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Abstract
Accurate detection and classification of predation events is important to determine 
predation and consumption rates by predators. However, obtaining this information 
for large predators is constrained by the speed at which carcasses disappear and the 
cost of field data collection. To accurately detect predation events, researchers have 
used GPS collar technology combined with targeted site visits. However, kill sites are 
often investigated well after the predation event due to limited data retrieval options 
on GPS collars (VHF or UHF downloading) and to ensure crew safety when working 
with large predators. This can lead to missing information from small- prey (including 
young ungulates) kill sites due to scavenging and general site deterioration (e.g., veg-
etation growth). We used a space–time permutation scan statistic (STPSS) clustering 
method (SaTScan) to detect predation events of grizzly bears (Ursus arctos) fitted with 
satellite transmitting GPS collars. We used generalized linear mixed models to verify 
predation events and the size of carcasses using spatiotemporal characteristics as pre-
dictors. STPSS uses a probability model to compare expected cluster size (space and 
time) with the observed size. We applied this method retrospectively to data from 
2006 to 2007 to compare our method to random GPS site selection. In 2013–2014, 
we applied our detection method to visit sites one week after their occupation. Both 
datasets were collected in the same study area. Our approach detected 23 of 27 pre-
dation sites verified by visiting 464 random grizzly bear locations in 2006–2007, 187 
of which were within space–time clusters and 277 outside. Predation site detection 
increased by 2.75 times (54 predation events of 335 visited clusters) using 2013–2014 
data. Our GLMMs showed that cluster size and duration predicted predation events 
and carcass size with high sensitivity (0.72 and 0.94, respectively). Coupling GPS satel-
lite technology with clusters using a program based on space–time probability models 
allows for prompt visits to predation sites. This enables accurate identification of the 
carcass size and increases fieldwork efficiency in predation studies. 
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1  | INTRODUCTION

Predation and scavenging influence prey and predator population dy-
namics and community structure (Holt, 1977), but key elements of pre-
dation, such as frequency of predation, prey size, species, and sex, have 
proven difficult to quantify. Therefore, predator foraging ecology is often 
based on scat analysis that cannot always provide reliable data on these 
parameters (Fortin et al., 2013; Ripple & Larsen, 2000). For instance, prey 
sex and age usually cannot be determined from remains in scat, whereas 
visits to predation sites provide high- quality estimates of food consump-
tion as well as prey carcass characteristics (Cristescu, 2013), but as in-
formation available at a predation site deteriorates with time, prompt 
detection of the predation event is important to collect such key data 
as prey sex, age, carcass consumption (Cristescu, Stenhouse, & Boyce, 
2014a; Rauset, Kindberg, & Swenson, 2012), and predator behavior.

Animal tracking collars have been used for decades, and biol-
ogists have paired location data with field site investigations to 
explore associated natural history, including predation events (see 
for example, Jedrzejewski et al., 2000). However, the innovation 
of satellite transmitters has improved remote wildlife monitor-
ing (Anderson & Lindzey, 2003; Franke, Caelli, Kuzyk, & Hudson, 
2006; Knopff, Knopff, Warren, & Boyce, 2009; Sand, Zimmermann, 
Wabakken, Andrèn, & Pedersen, 2005; Tambling, Cameron, Du 
Toit, & Getz, 2010; Webb, Hebblewhite, & Merrill, 2008) and has 
improved our ability to detect predation sites. Global Positioning 
System (GPS) collars allow for animal movements to be monitored 
at a predefined frequency, providing a series of locations at regular 
intervals (Anderson & Lindzey, 2003; Franke et al., 2006; Sand et al., 
2005; Zimmermann, Wabakken, Sand, Pedersen, & Liberg, 2007). 
The purpose of our research was to improve the detection of pre-
dation events for grizzly bears (Figure 1) using animal tracking collar 
data to reduce the delay between predation events and site visits.

Technological developments in wildlife radio- tracking have im-
proved our ability to detect predator kill sites. Kill sites were primar-
ily detected by visually locating blood and tracks in the snow during 
ground and helicopter surveys (Knopff et al., 2009; Kunkel, Ruth, 
Pletscher, & Hornocker, 1999) as well as by aerial telemetry tracking 
of collared animals. In some cases, predation sites were investigated 
after researchers identified clusters of locations, but the efficiency 
of data collection was partially compromised by delayed site visits 
because location data were obtained after collar retrieval or in-
frequently from ultra- high- frequency (UHF) collar remote down-
loads (Anderson & Lindzey, 2003; Webb et al., 2008). Cristescu, 
Stenhouse, and Boyce (2014b) studied GPS- UHF collared grizzly 
bears, but only visited sites that were occupied by the predator at 
least a month before the data were downloaded. Such studies that 
relied on site investigations occurring well after the kill event often 
found scattered prey remains. While providing information on rela-
tive prey intake, this approach made species identification uncertain 
and missed predation of relatively small prey, and provided limited 
information on feeding behavior (Anderson & Lindzey, 2003; Franke 
et al., 2006; Sand et al., 2005; Webb et al., 2008). Satellite- based 
GPS now permits kill sites to be detected in real time (Dahle et al., 

2013; Rauset et al., 2012), resolving these issues and potentially en-
abling the study of multipredator systems that distinguish predation 
from scavenging (Knopff et al., 2009).

A growing practice is to visit GPS point clusters that are identi-
fied visually or using automated detection methods. Tools such as 
Python scripts defined clusters by constraining points in space and 
time (Cristescu et al., 2014b; Miller et al., 2013), k- means clustering 
(VanMoorter, Visscher, Jerde, Frair, & Merrill, 2010), spatially joining 
buffered GPS points (Zimmermann et al., 2007), or spatial only noise 
(DBScan) clustering (Ebinger et al., 2016) have proven effective. 
When predators kill large prey or scavenge large carcasses, they often 
spend more time near to the carcass (Cristescu et al., 2014a; Knopff 
et al., 2009). This may create detectable space–time patterns in GPS 
data, characterized by relatively long periods spent by the predator 
in relatively small areas. The advent of GPS collars has made it possi-
ble to identify “clusters” with automated algorithms for grizzly bears 
(Cristescu et al., 2014b; Ebinger et al., 2016; Rauset et al., 2012) and 
other predators (Anderson & Lindzey, 2003; Knopff et al., 2009; Sand 
et al., 2005; Tambling et al., 2010, 2012; Webb et al., 2008). However, 
these automated approaches are not conceptually different from in-
tersecting successive relocations, and there is an increasing need to 
quantitatively compare different approaches for detecting predation 
events and other features, for example, size of prey.

F IGURE  1 Study organism. (a) Grizzly bear Ursus arctos in a 
logging cut in the Kakwa region, Alberta, Canada; (b) Grizzly bear 
grazing

(a)

(b)
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The aim of our research was to improve the detection of preda-
tion events using frequently downloaded grizzly bear location data to 
detect GPS location clusters, so allowing field visits more promptly 
than in past studies. Specifically, we aimed to build a protocol for early 
detection of predation sites for grizzly bears and to develop models 
to predict the presence of grizzly bear predation events and the size 
of prey carcasses found using solely spatiotemporal characteristics of 
GPS point clusters as predictors.

2  | MATERIALS AND METHODS

2.1 | Study area

Our study was largely conducted in 74 000 km2 area in the boreal forest 
along the eastern slopes of the Rocky Mountains, 85 km south of Grand 
Prairie in west- central Alberta, Canada. Sites outside this area to the 
north and east were also occasionally used (Figure 2). Elevation ranged 

from 270 to 3280 m a.s.l. At lower elevations, the region was composed 
of montane, conifer, subalpine forests, and alpine meadows (Downing 
& Pettapiece, 2006). Wetlands and bogs were more common at lower 
elevations and to the north and east of the study area (Franklin, 2001).

Primary plant foods for grizzly bears in west- central Alberta are 
sweet vetch (Hedysarum alpinum, H. boreale and H. sulphurescens) 
roots, cow parsnip (Heracleum lanatum), and clover (Trifolium spp.). 
Berries can be seasonally abundant and grizzly bears may forage 
on velvet- leafed blueberry (Vaccinium myrtilloides), dwarf blueberry 
(Vaccinium caespitosum), buffaloberry (Shepherdia canadensis), and 
mountain huckleberry (Vaccinium membranaceum). Less abundant, 
but still present in grizzly bear diets, are lingonberry (Vaccinium vitis- 
ideae), bearberry (Arctostaphylos uva- ursi), and raspberry (Rubus idaeus) 
(Munro, Nielsen, Price, Stenhouse, & Boyce, 2006; Nielsen, McDermid, 
Stenhouse, & Boyce, 2010).

The dominant animal protein source in grizzly bears’ diets were 
ungulates as moose (Alces alces), white- tailed deer (Odocoileus 

F IGURE  2 Study area for the 2006–
2007 and 2013–2014 seasons indicated 
by individual ranges of male (dotted line) 
and female (solid line) GPS- collared grizzly 
bears (n = 18) tracked in west- central, 
Alberta, Canada
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virginianus), mule deer (Odocoileus hemionus), elk (Cervus canadensis), 
and woodland caribou (Rangifer tarandus). Grizzly bears are not the 
only, nor primary predator in Alberta. They share the landscape with 
wolves (Canis lupus), cougars (Puma concolor), and black bears (Ursus 
americanus), all of which are known predators of ungulates (Ballard, 
Spraker, & Taylor, 1981; Ballard et al., 1979; Gustine, Parker, Lay, 
Gillingham, & Heard, 2006; Rauset et al., 2012; Swenson et al., 
2007).

Human activity is dominantly resource extraction (forestry, oil 
and gas, open pit coal mining) with related linear habitat alterations 
including roads, pipelines, and seismic lines (White, Wulder, Gómez, 
& Stenhouse, 2011). The area is also used for recreational activities 
such as hunting, fishing, camping, hiking, and off- highway vehicle use 
(Nielsen, Munro, Bainbridge, Stenhouse, & Boyce, 2004).

2.2 | Grizzly bear location data

We used GPS collar data from 18 different grizzly bears captured and 
monitored during two different periods: 2006–2007 and 2013–2014 
(Table S1). Bears were captured using aerial darting, leg- hold snaring 
(only until 2009), and culvert trapping techniques (Cattet, Boulanger, 
Stenhouse, Powell, & Reynolds- Hogland, 2008; Cattet, Christison, 
Caulkett, & Stenhouse, 2003).

Bears were equipped with Televilt/Followit GPS satellite collars 
(Followit, Televilt, Lindesberg, Sweden). Collars in both sampling pe-
riods were programmed to acquire hourly locations except for two 
collars deployed in 2006–2007. These were programmed with a 
20- minute interval and were aggregated to match the hourly data of 
the other collars. The primary difference in 2013–2014 compared to 
2006–2007 was that animal location data could be downloaded via 
a satellite uplink rather than downloaded by aerial or ground- based 
methods. Collars transmitted data via satellite every 10 hr during the 
nondenning period (April–December).

2.3 | Study design

Our study was divided into three phases. First, we developed and 
tested a clustering method for detecting grizzly bear predation sites 
comparing random GPS points to clusters (Figure 3). Second, we de-
veloped and applied a field sampling design using the cluster detec-
tion method to identify high- probability activity sites before field visit 
(Figure 4). Finally, we formulated models based on space–time clus-
ter characteristics to detect predation or scavenging sites and prey  
carcass size.

2.4 | Cluster detection protocol

To detect spatiotemporal clusters in the datasets collected at two 
different times, we used the retrospective space–time permutation 
scan statistic (STPSS) (Kulldorff, Heffernan, Hartman, Assunção, 
& Mostashari, 2005) in SaTScan 9.4 (Kulldorff, 2015). The STPSS 
selects event clusters (e.g., bear GPS points) by centering space–
time  cylinders on each event. The cylinder’s base represents 

two- dimensional geographic space, and its height represents time, in 
hours. The outcome is numerous overlapping cylinders considered to 
be potential clusters. The STPSS then applies a Poisson- distributed 
probability function to compare the expected number of GPS points 
to fall in each potential cluster to the observed number of GPS points. 
This method allowed us to detect clusters of “cases” with distribu-
tions in space and time that potentially differ from an expected spati-
otemporal pattern. For greater detail on the original development of 
SaTScan and STPSS, we direct readers to Kulldorff et al. (2005) and 
Kulldorff (1997).

We modified the STPSS’s default search radius and temporal size 
used by Kulldorff et al. (2005) to be biologically relevant for grizzly 
bears (Table S2). This we achieved by setting the parameters accord-
ing to studies on grizzly bear feeding behavior, on predation event 
characterization (Ballard et al., 1981; Rauset et al., 2012), and wolf 
predation (Webb et al., 2008). Values for maximum temporal size 
and maximum radius were defined according to a kill site handling 
time maximum of 7 days (rounded from 6 days to accommodate ob-
served predation events of 1 kill/6.1 days) (Ballard et al., 1981) and 
a maximum radius of 50 m (Rauset et al., 2012). We considered only 
space–time clusters within the 95% confidence interval determined 
by SaTScan’s Monte Carlo testing that compares the Poisson gen-
eralized likelihood ratio (GLR) for each cluster to the GLR obtained 
from 999 randomly simulated clusters (Kulldorff et al., 2005; Webb 
et al., 2008).

We ran the STPSS on 14- day periods of individual grizzly bear GPS 
points. We chose two weeks based on a doubling of the seven- day 
maximum grizzly bear occupancy of kill sites estimated by Ballard et al. 
(1981). Each dataset intentionally overlapped the consecutive period 
by 7 days to prevent exclusion or alteration of clusters that might po-
tentially overlap two arbitrarily selected periods (e.g., a cluster com-
posed of 20 hourly GPS points might appear as of 10 if unintentionally 
bisected). Duplicate clusters were visually detected and removed from 
further analyses.

2.5 | Field data collection

Field site visits at GPS locations were conducted in both 2006–2007 
and 2013–2014, but with different field sampling designs. Both stud-
ies were on Grizzly Bears foraging and relied on GPS collars. However, 
the technological differences in the instrumentation available, which 
are explained above (data downloaded by aerial or ground- based 
methods in 2006–2007 and via satellite uplink every 10 hr in 2013–
2014), determined differences in the promptness of field visits by the 
project personnel.

During 2006–2007, we visited 464 daily randomly selected griz-
zly bear GPS locations following procedures from Munro et al. (2006). 
One location per day for each bear was examined (stratified random 
design) about 26 days (SD = 5) after the bear had visited that location.

Although clusters were detected the same way for both datasets, 
for the 2006–2007 period, clusters were generated a posteriori to as-
sess whether a location fell within the start and end time of a gener-
ated cluster and within that same cluster’s 50 m spatial constraint. If 
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a cluster fit those criteria, the location was considered within a cluster 
(n = 187), otherwise outside a cluster (n = 277) (Figure 3).

For the 2013–2014 period, crews visited only sites falling within 
detected clusters (n = 335, Figure 4). Following previous kill site stud-
ies (Cristescu et al., 2014a; Knopff et al., 2009; Pitman, Swanepoel, & 
Ramsay, 2012), we visited the largest two clusters per collared grizzly 
bear per week and then visited a random selection of the remaining 
generated clusters. For safety reasons, clusters were visited at least 
5 days after the collared bear left the area and on average 11 days 
(SD = 10) after the start of the cluster.

When in the field, crews followed different protocols for data 
collection to assess the presence of predation events in 2006–
2007 compared to 2013–2014. Our newer method benefited from 
combining rapid data download via satellites (not available for the 
older method) with the clustering analysis conducted in this study. 
Thus, we proceeded based on previous knowledge of clusters for 
2013–2014 only. During 2006–2007, crews performed a meander-
ing search near the selected GPS location. If grizzly bear sign was 

detected, it became the center of a defined 30 × 30 m plot search 
area.

In 2013–2014, clusters were explored by searching a 50- m- radius 
area starting from the GPS point closest to the geometric mean of 
the detected space–time cluster and spiraling outward. In previous 
studies, geometric centroids have been used as starting points (Knopff 
et al., 2009; Webb et al., 2008; Wilmers et al., 2013). However, this 
can lead to searching a location not actually occupied by the collared 
animal for clusters with large spatial spreads.

It can be difficult to rely on a carcass to determine cause or agent 
of death (e.g., predation, disease, winter kill). This is particularly true 
when carcasses are small due to complete consumption or scaveng-
ing (Franke et al., 2006; Webb et al., 2008). Bears are also capable of 
moving a carcass or stealing from another predator, which makes the 
identification of the original predator very complex. For these reasons, 
we marked all identified carcass locations as predation events when 
no substantial evidence of another predator was noted (e.g., scat, 
tracks), using established criteria by Hatter (1988) and Mattson (1997). 

F IGURE  3 Sampled random GPS 
locations visited in 2006–2007 and labeled 
according to whether they fell within (gray 
squares) or outside of (white triangles) 
clusters. GPS clusters were generated a 
posteriori
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Predation events were further classified according to binary prey size 
(large or small/medium). Large carcasses referred to only adult moose, 
and small/medium referred to all other identified remains (moose 
yearling, moose calf, deer, elk). Moose yearlings were distinguished 
from adults by tooth eruption and wear using guides from Northern 
Prairie Wildlife Research Center (U.S. Geological Survey 2006).

A location was classified as a predation event if we found prey 
remains that appeared to correspond to the time of the bear GPS loca-
tion (i.e., sites with old, dried- out bones were not included) and if there 
was clear sign of grizzly bear presence such as bear scat, tracks, hair, 
bedding (shallow to moderate depression or exposed soil, often hair is 
identified for verification) (Akenson, Nowak, Henjum, & Witmer, 2003; 
Munro et al., 2006; Podgórski, Schmidt, Kowalczyk, & Gulczyńska, 
2008; Svoboda, Belant, Beyer, Duquette, & Martin, 2013), anting (logs 
over turned or opened, or ant hills unearthed) (Munro et al., 2006), 
and root digging (shallow to deep exposed holes) (Munro et al., 2006). 

Berry and herbaceous feeding sites were often difficult to identify de-
pending on plant phenology and the plant species involved. For exam-
ple, browsed buffaloberry can be quite obvious, whereas grazed clover 
can be inconspicuous. If a site contained substantial evidence of scav-
enging (wolf, cougar, or black bear behavior, scat or tracks) (Mattson, 
1997) and minimal grizzly bear evidence, it was noted and classified 
as a no predation event, due to the likelihood that little or no feeding 
was performed at this site by a grizzly bear, despite the bear’s pres-
ence. A typical site that we considered to be a grizzly predation was 
often where crews found a buried carcass, peeled hide, or, if located, 
a crushed skull.

2.6 | Characterization of spatiotemporal clusters

In addition to the biological data, clusters were characterized by spa-
tiotemporal characteristics: 1) spread: standard distance (i.e., standard 

F IGURE  4 Visited STPSS clusters of 
GPS locations in 2013–2014 of collared 
grizzly bears tracked in the Kakwa region of 
west- central Alberta, Canada. Sampled GPS 
cluster locations are shown and labeled 
according to whether a cluster was found 
and confirmed as predation event (X) and 
no predation (dot)
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deviation of the distance) (Mitchell, 2005) of GPS points of each clus-
ter from its geometric center; 2) number of GPS observations (nGP-
SObs): GPS points per cluster; 3) duration: total time (hours) from first 
GPS observation to the last (the difference between nGPSObs and 
duration is due to the clustering algorithm not requiring GPS points to 
be consecutive to be considered within the same cluster. Therefore, 
if a grizzly bear returned to an already initiated cluster, the cluster 
would increase in size); 4) occupation: a ratio representing presence 
of an animal within an active cluster (GPS observations ÷ duration); 5) 
starting time of day (SToD): categorical variable indicating the time of 
day of the first GPS point in the defined cluster (categories were used 
from previous study on grizzly bear movement patterns (Munro et al., 
2006) and daytime was used as reference for models); 6) return events: 
number of times the bear left and returned to the cluster within the 
duration of the cluster; 7) season: categorical variable indicating sea-
son divided as: 1 May to 15 June (Spring/hypophagia), 16 June to 15 
August (Summer/early hyperphagia), and 16 August to 15 October 
(Fall/late hyperphagia; Fall was used as reference for models). These 
periods were chosen based on a previous grizzly bear study (Nielsen, 
2005).

2.7 | Univariate analysis

Pearson’s chi- square was used to compare the frequency of success-
fully located predation events in 2006–2007 between randomly vis-
ited grizzly bear GPS locations and those identified as STPSS clusters. 
For 2013–2014, we compared cluster sites with and without pre-
dation events, as well as sites between predation events containing 
small/medium vs. large prey carcasses, using Pearson’s chi- square 
for nominal variables (sex, age, season, time of the day of the start 
of the cluster) and Fisher’s t test for continuous variables as number 
of GPS points, spread, duration, occupation, return events (Sokal & 
Rohlf, 1995).

2.8 | Model formulation

Carcass size information was not available for the 2006–2007 data-
set, because sites, when visited, often did not contain enough re-
mains to indicate size of prey. Using just the 2013–2014 dataset of 
focused cluster visits (for which carcass size data were also available), 
we therefore formulated generalized linear mixed models (GLMM) 
(Dobson, 2008) to predict predation events or prey size using cluster 
spatiotemporal characteristics and bear sex and age as predictors. We 
used bear ID as a random effect in both models to account for multi-
ple clusters from the same individuals with potentially unique behav-
iors (Gillies et al., 2006). Outcome (dependent) variables included: the 
presence or absence of a predation event, and the size of the carcass 
or prey (small/medium or large). We expected small/medium prey to 
be the usual outcome as predation on small prey is more difficult to 
detect.

Cluster characteristics (spatial spread, number of observations, 
duration, return events, and occupation), grizzly bear sex (male/fe-
male) and age (adult/subadult), plus interaction terms between bear 

age class × season and bear age class × sex were used as predictors 
(independent variables) in formulating our predictive models. The 
number of observations per cluster (log- transformed) and duration 
(log- transformed) were used to scale the variable for rare instances 
of prolonged site visits. We used these interaction predictors be-
cause previous studies have shown biased predation on ungulates 
by male and female grizzly bears (Boertje, Gasaway, Grangaard, 
& Kelleyhouse, 1988; Mattson, 1997; Reynolds & Garner, 2010). 
There have also been reports of different use of ungulate carcasses 
by adults compared to subadults (Young & Mccabe, 1997) as well 
as seasonal patterns of prey consumption by males and females 
(Milakovic & Parker, 2013).

We used an “all- combinations” approach to select the three best- 
performing models as ranked by the Akaike’s information criterion 
(AIC) with a correction for small sample size (AICc) using the R sta-
tistical package MuMIn (Burnham & Anderson, 2002; R Core Team 
2014). Among the best three models, we selected those with the 
highest sensitivity (proportion of correctly classified positive events: 
predation events or small/medium carcass). Model performance was 
also assessed by plotting the receiver operating characteristic curves 
(ROC) (Fielding & Bell, 1997) and by comparing sensitivity at multiple 
probability cutoff thresholds (0.5–0.9). ROCs were then tested using 
a nonparametric approximation (W; similar to a Mann–Whitney statis-
tics) of the area under the curve and estimating its 95% confidence in-
terval to verify that the observed curves were different than the ones 
that would have been obtained with a null model (W = 0.5) (Liu et al., 
2005).

3  | RESULTS

3.1 | Detecting predation with space–time clustering 
protocol

In 2006–2007, the probability of locating predation events was 0.058 
(stratified random design, 27 predation sites, 464 visits, SE = 0.01). 
Of these 27 sites, 24 fell within a posteriori- generated clusters 
(χ2 = 22.064, d.f.  = 1, p < .001) and predicted cluster centers had 
an average distance of 16.3 m (SE = 1.0) from carcasses. In 2013–
2014, by selecting sites to visit among those falling into preliminary 
detected ST clusters, we increased by 2.75 times our ability to find 
predation/scavenging sites compared to the approach used in 2006–
2007 (χ2 = 22.66, d.f.  = 1, p < .001). Overall, we identified predation 
sites with a 0.161 probability (54 predation events over 335 visits). 
Predicted cluster centers were an average of 16.0 m from carcass re-
mains (SE = 2.2).

3.2 | Characteristics of spatiotemporal clusters

Prey remains found during 2013–2014 consisted of 17 large prey 
(adult moose) and 37 small- to- medium- sized prey (elk, deer, moose 
calf, moose yearling). While prey remains were only found at 16% of 
clusters, every cluster we visited contained evidence of at least one 
other type of grizzly bear activity. Of the visited clusters, 69% had 
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sign of root digging, 68% bedding, and 22% anting. Sites characterized 
by herbivory and feeding were identified at 10 and 4% of clusters, 
respectively.

Cluster characteristics at predation sites showed some differ-
ences when compared to sites without predation (Tables 1 and 2). 
From our cluster visits, we found predation events were twice as likely 
during summer and fall than in spring (Table 1; X 2= 11.18, d.f.  = 2, 
PExact = 0.003). Clusters were five times more likely to begin during the 
day (32.8% of the cases) than at night (6.7%), and almost two times 
as likely than at twilight (18.2%; X2 = 37.35, d.f.  = 2, PExact < 0.001; 
Table 1). No significant difference was detected between clusters of 
males and females relative to predation probability (18.4% vs. 12.5%; 
X2 = 2.01, d.f.  = 1, PExact = 0.102).

Clusters around a predation event had larger spread (19.9  
vs. 16.6 m, t = −3.11, p = .002), contained more GPS locations (24.7 
vs. 7.1 points, t = −5.85, p < .001), and lasted twice as long (41.1 vs. 
18.8 hr, t = −3.36, p < .001) than clusters where no predation event 
was detected. Bears were also more likely to leave and then return 
to a predation than a nonpredation event cluster with an average of 
1.8 return events per predation event cluster (t = −5.18, p < .001 l; 
Table 2).

We detected a seasonal pattern when we compared predation 
events that had small/medium prey carcasses to those where larger 
prey carcasses were found (Tables 1 and 2). In spring, clusters were 
more likely to indicate large than small/medium carcasses (ca. 65% 
vs. 35%, X2 = 18.55, p = .001) than in summer and fall when most of 

the clusters we detected were around small/medium prey (89.4% and 
64.7%, respectively).

3.3 | Predictive model

3.3.1 | Predation event model

The best model included four variables: total number of GPS points in 
the cluster, cluster duration, sex of the grizzly bear, and cluster starting 
time (Table 3). The likelihood of finding a predation event increased 
with the number of GPS observations in the cluster, if the bear was 
male and when the cluster started during the day. A cluster starting 
during night or at twilight gave a negative effect (Table 4). Using the 
usual probability threshold of 0.5, the model had an excellent overall 
classification success (93.4% combined correct classification of “pre-
dation” and “no predation”), good sensitivity (72.2% correctly classi-
fied cases of “predation”), and very high specificity (97.5% correctly 
classified cases of “no predation”) with an expected decrement as 
cutoff thresholds increased (Table S3). The estimated area under the 
curve (AUC) for the top model was 0.945 (SE = 0.018, p < .001) and 
the ROC plot indicated minimal false positivity in prediction (Figure 5).

3.3.2 | Carcass size model

We used the carcass size model with high sensitivity (94.4%) despite 
a slightly lower AICc (Table 3). For the carcass size predictive model, 

TABLE  1 Spatiotemporal characteristics of predation events and carcass size around location clusters from GPS- collared grizzly bears in 
west- central Alberta

Variable

Predation No predation

X2 PExact

Small/ Med 
carcass Large carcass

X2 PExactn (%) n (%) n (%) n (%)

Seasona

Spring 17 (24.3) 53 (75.7) 11 (15.7) 6 (8.6)

Summer 19 (22.6) 65 (77.4) 11.18 0.003 17 (20.2) 2 (2.4) 18.55 0.001

Fall 18 (9.9) 163 (90.1) 9 (5.0) 9 (5.0)

SToDb

Day 38 (32.8) 78 (67.2) 30 (25.9) 8 (6.9)

Night 14 (6.7) 194 (93.3) 37.35 <0.001 6 (2.9) 8 (3.8) 43.38 <0.001

Twilight 2 (18.2) 9 (81.8) 1 (9.1) 1 (9.1)

Sexc

Male 38 (18.4) 169 (81.6) 2.01 0.102 24 (11.6) 14 (6.8) 3.52 0.170

Female 16 (12.5) 112 (87.5) 13 (10.2) 3 (2.3)

Age classd

Adult 43 (16.7) 214 (83.3) 0.31 0.360 27 (10.5) 16 (6.2) 3.22 0.221

Subadult 11 (14.1) 67 (85.9) 10 (12.8) 1 (1.3)

Numbers and proportions (expressed as %) of sites found with and without evidence of a predation event by prey size, season, time of day, grizzly bear sex 
and age during searches conducted at GPS clusters in the Kakwa region (west- central Alberta, Canada) in 2013–2014.
aSpring (1 May to 15 June), summer (16 June to 15 August), fall (16 August to 15 October) (Nielsen, 2005).
bStarting time of day, categorical variable of time of day of chronologically first GPS point in defined cluster (Munro et al., 2006).
cSex of the collared grizzly bear.
dAge class of collared grizzly bear, Adult (≥4 years), subadult (<4 years) determined from premolar extraction.
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season (summer) and SToD (night) were found to be significant predic-
tors of small/medium prey carcasses (p ≤ .05) whereas the number of 
GPS points and spread were not significant individually but increased 
the AICc of the model and including these variables improved overall 
model success (Table 3).

Similar to the predation model, using a probability cutoff of 0.5, 
the best- performing GLMM model for predicting carcass size had a 
very high classification rate (85.2%; Table S3) with a very high sensitiv-
ity (94.4% of correctly classified positive cases) and a good specificity 
(66.7% of correctly classified negative cases) with an expected decre-
ment as cutoff thresholds increased (Table S3).

As with the previous model, the estimated area under the curve 
(AUC) for this model was very high at 0.852 (SE = 0.062, p < .001) and 
the ROC plot indicated minimal false positivity in prediction (Figure 5) 
(Hosmer, Lemeshow, & Sturdivant, 2013).

The likelihood of finding a small/medium carcass at a predation 
site was greater in fall and summer (Table 4) and increased when 
the cluster started during the night or at twilight. The number of 
GPS locations in the cluster, and the size of the cluster, although 
important to increase the predictive power of the model, did 
not individually affect the probability of finding a small/medium 
carcass.

TABLE  2 Continuous spatiotemporal characteristics of predation events and carcass size around clusters of locations from GPS- collared 
grizzly bears in west- central Alberta

Variable

Predation vs. No predation Large vs. Small/Medium carcass

Mean (SE) Students t test Mean (SE) Students t test

Predation 
(n = 54)

No predation 
(n = 281) t p- value

Small/Med 
(n = 37) Large (n = 17) t p- value

Spreada 19.9 (1.0) 16.6 (0.4) −3.11 .002 19.6 (1.1) 20.6 (1.9) 0.47 .641

nGPSObsb 24.7 (3.0) 7.1 (0.2) −5.85 <.001 20.5 (2.3) 32.9 (7.6) 1.58 .131

Durationc 41.1 (6.1) 18.8 (2.7) −3.36 .001 37.8 (6.6) 47.7 (12.9) 0.68 .502

Return eventsd 1.8 (0.2) 0.4 (0.1) −5.18 <.001 1.75 (0.3) 2 (0.6) 0.38 .706

Occupiede 0.7 (0.0) 0.8 (0.0) 2.28 .026 0.72 (0.0) 0.79 (0.1) 0.80 .429

Means and standard errors of the GPS point number, spread, duration, return events, and proportion of occupation within clusters found with and without 
evidence of a predation event by prey size during searches conducted in the Kakwa region (west- central Alberta, Canada) in 2013–2014.
a“Standard distance” of GPS points in cluster (m).
bHourly GPS points per cluster.
cTotal time (h) from first cluster GPS observation to last observation.
dNumber of times the grizzly bear left and returned to the cluster within the duration of the cluster.
eProportion of animal presence within active cluster (GPS observations ÷ cluster duration).

TABLE  3 Top- ranked binomial logistic regression models for predicting predation events and carcass size developed on clusters of locations 
from GPS- collared grizzly bears in west- central Alberta

Rank Variables LL K AICc Δi ωi Sensitivity (in %)

Predation models

1 nGPSObsa + durationb + SToDc + sexd −60.5 7 135.3 0.0 0.076 72.2

2 nGPSObs + SToD + sex −61.9 6 136 0.71 0.053 72.2

3 nGPSObs + occupiede + sex + SToD −61.1 7 136.5 1.18 0.042 72.2

Carcass size models

1 seasonf + SToD + nGPSObs + spreadg −25.0 8 69.3 0.86 0.018 94.4

2 season −29.8 4 68.4 0.0 0.027 77.8

3 season + SToD −27.6 6 69.0 0.61 0.020 77.8

Top- ranked binomial logistic regression models for predicting predation sites by prey size developed from visited clusters of GPS locations from collared 
grizzly bears in west- central Alberta, Canada in 2013–2014. Models contain grizzly bear ID as a random effect and are shown in decreasing rank by Akaike’s 
Information Criterion with a correction for small sample size (AICc) and compare log- likelihood (LL), number of estimated parameters (K), AICc difference 
(Δi), AICc weight (ωi) and the model’s classification specificity as a percentage of correctly classified positive results.
aHourly GPS points per cluster.
bTotal time (h) from first cluster GPS observation to last observation.
cStarting time of day, categorical variable of time of day of chronologically first GPS point in defined cluster (Munro et al., 2006).
dSex of the collared grizzly bear.
eProportion of presence of animal within active cluster (GPS observations ÷ cluster duration).
fSpring (1 May to 15 June), summer (16 June to 15 August), fall (16 August to 15 October) (Nielsen, 2005).
g“standard distance” of GPS points in cluster in meters (ESRI, Redlands, Calif).
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4  | DISCUSSION

Our method, based on an advanced spatiotemporal algorithm (space–
time permutation scan statistic) used on almost real- time GPS data 
to detect predation event clusters, allowed for early identification 
(within two weeks from cluster) and proved to be very efficient in 
detecting grizzly bear predation events in west- central Alberta. While 
there are computational and logistical limitations to this approach, we 
argue that this result is a significant advance in our ability to measure 
predation rates, prey characteristics, and predator behavior.

When applied to randomly selected daily GPS locations, our clus-
tering methods successfully identified grizzly bear predation events 
85.1% of the time. Only four carcasses in the 2006–2007 dataset 
were not identified as predation events. The first two were moose 
calves, the third was likely a scavenging event, and the fourth was an 
adult moose. While not all of these misclassifications can be directly 
accounted for, even with short- interval GPS data (Cristescu et al., 

2014b; Webb et al., 2008) small prey and scavenging events can go 
undetected due to the short time it takes to consume or move the 
carcass (Cavalcanti & Gese, 2010; Webb et al., 2008).

Using our cluster- oriented approach, we increased the probability 
of finding a carcass site by 2.75 times. The probability increased from 
0.058 carcasses per site visit in 2006–2007 to 0.161 in 2013–2014. 
While this might be attributed to simply a difference in predation 
patterns between sampling periods, we suggest that a result of this 
magnitude represents an improvement in detection between the two 
datasets due to the clustering method combined with quick site visits.

Early detection of predation events (mean = 11 days) represented 
a substantial improvement over previous studies. Cristescu et al. 
(2014b) was limited by how frequently they downloaded GPS data 
using remotely downloadable GPS radiocollars. Monthly downloading 
resulted in visiting sites on average 3 weeks after the kill event. Bacon, 
Becic, Epp, and Boyce (2011) downloaded data via ground telemetry 
every 3 weeks making sites at least that old when visited. Tambling 

TABLE  4 AICc selected best predictive binomial logistic regression models for predation for determining the size of a carcass at clusters of 
locations from GPS- collared grizzly bears in west- central Alberta

Estimate SE z p- value Odds ratio Lower 95% Conf. Int. Upper 95% Conf. Int.

a) Predation detection

Intercept −10.75 1.49 −7.07 <.0001 2.5456* 10−5 8.3540 * 10−7 0.0004

nGPSObsa 11.24 1.83 6.14 <.0001 7.5904* 104 3.0228 * 103 4.4186* 106

Durationb −1.46 1.83 6.14 .1229 0.0233 0.0292 1.2549

Sex(M)c 1.32 0.54 2.44 .0149 3.7373 1.3117 13.8550

SToDd – – – <.0001* – – –

Night −2.45 0.52 −4.74 <.0001 0.0859 0.0294 0.2275

Twilight −3.21 1.70 −1.89 .0594 0.0404 0.0013 0.6280

b) Carcass size determination

Intercept 4.80 2.25 2.13 .0331 120.9318 1.8911 1.6273* 104

Seasone – – – .0134* – – –

Spring 0.54 0.81 0.66 .5083 1.7101 0.3487 8.8467

Summer 2.65 1.06 2.51 .0123 14.1922 2.1467 156.1204

SToD – – – .0424* – – –

Night −1.91 0.86 −2.23 .0261 0.1476 0.0234 0.7384

Twilight −1.92 1.69 −1.14 .2564 0.1466 0.0037 5.3472

nGPSObse −1.97 1.20 −1.64 .1018 0.1396 0.0108 1.3911

Spreadf −3.48 2.07 −1.68 .0926 0.0308 0.0003 1.3687

Selected models for predicting a) cluster sites containing predation, and b) the size of a carcass given that predation is present using clusters of GPS loca-
tions from collared grizzly bears in west- central Alberta, Canada in 2013–2014. Coefficient estimates are shown with standard errors, Wald statistics (z) 
associated p values, the odds ratios and upper and lower confidence intervals (CI) of the odds ratios. Categorical variable SToD had daytime withheld and 
season had fall withheld as reference variables.
aHourly GPS points per cluster.
bTotal time span (hours) from first cluster GPS observation to last observation.
cSex of the collared grizzly bear, male was the reference variable, that is, value = 1.
dStarting Time of Day(SToD), categorical variable of time of day of chronologically first GPS point in defined cluster, daytime was withheld as a reference 
variable (Munro et al., 2006).
eSeason: spring (1 May to 15 June), summer (16 June to 15 August), fall (16 August to 15 October), fall was withheld as a reference variable (Munro et al., 
2006).
f“Standard distance” of GPS points in cluster in meters (ESRI, Redlands, Calif).
*Overall effect significance estimated using ANOVA with/without categorical variable in question.
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et al. (2012) examined African lion predation with a median of 24 days 
after the animal left the site. Webb et al. (2008) searched wolf GPS 
clusters with a delay of up to 45 days after the wolves had been at the 
cluster and discussed the potential impact of such delays on studies 
where predators relied on small- bodied prey. One of the original GPS 
clustering studies (Anderson & Lindzey, 2003) visited sites an aver-
age of 201 days after the event. Their study was limited by the use 
of store- on- board collars, was unable to distinguish predation from 
scavenging, and had limited ability to detect smaller prey or to de-
termine sex and age of the carcass. Our success in reducing delays 
increases the information gained from predation events, increasing the 
efficiency of field efforts and boosting predation event sample size. 
The value of this is greater when the focal predator is an omnivore 
because predation and subsequent feeding is often a small fraction of 
their overall activity budget.

By exploring the spatiotemporal characteristics of grizzly bear 
behavior we found, as have others for bears and other carnivores 
(Anderson & Lindzey, 2003; Cristescu et al., 2014b; Ebinger et al., 
2016; Franke et al., 2006; Knopff et al., 2009; Rauset et al., 2012; Sand 
et al., 2005; Tambling et al., 2010; Webb et al., 2008), that predators 
spend more time around predation sites. Cluster characteristics around 
predation events were distinct from those without predation allowing 
for a successful detection of the predation event. Both the number of 
GPS points and the duration of a cluster provide insight into how a bear 
spends time at a predation site. The more time the grizzly bear was at 
the location, the greater probability of it being predation. This is consis-
tent with findings from other studies regardless of the predator species 
(Anderson & Lindzey, 2003; Cavalcanti & Gese, 2010; Cristescu et al., 
2014b; Knopff et al., 2009; Tambling et al., 2010; Webb et al., 2008).

The time of day the cluster was initiated (SToD) strongly in-
creased the predictive power of our models. While this does not 
necessarily indicate the beginning of a predation event, clusters 
initiated during the day were significantly more likely to indicate 
the presence of a carcass. This may indicate that killing or scav-
enging is less likely at night or twilight when other behaviors, such 
as bedding, may be dominant (Munro et al., 2006). This relation-
ship agrees with similar research in our study area (Cristescu et al., 
2014b; Stenhouse & Munro, 2000) as well as in North America 
(Craighead, Sumner, & Mitchell, 1995) that has shown that grizzly 
bears are active primarily during the day (Graham & Stenhouse, 
2014). However, these results differ from obligate carnivores such 
as wolves that tend to hunt more actively during crepuscular hours 
(Theuerkauf et al., 2003) and cougars which are more active at 
night than during the day (Kertson, Spencer, Marzluff, Hepinstall- 
Cymerman, & Grue, 2011).

Interestingly, predator gender significantly affected the likelihood 
of detecting predation events. We found higher detection likelihood 
for male grizzly bears. This finding is consistent with research indicat-
ing meat consumption and predation among grizzly bears is higher in 
males than females (Boertje et al., 1988; Jacoby et al., 1999; McLellan, 
2011). However, this is in contrast with López- Alfaro, Robbins, 
Zedrosser, and Nielsen (2013) who suggested that females would have 
large benefits from increased meat consumption.

Models using GPS data have not been very successful in pre-
dicting or detecting small- bodied carcass sites (Ebinger et al., 2016; 
Webb et al., 2008). This is likely due to the short handling time re-
quired to eat small prey and thus a less conspicuous spatiotemporal 
cluster. However, with our approach, we successfully detected small 

F IGURE  5 Receiver operating 
characteristic (ROC) curves of the 
generalized linear mixed models (GLMM) 
used to predict grizzly bear predation from 
clusters (solid line) and prey size when 
predation occurs (dotted line). These curves 
show true- positive versus false- positive 
successful predictions and apply to clusters 
visited during 2013–2014. The area under 
the curve (AUC) for these lines are 0.945 
(solid line) and 0.852 (dotted line)
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carcasses, identifying 37 small/medium- bodied prey (Table S2), with 
high model sensitivity.

By improving small- prey detection, we observed marked season-
ality in their use by grizzly bears with higher frequency in fall and 
summer. This is contrary to previous studies that found smaller prey 
in spring. These studies suggested that this pattern was due to both 
the increased vulnerability of young ungulates (Munro et al., 2006; 
Rauset et al., 2012), and grizzly bears’ propensity to feed on carcasses 
in spring due to increased availability of alternative high- energy plant 
foods (Boertje et al., 1988). Although there can be increased avail-
ability of plant food in summer, there is also a dietary need for high- 
density protein found in meat. Many studies have shown that despite 
this increased access to plant protein, a high- density grizzly population 
depends on access to high- protein meats (Miller et al., 1997; Rode, 
Robbins, & Shipley, 2001; Welch, Keay, Kendall, & Robbins, 1997). 
Moreover, our model showed an increased likelihood of small/medium 
carcass detection in the fall is consistent with an overall increased pre-
dation rate. This is possibly linked to an increased need for protein 
during the predenning period and potentially due to an increase in 
prey mobility as they age (Ballard, Gardner, & Miller, 1980; McLellan & 
Hovey, 1995; Munro et al., 2006).

The success of modeling predation events using predator GPS 
collar data has varied by predator and prey species being studied 
(Anderson & Lindzey, 2003; Franke et al., 2006; Knopff et al., 2009; 
Sand et al., 2005; Tambling et al., 2010; Webb et al., 2008). This ap-
proach is relatively new to omnivores such as grizzly bears (Cristescu 
et al., 2014b; Rauset et al., 2012). While Rauset et al. (2012) experi-
enced comparable success using an alternate method that relies on 
logistic regression, their study applied strictly to female grizzlies during 
the early spring calving season. Our predation event detection was 
slightly increased compared to Cristescu et al. (2014b) who found 
around 80% identification success of ungulate carcasses. Varying 
success from each of these studies may also result from differences 
in GPS fix rates and differences in feeding patterns among individual 
grizzly bears. We were able to download data every ten hours giving 
us greater resolution in grizzly bear feeding behavior. Successful pre-
diction is more likely associated to shorter delays in visiting clusters.

Predicting prey size at detected predation events is a new and 
developing research field. Cristescu et al. (2014a), while successful at 
predicting the location of prey cached by grizzlies, failed to predict the 
size of prey. Webb et al. (2008) were also challenged when attempt-
ing to predict prey size for wolf kill sites. Ebinger et al., 2016 applied 
an a posteriori spatial cluster detection method to describe clustering 
behavior only around selected sites using a daily stratified random 
sampling approach (as the one we used for 2006–2007 seasons). They 
visited sites less than 10 days after GPS data collection and success-
fully classified clusters around large carcasses, but had poor sensitivity 
(43–55%) in identifying small carcass sites.

Efficient field sampling is critical to ensure that sufficient and ac-
curate data are collected with limited resources. Our study provides 
an effective alternative to the most commonly used approaches to 
explore predation rate in obligate or nonobligate carnivores. While a 
project might benefit from visiting all clusters or a large number of 

randomly selected GPS points to provide a better estimate of griz-
zly bear predation events, the substantial field investment and related 
costs make such approaches less desirable. This is particularly true 
for omnivorous or nonobligate carnivore species. For obligate carni-
vores, clustering behavior more reliably indicates a predation event 
(Anderson & Lindzey, 2003; Webb et al., 2008), whereas omnivorous/
nonobligate carnivore clustering is less clearly indicative of a predation 
event. Most often, their time is allocated to other activities such as 
grazing (Cristescu et al., 2014b) or anting. The large number of sites 
that must be visited to achieve this level of resolution in the absence 
of effective prediction remains a logistical and resourcing challenge.

We attribute our success in predicting predation events and the 
size of the prey to several factors. The short delay between collar data 
collection and site visits is clearly important. But we believe a vital 
element to success is selecting clusters using a preliminary identifica-
tion algorithm. This greatly improved the likelihood of including sites 
where predation actually occurred. Moreover, the use of an advanced 
algorithm based on a permutation approach (STPSS) to compare ob-
served versus expected spatiotemporal distribution of GPS location 
significantly improved our ability to detect important behaviors on the 
field.

It is important to stress that these algorithms rely on an appropri-
ate GPS fix rate and require the constraints imposed by the clustering 
algorithm to be consistent with the behavior of the studied predator 
around a food source. In our case, we could rely on numerous stud-
ies that provided estimates of these parameters (Anderson & Lindzey, 
2003; Cristescu et al., 2014b; Franke et al., 2006; Knopff et al., 2009; 
Rauset et al., 2012; Sand et al., 2005; Tambling et al., 2010; Webb 
et al., 2008). For these reasons, when planning a predation behavior 
study in carnivores, obligate or not, we recommend paying careful at-
tention to the GPS fix rate as it relates to success in identifying preda-
tion events. Future studies should additionally resist sampling specific 
seasons due to the link we found between the size of prey carcasses 
and season. Ultimately, we would recommend the use of STPSS clus-
ters for identifying kill sites. But equal priority should be placed on 
species- specific analyses to accurately estimate algorithm parameters.

ACKNOWLEDGMENTS

Special thanks go to the fRI Research Grizzly Bear Program for funding 
support and field assistance. Animals were captured according to ani-
mal care protocol #20010016 (University of Saskatchewan). Funding 
was provided by the Canadian Association of Petroleum Producers, 
Weyerhaeuser Company, Shell, Alberta Conservation Association, 
and NSERC. We thank Karen Graham for field assistance and data 
preparation. We thank Steve Wotton of Peregrine Helicopters, Laura 
Finnegan, and Tracy McKay for their support in collecting field data. 
We thank the field assistants C. Arnison, M. Cavedon, C. Dubesky, D. 
Ducros, C. Gubili, L. Hibbeler, and B. McLeod.

CONFLICT OF INTEREST

None declared.



394  |     KERMISH- WELLS Et aL.

AUTHORS CONTRIBUTIONS

JKM collected field data on clusters and performed data analyses; AM 
coordinated and supervised data analyses and hypothesis formulation 
and MS writing; SG and LT coordinated, implemented, and collected 
radiotelemetry of grizzly bears and discussed methodologies and data 
analyses; MM coordinated the overall project and supervised the data 
analyses and hypothesis formulation.

ORCID

Alessandro Massolo  http://orcid.org/0000-0002-6333-4281 

REFERENCES

Akenson, J., Nowak, M. C., Henjum, M. G., & Witmer, G. W. (2003). 
Characteristics of mountain lion bed, cache and kill sites in northeast-
ern Oregon. USDA National Wildlife Research Center- Staff Publications, 
295, 111–118.

Anderson, C. R., & Lindzey, F. G. (2003). Estimating cougar predation rates 
from GPS location clusters. Journal of Wildlife Management, 67, 307–316.

Bacon, M. M., Becic, G. M., Epp, M. T., & Boyce, M. S. (2011). Do GPS clus-
ters really work? Carnivore diet from scat analysis and GPS telemetry 
methods. Wildlife Society Bulletin, 35, 409–415.

Ballard, W. B., Franzmann, A. W., Taylor, K. P., Spraker, T. H., Schwartz, C. C., 
& Peterson, R. O. (1979). Comparison of techniques utilized to deter-
mine moose calf mortality in Alaska. Alces, 15, 362–387.

Ballard, W. B., Gardner, C. L., & Miller, S. D. (1980). Influence of preda-
tors on summer movements of moose in southcentral Alaska. North 
American Moose Conference Workshop, pp. 338–359, Vol. 16.

Ballard, W. B., Spraker, T. H., & Taylor, K. P. (1981). Causes of neonatal 
moose calf mortality in South Central Alaska. The Journal of Wildlife 
Management, 45, 335–342.

Boertje, R. D., Gasaway, W. C., Grangaard, D. V., & Kelleyhouse, D. G. 
(1988). Predation on moose and caribou by radio- collared grizzly bears 
in east central Alaska. Canadian Journal of Zoology, 66, 2492–2499.

Burnham, K. P., & Anderson, D. R. (2002). Model selection and multimodel 
inference. New York, NY: Springer-Verlag.

Cattet, M. R., Boulanger, J., Stenhouse, G. B., Powell, R. A., & Reynolds-
Hogland, M. J. (2008). An evaluation of long- term capture effects 
in ursids: Implications for wildlife welfare and research. Journal of 
Mammology, 89, 973–990.

Cattet, M. R., Christison, K., Caulkett, N. A., & Stenhouse, G. B. (2003). 
Physiologic responses of grizzly bears to different methods of capture. 
Journal of Wildlife Diseases, 39, 649–654.

Cavalcanti, S. M. C., & Gese, E. M. (2010). Kill rates and predation patterns 
of jaguars (Panthera onca) in the southern Pantanal, Brazil. Journal of 
Mammalogy, 91, 722–736.

Craighead, J. J., Sumner, J. S., & Mitchell, J. A. (1995). The Grizzly bears of 
yellowstone: Their ecology in the yellowstone ecosystem, 1959–1992. 
Washington, DC; Covelo, CA, USA: Island Press.

Cristescu, B. (2013). Grizzly bear response to open-pit mining in western 
Alberta, Canada. PhD Thesis,: University of Alberta, Canada.

Cristescu, B., Stenhouse, G. B., & Boyce, M. S. (2014a). Grizzly bear ungu-
late consumption and the relevance of prey size to caching and meat 
sharing. Animal Behaviour, 92, 133–142.

Cristescu, B., Stenhouse, G. B., & Boyce, M. S. (2014b). Predicting multi-
ple behaviors from GPS radiocollar cluster data. Behavioral Ecology, 26, 
452–464.

Dahle, B., Wallin, K., Cederlund, G., Persson, I.-L., Selvaag, L. S., & Swenson, 
J. E. (2013). Predation on adult moose Alces alces by European brown 
bears Ursus arctos. Wildlife Biology, 19, 165–169.

Dobson, A., & Barnett, A. (2008). A introduction to generalized linear models. 
Boca Raton, FL: CRC Press.

Downing, D. J., & Pettapiece, W. W. (2006). Natural regions and subre-
gions of Alberta. Edmonton, AB, Canada: Natural Regions Committee, 
Government of Alberta.

Ebinger, M. R., Haroldson, M. A., Manen, F. T., Costello, C. M., Bjornlie, D. 
D., Thompson, D. J., … Cross, P. C. (2016). Detecting grizzly bear use 
of ungulate carcasses using global positioning system telemetry and 
activity data. Oecologia, 181, 1–14.

Fielding, A. H., & Bell, J. F. (1997). A review of methods for the assess-
ment of prediction errors in conservation presence/absence models. 
Environmental Conservation, 24, 38–49.

Fortin, J. K., Schwartz, C. C., Gunther, K. a., Teisberg, J. E., Haroldson, M. 
A., Evans, M. A., & Robbins, C. T. (2013). Dietary adjustability of griz-
zly bears and American black bears in Yellowstone National Park. The 
Journal of Wildlife Management, 77, 270–281.

Franke, A., Caelli, T., Kuzyk, G., & Hudson, R. J. (2006). Prediction of wolf 
(Canis lupus) kill- sites using hidden Markov models. Ecological Modelling, 
197, 237–246.

Franklin, S. E. (2001). An integrated decision tree approach (IDTA) to map-
ping landcover using satellite remote sensing in support of grizzly bear 
habitat analysis in the Alberta yellowhead ecosystem. Canadian Journal 
of Remote Sensing, 27, 579–592.

Gillies, C. S., Hebblewhite, M., Nielsen, S. E., Krawchuk, M. A., Aldridge, C. L., 
Frair, J. L., … Jerde, C. L. (2006). Application of random effects to the study 
of resource selection by animals. Journal of Animal Ecology, 75, 887–898.

Graham, K., & Stenhouse, G. B. (2014). Home range, movements, and 
denning chronology of the Grizzly Bear (Ursus arctos) in West- Central 
Alberta. The Canadian Field- Naturalist, 128, 223–234.

Gustine, D. D., Parker, K., Lay, R. J., Gillingham, M., & Heard, D. (2006). Calf 
survival of woodland caribou in a multi- predator ecosystem. Wildlife 
Monographs, 165, 1–32.

Hatter, I. W. (1988). Effects of wolf predation on recruitment of black-tailed 
deer on Northeastern Vancouver Island. Victoria, BC: Ministry of the 
Environment, Government of British Columbia.

Holt, R. D. (1977). Predation, apparent competition, and the structure of 
prey communities. Theoretical Population Biology, 12, 197–229.

Hosmer Jr, D. W., Lemeshow, S., & Sturdivant, R. X. (2013). Applied logistic 
regression, 3rd edn. Hoboken, NJ: John Wiley & Sons.

Jacoby, M. E., Hilderbrand, G. V., Servheen, C., Schwartz, C. C., Arthur, S. 
M., Hanley, T. A., … Michener, R. (1999). Trophic relations of brown and 
black bears in several western North American ecosystems. The Journal 
of Wildlife Management, 63, 921–929.

Jedrzejewski, W., Jedrzejewska, B., Okarma, H., Schmidt, K., Zub, K., & 
Musiani, M. (2000). Prey selection and predation by wolves in Bialowieza 
Primeval Forest, Poland. Journal of Mammalogy, 81, 197–212.

Kertson, B. N., Spencer, R. D., Marzluff, J. M., Hepinstall-Cymerman, J., & Grue, 
C. E. (2011). Cougar space use and movements in the wildland- urban land-
scape of western Washington. Ecological Applications, 21, 2866–2881.

Knopff, K. H., Knopff, A. A., Warren, M. B., & Boyce, M. S. (2009). Evaluating 
global positioning system telemetry techniques for estimating cougar 
predation parameters. Journal of Wildlife Management, 73, 586–597.

Kulldorff, M. (2015). SaTScan user guide for version 9.4. Available from: 
http://www.satscan.org.

Kulldorff M. (1997). A spatial scan statistic. Communications in Statistics - 
Theory and Methods, 26, 1481–1496.

Kulldorff, M., Heffernan, R., Hartman, J., Assunção, R., & Mostashari, F. 
(2005). A space- time permutation scan statistic for disease outbreak 
detection. PLoS Medicine, 2, 0216–0224.

Kunkel, K. E., Ruth, T. K., Pletscher, D. H., & Hornocker, M. G. (1999). Winter 
prey selection by Wolves and Cougars in and Near Glacier National 
Park Montana. The Journal of Wildlife Management, 63, 901–910.

Liu, H., Li, G., Cumberland, W.G., & Wu, T. (2005). Testing statistical significance 
of the area under a receiving operating characteristics curve for repeated 
measures design with bootstrapping. Journal of Data Science, 3, 257–278.

http://orcid.org/0000-0002-6333-4281
http://orcid.org/0000-0002-6333-4281
http://www.satscan.org


     |  395KERMISH- WELLS Et aL.

López-Alfaro, C., Robbins, C. T., Zedrosser, A., & Nielsen, S. E. (2013). 
Energetics of hibernation and reproductive trade- offs in brown bears. 
Ecological Modelling, 270, 1–10.

Mattson, D. J. (1997). Use of ungulates by Yellowstone grizzly bears. 
Biological Conservation, 81, 161–177.

McLellan, B. N. (2011). Implications of a high- energy and low- protein diet 
on the body composition, fitness, and competitive abilities of black 
(Ursus americanus) and grizzly (Ursus arctos) bears. Canadian Journal of 
Zoology, 89, 546–558.

McLellan, B. N., & Hovey, F. W. (1995). The diet of grizzly bears in the 
Flathead River drainage of southeastern British Columbia. Canadian 
Journal of Zoology, 73, 704–712.

Milakovic, B., & Parker, K. L. (2013). Quantifying carnivory by grizzly bears 
in a multi- ungulate system. Journal of Wildlife Management, 77, 39–47.

Miller, C. S., Hebblewhite, M., Petrunenko, Y. K., Seryodkin, I. V., DeCesare, 
N. J., Goodrich, J. M., & Miquelle, D. G. (2013). Estimating Amur tiger 
(Panthera tigris altaica) kill rates and potential consumption rates using 
global positioning system collars. Journal of Mammalogy, 94, 845–855.

Miller, S. D., White, G. C., Sellers, R. A., Reynolds, H. V., Schoen, J. W., Titus, 
K., … Schwartz, C. C. (1997). Brown and black bear density estimation 
in alaska using radiotelemetry and replicated mark- resight techniques. 
Wildlife Monographs, 133, 1–55.

Mitchell, A. (2005). The Esri guide to GIS analysis, volume 2: Spatial measure-
ments and statistics, 1st edn. Redlands, CA: Esri Press.

Munro, R. H. M., Nielsen, S. E., Price, M., Stenhouse, G. B., & Boyce, M. S. 
(2006). Seasonal and diel patterns of grizzly bear diet and activity in 
west- central Alberta. Journal of Mammology, 87, 1112–1121.

Nielsen, S. E. (2005). Habitat ecology, conservation, and projected population 
viability of grizzly bears (Ursus arctos L.) in west-central Alberta, Canada. 
PhD Thesis: University of Alberta, Canada.

Nielsen, S. E., McDermid, G., Stenhouse, G. B., & Boyce, M. S. (2010). 
Dynamic wildlife habitat models: Seasonal foods and mortality risk 
predict occupancy- abundance and habitat selection in grizzly bears. 
Biological Conservation, 143, 1623–1634.

Nielsen, S. E., Munro, R. H. M., Bainbridge, E. L., Stenhouse, G. B., & Boyce, 
M. S. (2004). Grizzly bears and forestry II. Distribution of grizzly bear 
foods in clearcuts of west- central Alberta, Canada. Forest Ecology and 
Management, 199, 67–82.

Pitman, R. T., Swanepoel, L. H., & Ramsay, P. M. (2012). Predictive model-
ling of leopard predation using contextual Global Positioning System 
cluster analysis. Journal of Zoology, 288, 222–230.

Podgórski, T., Schmidt, K., Kowalczyk, R., & Gulczyńska, A. (2008). 
Microhabitat selection by Eurasian lynx and its implications for species 
conservation. Acta Theriologica, 53, 97–110.

R Core Team. (2014). R: A language and environment for statistical computing. 
R Foundation for Statistical Computing, Vienna, Austria. URL http://
www.R-project.org/.

Rauset, G. R., Kindberg, J., & Swenson, J. E. (2012). Modeling female brown 
bear kill rates on moose calves using global positioning satellite data. 
The Journal of Wildlife Management, 76, 1597–1606.

Reynolds, H. V., & Garner, G. W. (1987).  Patterns of grizzly bear predation 
on caribou in northern Alaska.  Ursus, 7, 59–67.

Ripple, W. J., & Larsen, E. J. (2000). Historic aspen recruitment, elk, 
and wolves in northern Yellowstone National Park, USA. Biological 
Conservation, 95, 361–370.

Rode, K. D., Robbins, C. T., & Shipley, L. A. (2001). Constraints on herbivory 
by grizzly bears. Oecologia, 128, 62–71.

Sand, H., Zimmermann, B., Wabakken, P., Andrèn, H., & Pedersen, H. C. 
(2005). Using GPS technology and GIS cluster analyses to estimate 
kill rates in wolf—ungulate ecosystems. Wildlife Society Bulletin, 33, 
914–925.

Sokal, R. R., & Rohlf, F. J. (1995). Biometry: The principles and practice of 
statistics in biological research, 3rd edn. New York, NY: W.H. Freeman 
and C.

Stenhouse, G. B., & Munro, R. H. M. (2000). Foothills Model Forest Grizzly 
Bear Research Program 1999 Annual Report. 110.

Svoboda, N. J., Belant, J. L., Beyer, D. E., Duquette, J. F., & Martin, J. A. 
(2013). Identifying bobcat Lynx rufus kill sites using a global positioning 
system. Wildlife Biology, 19, 78–86.

Swenson, J. E., Dahle, B., Busk, H., Opseth, O., Johansen, T., Söderberg, 
A., … Cederlund, G. (2007). Predation on Moose Calves by European 
Brown Bears. Journal of Wildlife Management, 71, 1993–1997.

Tambling, C. J., Cameron, E. Z., Du Toit, J. T., & Getz, W. M. (2010). Methods 
for locating African lion kills using global positioning system movement 
data. Journal of Wildlife Management, 74, 549–556.

Tambling, C. J., Laurence, S. D., Bellan, S. E., Cameron, E. Z., Du Toit, J. T., 
& Getz, W. M. (2012). Estimating carnivoran diets using a combination 
of carcass observations and scats from GPS clusters. Journal of Zoology, 
286, 102–109.

Theuerkauf, J., Jędrzejewski, W., Schmidt, K., Okarma, H., Ruczyński, I., 
Śnieżko, S., & Gula, R. (2003). Daily patterns and duration of wolf activity 
in the Białowieża Forest, Poland. Journal of Mammalogy, 84, 243–253.

U.S. Geological Survey. (2006). Aging Moose. Northern Prairie Wildlife 
Research Center, 1–7. Retrieved from http://www.npwrc.usgs.gov/re-
source/mammals/mooseage/aging.htm

VanMoorter, B., Visscher, D. R., Jerde, C. L., Frair, J. L., & Merrill, E. H. 
(2010). Identifying movement states from location data using cluster 
analysis. Journal of Wildlife Management, 74, 588–594.

Webb, N. F., Hebblewhite, M., & Merrill, E. H. (2008). Statistical methods 
for Identifying wolf kill sites using global positioning system locations. 
The Journal of Wildlife Management, 72, 798–807.

Welch, C. A., Keay, J., Kendall, K. C., & Robbins, C. T. (1997). Constraints on 
frugivory by bears. Ecology, 78, 1105–1119.

White, J. C., Wulder, M. A., Gómez, C., & Stenhouse, G. B. (2011). A history 
of habitat dynamics: Characterizing 35 years of stand replacing distur-
bance. Canadian Journal of Remote Sensing, 37, 234–251.

Wilmers, C. C., Wang, Y., Nickel, B., Houghtaling, P., Shakeri, Y., Allen, M. L., 
… Williams, T. (2013). Scale dependent behavioral responses to human 
development by a large predator, the Puma (B. Fenton, Ed.). PLoS ONE, 
8, e60590.

Young, D. D., & Mccabe, T. R. (1997). Grizzly bear predation rates on cari-
bou calves in Northeastern Alaska. The Journal of Wildlife Management, 
61, 1056–1066.

Zimmermann, B., Wabakken, P., Sand, H., Pedersen, H. C., & Liberg, O. 
(2007). Wolf movement patterns: A key to estimation of kill rate? 
Journal of Wildlife Management, 71, 1177–1182.

SUPPORTING INFORMATION

Additional Supporting Information may be found online in the 
 supporting information tab for this article.

How to cite this article: Kermish-Wells J, Massolo A, 
Stenhouse GB, Larsen TA, Musiani M. Space–time clusters for 
early detection of grizzly bear predation. Ecol Evol. 2018;8:382–
395. https://doi.org/10.1002/ece3.3489

http://www.R-project.org/
http://www.R-project.org/
http://www.npwrc.usgs.gov/resource/mammals/mooseage/aging.htm
http://www.npwrc.usgs.gov/resource/mammals/mooseage/aging.htm
https://doi.org/10.1002/ece3.3489

