammar et al., 2018). SciBERT
achieved the state-of-the-art performance on several tasks in the bio-
medical domain, even compared with the bio-specific BioBERT
(Peng et al., 2019) model.

Several GNNs have been proposed for quantum chemistry, such
as Duvenaud et al. (2015). In predicting drug properties, GNNs con-
vert the molecular graph of a drug into a fixed-sized vector by aggre-
gating the representation of atom nodes in the drug. Atoms in the
drug are represented as nodes and bonds as edges. Tsubaki et al.
(2019) proposed GNNs for molecular graphs, which takes sub-
graphs of the drug molecular graph as input, instead of single atoms.
No GNN-based methods have been applied to the extraction of
DDIs except for our previous work (Asada et al., 2018).

3 DDI extraction

In this study, we propose a novel method to utilize drug database in-
formation for DDI extraction from text. We obtain the representa-
tion of input sentences by pre-trained contextualized embeddings,
i.e. BERT, and CNNs. We link the mentions of target drugs to the
drug entries in a drug database and acquire the description and

Fig. 1. Overview of our method. (A) Illustrates how to encode input sentences, drug descriptions and drug molecular structures. (B) and (C) show the prediction layer when the

drug description representation and the drug molecular structure representation are used
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molecular structure information of these drugs. We also represent
the drug descriptions by BERT and CNNs. We represent drug mo-
lecular structure by GNNs.

In this section, we first briefly overview the task setting of DDI
extraction from texts. We then introduce the representations of in-
put sentences, drug descriptions and drug molecular structures. We
finally explain how to combine these representations to predict
DDIs and train the model.

3.1 DDI extraction from text
DDI extraction is a task to identify drug pairs in an input sentence
in which the interaction of the pairs is described and to assign the
right types of interactions to the pairs. The task of extracting DDIs
consists of two parts: named entity recognition and relation extrac-
tion (RE). In this study, we focus on the RE part, assuming drug
entities are given, following existing methods (Liu et al., 2016).

We treat the extraction of DDIs from text as a multi-class classi-
fication problem, where a part of target drug mentions and the
remaining drug mentions are specified in the input sentence.

3.2 Input sentence representation
We follow the previous study (Liu et al., 2016) to preprocess the in-
put sentences. When three or more drug mentions appear in an input
sentence, we duplicate the sentence for each drug mention pair.
Specifically, if an input sentence contains n drug mentions,

n
2

� �
in-

put sentences with different drug mention pairs are prepared. We
preprocess each input sentence to specify the target drug mention
pair and other drugs. In detail, we replace the target drug pair with
DRUG1 and DRUG2 in the sentence order and replace other drugs
with DRUGOTHER. We show the example of the preprocessing on
the sentence Exposure to oral S-ketamine is unaffected by itracon-
azole but greatly increased by ticlopidine with different target drug
pairs in Table 1.

We convert a preprocessed input sentence into a real-valued
fixed-size vector by BERT and CNN-based model (Devlin et al.,
2019; Zeng et al., 2014) and we show the model in the left part of
Figure 1A. Given an input sentence S ¼ ðw1; � � � ;wnÞ with drug men-
tions m1 and m2, we first split the sentence into wordpieces (a.k.a.,
subwords) by the WordPiece algorithm (Kudo and Richardson,
2018). We then convert each wordpiece wi into a real-valued pre-
trained contextualized embedding ww

i 2 R
dw

by the BERT model
(light blue vectors in Fig. 1A). We also prepare dp-dimensional pos-
ition embeddings w

p1
i and w

p2
i for each wordpiece, which corres-

pond to the relative positions from the first and second target
mentions, respectively (green vectors in Fig. 1A). We concatenate
the wordpiece embedding ww

i and the position embeddings w
p1
i and

w
p2
i as in the following Equation (1):

wi ¼ ½ww
i ; w

p1
i ; w

p2
i �; (1)

where [;] denotes concatenation. We use the resulting embeddings to
prepare the input to the convolution layer.

We first introduce zi that is the concatenation of k input embed-
dings (we can employ multiple windows instead of a single window
with the size k, but we saw no significant difference in the perform-
ance in our preliminary experiment) around wi:

zi ¼ ½wT
bi�ðk�1Þ=2c; . . . ; wT

bi�ðkþ1Þ=2c�
T: (2)

We next apply convolution to the embeddings as follows:

mi;j ¼ f ðW sent
j � zi þ bsentÞ; (3)

where � is an element-wise product, bsent is a bias term and f ð�Þ is a

GELU (Hendrycks and Gimpel, 2016) function (we chose the GELU
activation function from ReLU, eLU, SeLU and GELU based on the

results in our preliminary experiment). We define a weight tensor

for convolution as Wsent 2 R
dc�ðdwþ2dpÞ�k. We represent the j-th col-

umn of Wsent as Wsent
j . k is a window size. We depict the tensor

Wsent as a red box in the left part of Figure 1A. We then employ
max-pooling to convert the output of each filter in the convolution
layer into a fixed-size vector as follows:

hsent ¼ maximi;j: (4)

3.3 Drug description representation
Similarly to the input sentences, the description sentences of a
drug mention are converted to the real-valued fixed-size vector
by BERT and CNN. We directly use the wordpiece embeddings

by BERT without word position embeddings to prepare the in-
put to the convolution layer. We define a convolution weight

tensor Wdesc 2 R
dc�ðdwÞ�k and bias bdesc for description.

Convolution and max-pooling are employed in the same way as
the processing of the input sentences and we obtain the descrip-

tion representations hdesc1 and hdesc2 of drug mentions m1 and
m2, respectively.

3.4 Molecular structure representation
We represent the molecular graph structures of drugs using GNNs.
GNNs convert a drug molecule graph G into a fixed-size vector hg.

We represent atoms as nodes and bonds as edges in the graph. We
employ the neural molecular GNN method proposed by Tsubaki
et al. (2019). The molecular GNN method uses relatively large frag-

ments referred to as r-radius subgraphs or molecular fingerprints to
represent atoms with their contexts in the graph. The molecular
GNN adopts fingerprint vectors as atom vectors, initializes the vec-

tors randomly and updates them considering the graph structure of
a molecule. We define the vector of the i-th atom in a drug molecule

as hi and the set of its neighboring atoms as Ni. The vector hi is
updated in the ‘-th step as follows:

h‘i ¼ h‘�1
i þ

X
j2Ni

f ðW ‘�1
hiddenh‘�1

j þ bl�1
hiddenÞ; (5)

where f ð�Þ denotes a ReLU function. The drug molecular vector is
obtained by summing up all the atom vectors and then the resulting
vectors are fed into a linear layer.

hmol ¼ f ðWoutput

XM
i

hL
i þ boutputÞ; (6)

where M is the number of fingerprints. Figure 2 shows how

the molecular GNN model extracts fingerprints including b-
lactam (h1) from penicillin drug (r ¼ 2) and update finger-

print vectors.
We obtain the molecular structure representations hmol1 and

hmol2 of drug mentions m1 and m2, respectively.

Table 1. An example of preprocessing

Mention1 Mention2 Preprocessed input sentence

S-ketamine Itraconazole Exposure to oral DRUG1 is unaffected by DRUG2 but greatly increased by DRUGOTHER.

S-ketamine Ticlopidine Exposure to oral DRUG1 is unaffected by DRUGOTHER but greatly increased by DRUG2.

Itraconazole Ticlopidine Exposure to oral DRUGOTHER is unaffected by DRUG1 but greatly increased by DRUG2.

Note: The input sentence contains three target drug pairs.

Using drug descriptions and molecular structures for DDI extraction 1741



3.5 DDI extraction using database information
When we use the drug description information for DDI extraction,
we concatenate the input sentence representation and two descrip-

tion representations as in Equation (7):

h ¼ ½hsent; hdesc1; hdesc2�: (7)

Similarly, two molecular structure representations are concaten-
ated with the input sentence representation as in Equation (8):

h ¼ ½hsent; hmol1; hmol1�: (8)

We use the resulting vector as the input to the prediction layer.

We convert h into prediction scores using a weight matrix
Wpred 2 R

o�dp :

s ¼Wpredh; (9)

where s ¼ ½s1; . . . ; so� and o is the number of DDI types. We convert

s into the probability of possible interactions p by a softmax
function:

p ¼ ½p1; . . . ; po�; pj ¼
expðsjÞPo

l¼1

exp ðslÞ
: (10)

We illustrates the DDI extraction using drug description infor-
mation and drug molecular structure information in Figure 1B and
C, respectively.

3.6 Training
The loss function L is defined as in Equation (11) using p in
Equation (10) when the gold type distribution y is given. y is a one-
hot vector where the probability of the gold label is 1 and the other

probabilities are 0.

L ¼ �
X

y log p: (11)

3.7 Ensemble
We employ an ensemble technique to combine the prediction from
different models. Specifically, we simply sum up the prediction

scores from different models for the ensemble after each of the mod-
els is trained separately. For instance, when we combine the predic-

tion of the model with the description information and that with the
molecular structure information, we sum up the prediction scores in
Equation (9) as follows:

s ¼ sdesc þ smol: (12)

4 Experimental settings

In this section, we explain the DDI extraction task settings, drug
database preprocessing, drug mention linking and hyper-parameter
settings.

4.1 DDI extraction task settings
We followed the DDIExtraction-2013 shared task (SemEval-2013
Task 9.2) (Segura-Bedmar et al., 2013). This dataset is composed of
documents annotated with drug mentions and their interactions.
The dataset consists of two parts: MEDLINE and DrugBank.
MEDLINE consists of abstracts in MEDLINE/PubMed articles,
while DrugBank consists of the texts of drug interactions in the FDA
label reference of DrugBank.

The task defines the following four interaction labels.

• Mechanism: this type is assigned when a pharmacokinetic mech-

anism is described in an input sentence.
• Effect: this type is assigned when the effect of the DDI is

described.
• Advice: this is assigned when a recommendation or advice

regarding the concomitant use of two drugs is described.
• Int (Interaction): this type is assigned when the sentence simply

states that an interaction occurs and does not provide any

detailed information about the interaction.

A more detailed DDI type classification is directed to the annota-
tion guidelines (https://www.cs.york.ac.uk/semeval-2013/task9/
data/uploads/annotation_guidelines_ddi_corpus.pdf).

The statistics of the dataset with the official data split is shown
in Table 2. Approximately 77% of the DDI corpus documents were
randomly selected for the training dataset and rest were used for the
test dataset by the official task organizers. This shows that the pairs
with no interaction (negative pairs) are much more than the pairs
with interactions (positive pairs).

We evaluated the performance with precision (P), recall (R) and
F-score (F) on each interaction type as well as micro-averaged preci-
sion, recall and F-score on all the interaction types. While a macro-
averaged metric is calculated by first calculating the metric for each
type and then taking the average, a micro-averaged metric is calcu-
lated by directly calculating the metric for all the types.

4.2 DrugBank preprocessing
DrugBank is a freely available drug database containing more than
10 000 drugs. Each drug is given sentences describing its characteristics
and efficacy. We show the first sentence of the drug description of
Salbutamo as an example: Salbutamol is a short-acting, selective beta2-
adrenergic receptor agonist used in the treatment of asthma and
COPD. DrugBank also contains drug molecular structure information.
Structure information is registered in SMILES string encoding.

Table 2. Statistics of SemEval-2013 dataset

Train Test

DrugBank MEDLINE DrugBank MEDLINE

# documents 572 142 158 33

# sentences 5675 1301 973 326

# drug pairs 26 005 1787 5265 451

# positive pairs 3789 232 884 95

# negative pairs 22 216 1555 4381 356

Mechanism 1257 62 278 24

Effect 1535 152 298 62

Advice 818 8 214 7

Int. 179 10 94 2Fig. 2. Illustration of molecular fingerprints. This figure shows the extraction of sev-

eral fingerprint subgraphs from a molecular structure when radius is 2
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To obtain the graph of a drug molecule, we took as input the
SMILES string encoding of the molecule from DrugBank and then
converted it into the graph structure using RDKit (Landrum, 2020).
We extracted fingerprints from the graph using preprocessing scripts
provided by Tsubaki et al. (2019).

4.3 Drug mention linking
We linked mentions in the corpus to DrugBank entries by relaxed
string matching. In particular, we lowercased each mention and the
following items in the DrugBank entries, and we chose the entry
that includes an item showing the most overlap with the mention.

• Name: Headword of the drug entry
• Brand: Brand names from different manufactures
• Product: The final commercial preparation of the drug
• Synonym: Synonyms of the drug
• ATC codes: Codes for hierarchical drug classification.

For the ATC code, the same code can be assigned to multiple
drugs, so we use only ATC codes that are assigned to single drugs
for mention linking. Also, for synonyms, we linked mentions and
synonyms by exact string matching instead of relaxed string match-
ing to avoid the matching with very short strings (e.g. abbrevia-
tions). With this linking, 90.50% and 91.10% of drug mentions in
SemEval-2013 train and test dataset matched the DrugBank entries.
Figure 3 shows how the linking is performed. The input sentence
contains two mentions ‘norgestrel’ and ‘norethindrone’. We per-
formed string matching to link these mentions to DrugBank entries.
As a result, the mention ‘noregestrel’ matched the Name item and
the mention ‘norethindrone’ matched the Product item.

4.4 Training settings
We followed the training settings for the fine-tuning of BERT on the
GLUE tasks (Devlin et al., 2019) except for the following two
points. First, we employed the AdamW optimizer (Loshchilov and
Hutter, 2019) instead of Adam optimizer. Second, we employed
mixed-precision training (Le Gallo et al., 2018) for the memory
efficiency.

We applied dropout to the input of the convolution layer for
regularization. Word position embeddings are initialized with ran-
dom values drawn from a uniform distribution between �10�3 and
10�3. We set the description and molecular structure vectors of un-
matched entities to zero vectors. Tables 3 and 4 show hyper-
parameters for CNNs and GNNs. We used the same hyper-
parameters as the GLUE tasks in Devlin et al. (2019) for the BERT
layer. In the DDIExtraction 2013 shared task, the official develop-
ment dataset is not provided; thus we prepared a development data-
set from the official training dataset to choose the other hyper-
parameters. In order to train the model on the same setting as other
existing models (Asada et al., 2018; Liu et al., 2016; Peng et al.,

2019), the development dataset is included in the entire training
dataset for training the model. We used the entire training dataset
for training the model to evaluate the performance on the test set.
For GNNs, we show the results with different radii 0, 1 and 2 for
molecular fingerprints. Note that, GNNs with a radius of 0 means
no molecular fingerprints, which assigns vectors to atoms.

5 Results

Table 5 shows the performance of DDI extraction models including
the proposed models with different settings and the state-of-the-art
models. We can see that the baseline text-only model (SciBERT
CNN) using SciBERT is powerful. SciBERT improved the perform-
ance of the model without SciBERT (word2vec CNN) by 11.04%
points in the micro F-score. With this improvement, the model with
SciBERT has achieved the state-of-the-art performance when we
compare it with the state-of-the-art models in the top rows of the
table. When we omitted the CNNs from the baseline model
(SciBERT Linear), we used the first special token [CLS] as the aggre-
gated representation of the sentence and we fed the embedding of
[CLS] into the linear classifier layer. The performance slightly
dropped with this omission but the difference is negligible. This indi-
cates the BERT model is powerful enough to capture the similar in-
formation as CNNs.

We observe additional increase of the micro F-score by using
drug description and molecular structure information as shown in
the bottom part of the table. This shows the large-scale raw text in-
formation from SciBERT and the database information are comple-
mentary, and they are both useful for extracting DDIs from text. For
GNNs, GNNs with molecular fingerprints (radius¼1 or 2) show
better performance than GNNs without them (radius¼0), and
GNNs with the radius of 1 show the highest performance. When
comparing the description and molecular structure information, the
micro F-score with molecular structure information (radius¼1) is
slightly higher than one with the description information (þDesc),
but their difference is not significant and the superiority depends on
how to represent the molecular structure information, i.e. molecular
fingerprints. We leave the search of the better representations for fu-
ture work. The improvement by the ensemble model of description
and the molecular structure information is statistically significant
when compared with the baseline model (P < 0.005, McNemar
test). We used the scikit-learn (Pedregosa et al., 2011) Python library
for evaluating the statistical significance.

Fig. 3. Linking between mentions and DrugBank entry

Table 3. Hyper-parameters for CNNs

Parameter Value

Word embedding size dw 768

Initial learning rate 5e-5

Number of fine-tuning epochs 3

L2 weight decay 0.01

Dropout rate 0.1

Mini-batch size 32

Word position embedding size dp 10

Convolution window size k 5

Convolution filter size dc 768

Convolution window size for description 3

Convolution filter size for description 20

Table 4. Hyper-parameters for GNNs

Parameter Value

Molecular embedding size dg 50

Number of hidden layer L 5

Radius 1

Using drug descriptions and molecular structures for DDI extraction 1743



Table 6 shows the performance of DDI extraction models on the
development dataset. Consistently with the results on the test set in
Table 5, either of the description information and molecular struc-
ture information improves the performance and the combination of
the two information showed the highest F-scores on the develop-
ment dataset. However, there are some inconsistencies in the results
on development and test datasets; the model with molecular struc-
ture information showed a higher F-score than the model with de-
scription information on the development dataset, while the model
with molecular structure information showed a lower F-score on the
test dataset.

Table 7 shows the F-scores on individual DDI types. The descrip-
tion information improves F-scores for Mechanism, Effect and Int.
types, but it degrades the F-scores for Advice. The molecular struc-
ture information improves F-scores for Effect and Advice, but it
degrades the F-scores for Mechanism and Int. for some radii. This
indicates the two information have different effects on extracting
DDIs, and each information is not enough to improve the entire
DDI extraction performance. When both the description and mo-
lecular structure information are used by the ensemble technique,

the model shows higher performance than the baseline model on all
types. We cross-validated the training dataset using 5-fold cross-
validation and we further analyzed the performance on individual
DDI types. Table 8 shows the F-scores for folds of cross-validated
training dataset. We used the micro-averaged F-score to calculate
the average of the folds. The models with individual information
show higher performance than the baseline model on Mechanism
and Int., while they show comparable or lower performance than
the baseline model on other labels. Although the changes in per-
formance are inconsistent for the DDI types and folds, the model
with the ensemble technique shows higher performance than the
models with individual information on average. As a result, the
model with the ensemble technique improves the F-scores on aver-
age for all the types except for Int., where our model performs on
par with the baseline model. These results show that the

Table 5. Evaluation on DDI extraction from texts on the test set

Method P R F (%)

Liu et al. (2016) 75.29 60.37 67.01

BioBERT (Peng et al., 2019) — — 78.8

Text-only (word2vec CNN)

(Asada et al., 2018) 71.97 68.44 70.16

Text-only (SciBERT linear) 80.28 81.92 81.09

Text-only (SciBERT CNN) 83.10 80.38 81.72

þ Desc 84.05 81.81 82.91

þMol (radius¼ 0) 83.29 82.02 82.65

þMol (radius¼ 1) 83.57 82.12 82.84

þMol (radius¼ 2) 83.66 81.10 82.36

þ Desc þMol (radius¼ 1) 85.36 82.83 84.08

þ Desc þMol (radius¼ 0,1,2) 84.51 82.53 83.51

þMol (radius¼ 0,1,2) 84.69 82.53 83.60

Note: We defined Text-only (SciBERT CNN) model as our baseline model.

The best score is shown in bold.

Table 6. Evaluation on DDI extraction from texts on the develop-

ment set

Method P R F (%)

Text-only (SciBERT CNN) 83.55 80.19 81.84

þ Desc 83.19 82.31 82.75

þMol (radius¼ 0) 83.73 81.25 82.47

þMol (radius¼ 1) 82.85 83.90 83.37

þMol (radius¼ 2) 82.88 83.58 83.23

þ Desc þMol (radius¼ 1) 84.59 84.32 84.46

Table 7. Performance on individual DDI types in F-scores

DDI type

Method Mech. Effect Adv. Int. (%)

Text-only 86.18 79.12 88.34 55.94

þ Desc 87.62 81.08 87.05 60.27

þMol (radius¼ 0) 84.65 81.20 90.67 55.71

þMol (radius¼ 1) 86.33 80.48 92.07 49.25

þMol (radius¼ 2) 84.02 82.24 88.58 57.34

þ Desc þMol (radius¼ 1) 87.61 82.05 90.79 58.74

Note: The best score for each type is shown in bold and the scores lower

than the baseline model are shown with underlines.

Table 8. Individual F-scores on 5-fold cross-validated training

dataset

DDI type

Method Mech. Effect Adv. Int. (%)

Fold 1 Text-only 84.60 86.38 85.80 68.29

þ Desc 82.55 81.82 85.23 64.37

þMol (radius¼ 1) 84.55 84.62 84.53 71.05

þ Desc þMol

(radius¼ 1)

86.13 85.46 86.69 67.47

Fold 2 Text-only 83.46 83.26 78.80 81.48

þ Desc 84.15 82.52 81.99 79.01

þMol (radius¼ 1) 82.26 83.45 81.64 76.54

þ Desc þMol

(radius¼ 1)

84.29 83.38 82.64 79.01

Fold 3 Text-only 84.91 59.21 76.54 91.43

þ Desc 83.40 88.31 73.53 91.67

þMol (radius¼ 1) 84.43 86.24 75.24 94.44

þ Desc þMol

(radius¼ 1)

86.09 87.25 76.22 92.96

Fold 4 Text-only 76.81 81.56 78.01 79.45

þ Desc 77.54 82.47 79.65 81.16

þMol (radius¼ 1) 78.17 84.03 77.34 76.92

þ Desc þMol

(radius¼ 1)

77.35 85.15 79.40 83.33

Fold 5 Text-only 81.97 81.76 89.51 76.54

þ Desc 84.95 83.02 87.73 81.48

þMol (radius¼ 1) 86.09 83.74 87.23 73.33

þ Desc þMol

(radius¼ 1)

86.26 84.91 88.34 75.00

Average Text-only 82.34 76.99 81.67 79.07

þ Desc 83.09 84.39 81.27 78.09

þMol (radius¼ 1) 82.47 83.57 81.60 78.97

þ Desc þMol

(radius¼ 1)

84.01 85.20 82.70 78.99

Note: We used the micro-averaged F-score to calculate the average of the

folds. The best score for each type is shown in bold and the scores lower than

the baseline model are shown with underlines.

Table 9. Comparisons of F-scores on different parts of the test set

Method MEDLINE DrugBank Overall (%)

Text-only (SciBERT CNN) 74.57 82.44 81.72

þ Desc 74.41 83.75 82.91

þMol (radius¼ 0) 75.00 83.41 82.65

þMol (radius¼ 1) 73.98 83.71 82.84

þMol (radius¼ 2) 74.57 83.15 82.36

þ Desc þMol (radius¼ 1) 78.16 84.67 84.08
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performance on each label is affected by data splitting, but overall,
when both the description information and molecular structure in-
formation are used by the ensemble technique, our model is effective
for improving the performance of DDI extraction.

Table 9 shows the comparison of F-scores on the two different
subsets of the test set: MEDLINE and DrugBank. The model with
the description and one with molecular structure (radius¼1) de-
grade the F-score for MEDLINE, whereas both the description and
molecular structure information improved the F-scores for
DrugBank. For both subsets, the ensemble model greatly improved
the F-score. These results also indicate the description and molecular
structure information are complementary.

6 Discussion

6.1 Pre-training of GNNs and CNNs on DrugBank
To investigate the further use of DrugBank information, we verify if
the DrugBank DDI labels can improve the DDI extraction perform-
ance. Specifically, we pre-trained GNNs for molecular structure in-
formation and CNNs for description information on DrugBank DDI
labels. Many drug pairs have information of interactions, so this
pre-training needs no additional annotations.

We extracted 50 000 interacting (positive) pairs from
DrugBank. We note that, unlike the DDIExtraction 2013 shared
task dataset, DrugBank only contains the information of interact-
ing pairs; there are no detailed labels and no information for non-
interacting (negative) pairs. We thus generated the same number
of pseudo-negative pairs by randomly pairing drugs and removing
those in positive pairs. To avoid overestimation of the perform-
ance, we deleted drug pairs mentioned in the test set of the text
corpus in preparing the pairs. We split positive and negative pairs
into 4:1 for train and test data, and we evaluated the classifica-
tion accuracy using only the molecular information or only the
description.

We first show the performance of the accuracy of binary classifi-
cation on DrugBank DDI pairs in Table 10. The performance is sur-
prisingly high, although the accuracy is evaluated on automatically
generated negative instances. Overall, both drug description and
molecular structure information can capture DDI information in
DrugBank. In detail, the accuracy with drug description information
is higher than that with molecular structure information. For mo-
lecular structure information, GNN with the radius of 2 shows the
best performance. The difference in accuracy between radius 0 and
2 is 21.78% points, and this large difference shows the importance
of capturing molecular fingerprints for DDI.

We pre-trained CNNs and GNNs using the DrugBank inter-
action labels including the pseudo-negative labels and fine-tuned
them on the DDIExtraction 2013 dataset. Table 11 shows the com-
parison of the F-scores with or without pre-trainng. Unfortunately,
for all the settings, the models with pre-training show lower per-
formance than those without pre-training. This may be because the
labels in the DDI extraction tasks are annotated depending on the
context of the pairs and the labels can be inconsistent with labels in
DrugBank and because the pseudo-negative examples are used in
training instead of the real negative examples.

6.2 Can DrugBank information alone extract DDIs from

texts?
To further investigate how the contextual information is important
in the DDI task, we verified whether the textual DDI can be

extracted only from the drug information in DrugBank without
using the input sentence. We simply omitted the input sentence rep-
resentation hsent from Equations (7) and (8) and trained the DDI ex-

traction models, but the F-scores were quite low (<5%) for both
models. This result shows that we cannot extract DDI relation from

texts only with the description and molecular structure information.
This indicates that DDI extraction from text greatly depends on the
context information around drug mention pairs and our models on

the database information serve as a supplement to the textual CNN
model.

6.3 Error analysis
Figure 4 shows F-scores for different sentence lengths on the valid-

ation dataset. Since the instances with longer sentence lengths are
relatively few, we used 5-fold cross-validation on the official train-
ing dataset. Here, the sentence length is defined to be the number of

subwords divided by SciBERT vocabulary. In the previous work,
Quan et al. (2016) analyzed the F-scores for the sentence length and

pointed out that the performance is low for very long sentences with
60 or more words. Wang et al. (2017) also analyzed the F-scores for
the sentence length and showed that F-scores tend to drop when the

lengths of the instances are in the range from 71 to 100. The baseline
model shows lower performance for long sentences with 80 or more

subwords, and this result shows the same tendency as the previous
analyses. Our model shows higher performance than the baseline
model, especially for the sentences with more than 100 subwords.

This shows that the DrugBank information is helpful to predict
DDIs when the input sentences are long and complex and it is diffi-
cult to consider the whole contexts.

Table 10. Accuracy of binary classification on the DrugBank pairs

Accuracy (%)

Description SciBERT 91.05

Molecular structure GNN (radius¼ 0) 67.58

GNN (radius¼ 1) 82.21

GNN (radius¼ 2) 89.36

Table 11. Evaluation on DDI extraction from texts with or without

pre-training of GNNs for the molecular structure and CNNs for the

description

Methods P R F (%)

SciBERT 83.10 80.38 81.72

w/ pre-training þ Desc 84.62 79.26 81.85

þMol (radius¼ 0) 82.69 81.00 81.83

þMol (radius¼ 1) 84.51 80.28 82.34

þMol (radius¼ 2) 82.36 80.28 81.74

w/o pre-training þ Desc 84.05 81.81 82.91

þMol (radius¼ 0) 83.29 82.02 82.65

þMol (radius¼ 1) 83.57 82.12 82.84

þMol (radius¼ 2) 83.66 81.10 82.36

Fig. 4. F-scores for different sentence lengths on the 5-fold cross-validated training

dataset. We used the micro-averaged F-score to calculate the average of the folds
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7 Conclusions

We proposed a novel neural method for DDI extraction from text
using large-scale raw text information and drug database informa-
tion, especially the drug descriptions and the drug molecular struc-
ture information. The results show that the large-scale raw text
information with SciBERT greatly improves the performance of
DDI extraction from text on the dataset of the DDIExtraction 2013
shared task. In addition, either of the drug description and the mo-
lecular structure information can further improve the performance
for specific DDI types, and their simultaneous use can improve the
performance on all the DDI types.

Our future work includes investigating other information regis-
tered in DrugBank and other drug databases. In addition, we will
seek the way to build a model that can effectively utilize multiple
items in drug databases and combine the textual and drug database
information.
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