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Abstract: Nonalcoholic fatty liver disease (NAFLD) is the most prevalent liver pathology worldwide.
Meanwhile, liver cancer represents the sixth most common malignancy, with hepatocellular carcinoma
(HCC) as the primary, most prevalent subtype. Due to the rising incidence of metabolic disorders,
NAFLD has become one of the main contributing factors to HCC development. However, although
NAFLD might account for about a fourth of HCC cases, there is currently a significant gap in HCC
surveillance protocols regarding noncirrhotic NAFLD patients, so the majority of NAFLD-related
HCC cases were diagnosed in late stages when survival chances are minimal. However, in the
past decade, the focus in cancer genomics has shifted towards the noncoding part of the genome,
especially on the microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), which have proved
to be involved in the regulation of several malignant processes. This review aims to summarize the
current knowledge regarding some of the main dysregulated, noncoding RNAs (ncRNAs) and their
implications for NAFLD and HCC development. A central focus of the review is on miRNA and
lncRNAs that can influence the progression of NAFLD towards HCC and how they can be used as
potential screening tools and future therapeutic targets.
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1. Introduction

Liver cancer is a frequent and aggressive cancer type, with 905,677 newly diagnosed
cases and over 830,180 deaths worldwide in 2020 alone. The annual incidence of hepatic
cancers is expected to exceed one million cases by 2025 [1,2]. Hepatocellular carcinoma
(HCC) accounts for roughly 90% of all primary hepatic tumors, which makes it the sixth
most common type of cancer worldwide and the third leading cause of cancer-associated
mortality. Such a discrepancy between incidence and mortality emphasizes the aggressive-
ness and poor prognosis associated with this malignancy [3–8]. HCC prognosis is strongly
linked with tumor stage, the best survival rates being reported in early diagnosed patients,
whereas there is currently no curative option for advanced HCC stages [9,10].

NAFLD includes a heterogeneous variety of progressive conditions that range from
steatosis (intrahepatic fat accumulation exceeding 5–10% by weight) to nonalcoholic steato-
hepatitis (NASH), which may progress for some patients to liver cirrhosis, HCC, and,
ultimately, liver failure [11,12]. NAFLD remains the most common liver disease, with
a worldwide prevalence of 25% [13,14]. This complex metabolic disorder has recently
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emerged as one of the main contributing factors to HCC development. The link between
human cancer and viral infections has already been well documented [15,16]. However,
although cirrhosis and chronic hepatitis B infection remain the main risk factors linked
with HCC (in 50% of all cases), a growing amount of clinical evidence suggests that ap-
proximately 24% of the HCC cases are a consequence of neglected NAFLD [17–22]. This
constant rise in NAFLD-related HCC relies on two distinct epidemiologic events. First, the
growing incidence of other metabolic-syndrome-associated conditions, such as hyperlipi-
demia and excessive body weight, obesity, type 2 diabetes mellitus (T2DM), and insulin
resistance [23–25], are jointly contributing towards hepatocarcinogenesis; thus, NAFLD
is expected to become the leading cause of HCC [26–34] and the ultimate indication for
HCC-related liver transplant candidates as well [35–38]. Second, with the successful im-
plementation of anti-hepatitis B/C virus campaigns, the risk of viral-driven HCC has
significantly decreased, NAFLD emerging as a primary risk factor for HCC [39]. Altogether,
these two epidemiological events are promoting NAFLD as one of the primary causes
of HCC.

Hepatocarcinogenesis can occur in both cirrhotic and noncirrhotic livers. However,
since the presence of a pre-existing cirrhotic state has been reported in up to 80–90% of
HCCs, screening is currently recommended for cirrhotic patients only, which leaves uncov-
ered a significant part of early-stage HCC cases, especially since noncirrhotic patients are at
elevated risk compared to the general population being frequently clinically silent. There-
fore, noncirrhotic, nonviral, NAFLD-related HCC cases are usually diagnosed late, with
limited therapeutic options. This emphasizes the need for a clearer understanding of the
mechanisms underlying the steatosis–hepatocarcinogenesis transition, which could aid in
discovering novel genetic biomarkers and in developing better screening methods [40–43].

Previous studies on liver tumorigenesis focused on exploring the genome’s protein-
coding regions due to their central role in protein synthesis. However, less than 2% of the
human genome encodes proteins, whereas, in the remaining 98% of the DNA, noncoding
sequences and their RNA transcripts, generally known as noncoding RNAs (ncRNAs) can
be found. These transcripts are valuable regulators of gene expression and are involved
in modulating different biological processes [44,45]. Thus, increasing evidence indicates
that multiple evolutionarily conserved ncRNAs, such as microRNA (miRNA) and long
noncoding RNA (lncRNA), are highly involved in different molecular processes, including
those associated with the pathogenic transition of steatosis to hepatocarcinoma [46,47].

In recent decades, ncRNAs have become one of the central focuses in cancer research.
MiRNAs are endogenous, 19–24 nucleotides long, single-stranded RNA molecules that
can modulate, at the post-transcriptional level, different complementary target messenger
RNAs involved in many pathophysiological processes, including those associated with
steatosis and hepatocarcinogenesis [48–50]. From the same group of transcripts but distinct
through their structure and functions, lncRNAs are a highly conserved subgroup of ncR-
NAs, exceeding 200 nucleotides in length, with limited known protein-coding potential,
that have recently emerged as significant contributors in the pathophysiology of various
human conditions, entangling chronic liver diseases, such as NAFLD and HCC [51,52].

As these ncRNAs are differentially expressed in dependence on the hepatic state of
the organism, exploring the miRNAs and lncRNAs’ involvement in the NAFLD-related
HCC development is currently of primary interest, yet not a fully understood topic, so
extensive research will provide a better view on the molecular mechanism behind the
steatosis–hepatocarcinogenesis transition [53,54]. In this regard, many researchers are
now conducting intensive studies designed to identify novel and reliable biomarkers
that could be further validated and translated into screening panels [55,56]. This review
aims to provide an updated view on the critical roles of miRNAs and lncRNAs in the
pathologic transition of steatosis to hepatocarcinogenesis, highlighting the potential use of
such ncRNAs as diagnostic biomarkers and possible future therapeutic targets for NAFLD-
related HCC.
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2. Current Epidemiologic Status of NAFLD-Related HCC

Within the NAFLD spectrum, NASH is the main risk factor for HCC development,
as it can lead to advanced fibrosis and cirrhosis [38,57]. The cumulative annual incidence
for developing NASH-related HCC is about 2.4–12.8% [58]. However, in the absence of
NASH or cirrhosis, NAFLD remains the main underlying condition for hepatocarcinoma,
which is usually less likely to be diagnosed by surveillance compared to HCC that develops
in the setting of NASH, cirrhosis, or viral hepatitis [59,60]. Furthermore, implementing
anti-hepatitis B/C virus campaigns decreased the risk of virally driven HCC. Along with
the global rise in obesity and T2DM, a constant increase in NAFLD-related HCC incidence
has been noted. Thus, NAFLD has rapidly emerged as a primary risk factor for HCC [39].

One quarter of the global population currently suffers from NAFLD [61,62]. This silent
liver condition is the fastest growing cause of HCC in several regions worldwide, including
the USA, China, Germany, France, and the UK [63], while being closely and bidirectionally
connected with different metabolic-syndrome-associated conditions [64,65]. NAFLD is
an underlying disorder in up to 68% of T2DM patients and between 60 and 95% of obese
individuals [66,67].

In the past seven decades, a comprehensive, systematic review study by Orci et al.
focused on assessing the incidence of HCC in patients with NAFLD. The results indicated,
with a 95% confidence interval, that the noncirrhotic NAFLD-related HCC rate was 0.03 per
100 person-years, while the rate of cirrhotic NAFLD-related HCC was higher, reaching
3.78 per 100 person-years. Moreover, in cirrhotic patients undergoing regular HCC screen-
ing, the incidence rate was higher, at 4.62 per 100 person-years [68]. In another literature
study, Pinyopornpanish et al. found that, out of all the 1110 NAFLD-related HCCs included
in their research, 15% occurred in noncirrhotic patients [40], highlighting the importance
of HCC screening in all NAFLD individuals, regardless of the cirrhotic status. Overall,
the incidence of HCC has increased throughout the past several decades. Although viral
HBV/HCV infections and cirrhosis appear to remain the most significant risk factors, the
connection with metabolic-syndrome-related disorders, the clinically silent symptoms, and
the rapidly growing incidence of NAFLD make this liver etiology one of the important
causes of HCC development [5,69–71].

However, the current clinical guidelines do not include abdominal ultrasound screen-
ing for noncirrhotic patients. However, about half of the NAFLD-related HCC cases occur
without an established cirrhosis [41,60,72,73]. This unmet need in the screening and surveil-
lance of NAFLD-related HCC patients is a clinical management disruption that could be
prevented. Nonetheless, despite all the advances in surgical procedures and chemothera-
peutic formulations, NAFLD-related HCCs have a lower receipt of curative therapy with
poorer survival rates. Therefore, although several targeted therapies have been previously
approved [74] or investigated in different human cancers [75], due to its high prevalence,
suboptimal screening and surveillance clinical guidelines, poor prognosis, and limited
treatment response, NAFLD-related HCC remains a major global health problem [76,77].

3. Understanding the Pathogenesis of NAFLD-Related HCC

Histologically, NAFLD encompasses a broad spectrum of progressive clinicopatholog-
ical states that include steatosis, a benign form of nonalcoholic fatty liver (NAFL), followed
by a necroinflammation subtype called nonalcoholic steatohepatitis (NASH), which is
characterized by hepatic inflammation, the presence of hepatocellular injury (hepatocyte
ballooning), and fibrosis, which could further progress to liver cirrhosis, HCC, and eventu-
ally liver failure [39,56,61,78]. Hepatocarcinogenesis triggered on a lipotoxic, chronically
inflamed liver has an elevated incidence in patients without cirrhosis, as up to 50% of
NAFLD-related HCCs occur in noncirrhotic conditions [38,79]. Several research articles
reported that patients with NAFLD-related HCC usually have a worse prognosis when
compared with HCC developed based on other liver etiologies. This is due to corroboration
of different factors, including patients usually being diagnosed at old age when they are
already experiencing various other comorbidities and the lack of screening surveillance
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in noncirrhotic NAFLD, which leads to late-stage diagnosis when therapeutic options are
limited [80–85].

The development of NAFLD-related HCC is a complex, multistep, multifactorial, and
not yet fully understood process. NAFLD is described as a hepatic metabolic disease trig-
gered by excessive fat accumulation in the liver due to a fat-rich diet, disrupted metabolic
pathways, and genetic and epigenetic factors (ncRNAs and DNA methylation) [86,87].
Various pathophysiological alterations, such as insulin resistance, precise cytokine release,
oxidative stress, and mitochondrial damage, are involved in the transition of NAFLD
to HCC. In the background of a pre-existent NAFLD, obesity and lipotoxicity-mediated
insulin resistance are significant contributors to HCC pathogenesis through systemic inflam-
mation and the promotion of oncogenic pathways [88]. Moreover, the increased hepatic
lipid storage, especially of free fatty acids (FFA) and diglycerol, can facilitate endoplasmic
reticulum (ER) stress and reactive oxygen-species-mediated DNA damage, which leads to
a chronically inflamed hepatic environment, resulting in NASH and liver fibrosis, which
will further drive the oncogenesis of NAFLD-related HCC [86,89].

It is well established that IL-6, JAK, and STAT signaling pathways are essential
drivers in the development and progression of the HCC [90–92]. In a recent study by
Grohmann et al., it was shown that, in a hepatic oxidative environment in the context of
obesity, STAT-1 and STAT-3 signaling are enhanced via the inactivation of STAT-1 and
STAT-3 phosphatase T cell protein tyrosine phosphate. They also showed that STAT-1 sig-
naling leads to T cell recruitment and the development of both NASH and fibrosis but not
HCC. In contrast, STAT-3 signaling was responsible for NAFLD-related HCC development
independent of NASH and fibrosis [93]. Finally, genetic factors are also involved in the
pathogenesis of NAFLD-related HCC. Primarily, the genetic variants identified so far, PN-
PLA3, TM6SF2, and MBOAT7, increase the severity of NAFLD via elevating hepatic lipid
storage levels by hydrolyzing triglycerides and retinyl esters, hampering lipid mobilization,
and decreasing lipoprotein export, thus supporting the progression and development of
HCC [94–98].

4. The Implications of ncRNAs in the Pathogenesis of NAFLD-Related HCC

The advances made in genome sequencing achieved over the past decades revealed
that potentially between 97 and 98% of the human genome is transcribed into ncRNAs,
which do not code for proteins but are somewhat involved in DNA replication, RNA
splicing, translation, and epigenetic regulation of various biological processes, including
hepatocarcinogenesis [99]. Based on their sequence length, these noncoding transcripts are
divided into two groups: short ncRNAs containing less than ~200 nucleotides and long
noncoding RNAs exceeding this threshold. In recent years, the expression of ncRNAs,
especially miRNAs and lncRNAs, has been extensively studied and linked with several
pathological changes, including the transition of steatosis to hepatocarcinoma [100–102].

Since their discovery, miRNAs have augmented the research on NAFLD and HCC
pathogenesis, especially as they proved to be involved in the molecular events underlying
the transition between the two. In recent years, alteration of specific hepatic miRNAs has
been linked with several key hallmarks of both NAFLD and HCC. In contrast, few studies
have investigated their implication in NAFLD-related HCC progression. Hence, specific
hepatic miRNAs have been shown to regulate lipid metabolism, glucose homeostasis, cell
proliferation, apoptosis, migration, and differentiation in NAFLD, HCC, or NAFLD-related
HCC, thus being considered novel potential molecular biomarkers associated with these
liver diseases [103–107].

4.1. miRNA Biogenesis

The biogenesis of these miRNAs is a multistep process that starts in the nuclei of
hepatic cells [108,109]. Firstly, RNA polymerase II transcribes primary miRNAs (pri-
miRNAs) transcripts within the canonical/mirtron pathway. Thus, the 5′ ends of pri-
miRNAs are capped, while the 3′ ends are polyadenylated [110]. Then, a nuclear Rnase III
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enzyme named Drosha cleaves the pri-miRNAs into 70-100-nucleotide hairpin-structured
precursors called pre-miRNAs [111]. Next, pre-miRNAs are exported into the cytoplasm,
where they bind with exportin-5 and Ran-GTP to be further cleaved by an endoribonuclease,
known as Dicer, into double-stranded pre-miRNAs [112,113]. Subsequently, these newly
formed double-stranded pre-miRNAs undergo a fast unwinding by loading onto the
AGO protein. Only one strand serves as a guide to target mRNAs, remaining bounded.
Finally, the RNA-induced silencing complexes (RISC) and the AGO proteins form the
mature miRNAs [50,114]. These mature noncoding transcripts, of which expression is often
dysregulated, are ready to modulate the mRNA degradation and translational inhibition,
regulating several targets involved in the pathogenesis of NAFLD-related HCC [115].

4.2. LncRNAs

LncRNAs represent a large and heterogeneous group of >200 nucleotide-length tran-
scripts that lack an open reading frame, are frequently poorly expressed in comparison
with the levels of protein-coding genes, and are less conserved than mRNAs having a high
cell/tissue-specific expression [116–118]. Currently, the involvement of lncRNAs in the
pathogenesis of NAFLD-related HCC is an evolving subject with promising results [51,119].
In terms of functionality, there are currently four molecular patterns describing the mecha-
nism behind the regulatory activity of lncRNAs in NAFLD-related HCC. Hence, lncRNAs
can act as: (a) a molecular guide that binds to the target directing their localization; (b) a
molecular scaffold by mediating the protein–RNA interactions; (c) a molecular decoy that
directly binds to the targeted proteins/miRNAs suppressing their functions; (d) a miRNA
sponge; (e) a miRNA precursor; and as (f) a molecular signal regulating gene expres-
sion by interacting with transcription factors or chromatin-modifying enzymes [120–123].
Nonetheless, and often in direct relation to different miRNAs, lncRNAs are currently inves-
tigated for playing a regulatory role in the multistep process of steatosis–hepatocarcinoma
progression [46,52]. A visual representation of the lncRNAs mechanisms of action is illus-
trated below in Figure 1.
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Figure 1. Different mechanisms of action for lncRNAs. Illustration of the main regulatory mechanism
endorsed by hepatic lncRNAs in the pathology transition of NAFLD towards HCC. (A). Guide—some
lncRNAs aid specific proteins to reach their target, thus accomplishing their biological functions.
Oftentimes, some of these proteins are transcription factors located on specific DNA regions and
this guidance becomes an indirect way of regulating gene transcription; (B). Scaffold—LncRNA can
facilitate the interaction of numerous molecules and proteins, enabling the assembly of different
macromolecular complexes, thus promoting the conjunction and integration of molecular information
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within different signaling pathways; (C). Decoy—some lncRNAs bind directly to some protein
molecules impairing their functions; (D). lncRNA sponging miRNA—some lncRNAs can act as
ceRNAs, or sponges, reducing their effect upon the target mRNA, thus regulating gene expression;
(E). lncRNA as miRNA precursor—some lncRNAs can act as precursors of miRNAs to directly
modulate their regulatory activity; (F). Chromatin looping—as lncRNAs are long and mobile, they
could serve as bridges to drive the inter- or intra-chromosomal interactions.

Recently, many findings emerged supporting the implication of miRNAs and lncRNAs
in the pathogenesis of NAFLD-related HCC [124,125]. Dysregulated expression profiles
of such ncRNAs could improve our understanding of this complex disease and hopefully
provide the means for the development of noninvasive and cost-effective methods of
diagnosis. In addition, most miRNAs and lncRNAs have either tumor-promoting or
suppressive roles that can be exploited as therapeutic targets.

5. Dysregulated miRNAs and Their Role in NAFLD-Related HCC

NAFLD is associated with a dysregulation of hepatic metabolism, and, in the past
decade, ncRNAs have been positioned among the primary regulators of these metabolic
alterations [126]. The epigenetic mechanisms underlying several deregulations in the ex-
pression and function of specific miRNAs were involved in NAFLD development and its
progression towards HCC [127]. Thus, several miRNAs were reported as critical regulators
of the insulin signaling pathway, carbohydrate metabolism and hepatic glucose output,
cholesterol and fatty acid metabolism (pathological accumulation of cholesterol and fatty
acids), ER stress and autophagy, and the proinflammatory responses [50,128]. The cellular
and tissue changes that occur in the hepatic architecture throughout the pathologic transi-
tion of healthy liver to NAFLD and further towards HCC [46,129], together with the main
dysregulated miRNAs that modulate these disease-promoting processes, are illustrated in
Figure 2.

Chronic liver inflammation underlying different hepatic etiologies, including NAFLD,
is associated with reduced miR-122 expression in hepatocytes [130,131]. The relatively low
levels of miR-122 expression remained consistent in NAFLD-HCC compared to healthy
tissues [132,133]. Several studies link this miR-122 downregulation with an aggressive
HCC phenotype. For example, in vitro analysis of Coulouarn et al. on HCC-derived
cells (PLC/PRF/5, Huh-1, and Hep40 exhibited very high levels of miR-122, whereas
Hep3B and HepG2 expressed little miR-122, and SNU387 and SNU398 did not express it
at all) and on primary liver tumors and 28 matched nontumor surrounding liver tissues
concluded that loss of miR-122 expression coincided with the acquisition of an invasive
phenotype and suppression of hepatic functions, while being associated with a poor
prognosis [134]. Independently, Tsai et al. found that liver-specific miR-122 is significantly
downregulated in metastatic Mahlavu and SK-HEP-1 HCC cells and negatively regulates
tumorigenesis. It appears that ADAM17, a direct target of miR-122, plays a role in HCC
metastatic progression. Silencing of ADAM17 resulted in an apparent reduction in in vitro
migration, invasion, tumorigenesis, and angiogenesis in the hepatic models of nude mice,
similar to the restoration of miR-122 expression [135].

Kojima et al. studied the correlation between miR-122 expression level and α-fetoprotein
(AFP), a widely used biomarker in HCC surveillance. They demonstrated that the miR-
122/CUX1/miR-214/ZBTB20 pathway regulates AFP expression, and the miR-122/CUX1/
RhoA pathway regulates the aggressive characteristics of such hepatic malignancy [136].
Wu et al. reported that miR-122-knockout mice display increased lipogenesis, changes in
lipid secretion, IL-6 and TNF-α production, and upregulation of chemokine ligand 2, thus
rapidly developing NASH. They also noted that miR-122 expression enhances fibrogenesis
by inducing HIF1α and MAPK1, facilitating HCC development [137]. An extensive and
comprehensive study by Akuta et al. investigated the impact of serum miR-122 on the
histological features of HCC in a 305 NAFLD patient cohort. The research group saw a clear
bidirectional relationship between serum levels of miR-122 and the severity of steatosis,
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ballooning, lobular inflammation, and disease stage of NAFLD-related HCC. In fact, during
the longitudinal evaluation, the scientists observed a decreased tendency in the serum levels
of miR-122, even before the fibrotic stage [138]. Tsai et al. found that miR-122-deficient
mice exhibit inflammation and extensive lipid accumulation (steatosis), highlighting the
anti-inflammatory role of this abundant hepatic miRNA [139]. The aberrant expression of
many other miRNAs, including the hepatic abundant miR-29, miR-155, and miR-21 have
been found associated with HCC-related chronic inflammation [140]. Overall, hepatic miR-
122 deregulation appears to be involved in NAFLD-HCC progression, with its circulating
levels correlated with disease stages. However, although several attempts were already
made to integrate this miRNA into various HCC diagnostic panels, further validation of
these miRNAs is still required as a valid biomarker [141].
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Figure 2. The pathologic transition of healthy liver towards NAFLD-related HCC, together with the
main dysregulated ncRNAs and the disease-promoting processes they regulate. In the upper part of
the figure, we illustrated the primary miRNAs and their expression pattern throughout the transition
of NAFLD towards HCC, together with the pathological processes of which regulation they play a
part in. Centrally, we summarize the main changes in the cellular and tissue architecture of the liver
in both NAFLD (reversible) and NAFLD-related HCC (nonreversible). At the bottom, we presented
the main lncRNAs involved in NAFLD transition towards HCC, their dysregulated expression level,
and the main disease-promoting process in which they play a regulatory role.

The clinical utility of miR-21 in human cancer has been well studied [142]. Hepatic miR-
21 expression is elevated in patients and animal models with confirmed NAFLD [130,143,144]
and livers of HCC individuals [145,146]. Still, its circulating levels are inconsistent in serum
or plasma samples [147,148]. MiR-21 was found upregulated in many hepatic-associated
processes of NAFLD patients, including physiological ones, such as inflammation, fibrosis,
and carcinogenesis, being a potent promoter of HCC [149]. In NAFLD, miR-21 modulates
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glucose and lipid metabolism in hepatocytes through a complex transcription network.
In a study conducted in 2016, Calo et al. reported that miR-21, an oncomiRNA over-
expressed in HCC and other liver etiologies characterized by the presence of steatosis,
promotes hepatic insulin resistance and lipogenesis in obesogenic-diet-fed mice through a
fine regulation of Foxo1, Insig2, STAT3, and HNF4-α. The research group concluded that
hepatic miR-21/miR-21* deficiency is a viable approach for preventing glucose intolerance
and steatosis in mice, thus revealing the potential of miR-21/miR-21* as a therapeutic
target for NAFLD [150]. The same year, Wu et al. confirmed the presence of elevated
miR-21 levels in high-fat diet-fed mice, where it promoted hepatic lipid accumulation and
cancer progression by interacting with the Hbp1-p53-Srebp1c pathway, thus endorsing
miR-21 as a link between NAFLD and HCC but also as a potential therapeutic target for
both disorders [151]. Su et al. provided experimental data supporting the involvement
of miR-21 in regulating triglyceride and cholesterol metabolism in an in vitro model of
NAFLD HepG2 cells via the inhibition of HMGCR expression [147]. Loyer et al. revealed
that, through the inhibition of the PPARα signaling pathway, hepatic miR-21 contributes
to hepatocyte injury, inflammation, and fibrosis [143]. These results indicate that miR-21
could be a viable biomarker for diagnosing and treating NAFLD.

Several studies confirmed that miR-21 induces hepatic fibrosis by simultaneously
activating hepatic stellate cells (HSCs) via PTEN/Akt signaling [152], hepatocyte EMT
by targeting SPRY2 or HNF4α [153], oxidation, and collagen synthesis through the en-
hanced activity of AngII upon the NLRP3 inflammasome via Spry1/ERK/NF-κB and
Smad7/Smad2/3/NOX4 pathways [154,155]. As expected, several studies showed that
loss of miR-21 expression results in decreased steatosis, inflammation, collagen storage,
and impairment of fibrosis [156,157]. In patients with HCC, miR-21 can promote migration,
invasion, and progression through the miR-21-PDCD4-AP-1 feedback loop [158] and the
activation of PTEN, which further triggers AKT by interacting with phosphatidylinositol
3-kinase signaling pathway [145]. In addition, Wang et al. reported that overexpressed
hepatic miR-21 is responsible for the inhibition of KLF5 w, which leads to HCC migration
and invasion [158]. At the same time, Zhou et al. showed that exosomal miR-21 directly
targeted PTEN, activating PDK1/AKT signaling in HSCs and promoting HCC progression
by secreting a complex repertoire of angiogenic cytokines, including VEGF, MMP2, MMP9,
bFGF, and TGF-β [159]. Finally, Wagenaar et al. demonstrated that treatment with specific
single-stranded oligonucleotide inhibitors of miR-21 led to suppression of HCC growth
in two separate xenograft models, highlighting the role of miR-21 in the maintenance of
a tumorigenic phenotype in HCC [146]. Furthermore, multiple clinical data confirm the
overexpression of miR-21 in tissue and serum samples, noticing a significant correlation
between this oncomiRNA and tumor progression, thus suggesting its potential role as a
biomarker for HCC prognosis [160–163]. Taken together, overexpression of miR-21 was
confirmed in both NAFLD and HCC patients, with an apparent involvement in their
pathogenesis, thus considered a potential link between the two diseases. [151,164].

Another highly conserved transcript, miR-375, was overexpressed in serum samples
of NAFLD-confirmed patients compared with healthy individuals and was significantly
associated with disease severity, thus being considered a potential biomarker for NAFLD
progression [165]. In 2018, Lei et al. confirmed the genuine overexpression of miR-375 in
serum samples of HFD-fed mice and correlated it with the decreased expression of AdipoR2,
a direct target of miR-375. In this regard, the researchers noted that inhibition of miR-375 in
human HCC cells HepG2 caused an apparent upregulation in adiponectin expression, while
downregulating leptin, TNF-α, and IL-6 levels. Hence, miR-375 is involved in NAFLD
progression and was proposed as a novel therapeutic target [166].

Regarding the expression and roles in HCC pathogenesis, Li et al. showed that
miR-375 is significantly downregulated in human HCC tissues and cell lines (Huh-7,
SK-HEP-1, MHCC97-H, MHCC97-L, and Hep3B2.1–7). At the same time, its induction
resulted in the in vitro promotion of apoptosis and the inhibition of HCC proliferation.
Furthermore, the scientists identified that ErbB2, a member of the epidermal growth factor
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receptors, is a direct target of miR-375 and is believed to play an essential role in the
development and progression of HCC. Induction of miR-375 decreased the expression
of ErbB2, while downregulation of ErbB2 was found to inhibit the growth of the HCC
cell [167]. In a similar study, He et al. confirmed the significant downregulation of miR-
375 in HCC tissues (60 pairs of HCC and matched adjacent nontumor tissues) and cell
lines (SK-HEP-1, HepG2, Hep3B, Huh-7, MHCC97-H, and MHCC97-L compared with
normal hepatocytes). By Liu et al., the induced overexpression of miR-375 was associated
with an in vitro decrease in hepatocyte proliferation, clonogenicity, and invasion, and
also with induced G1 arrest and apoptosis. AEG-1, which is a downstream regulator of
oncogenic Ha-Ras and c-Myc, was found to be negatively regulated by miR-375. Thus,
downregulation of miR-375 leads to AEG-1 overexpression, which activates the PI3K/Akt,
NF-κB, and Wnt/β-catenin signaling pathways, reversing the antitumor effects of miR-375
deprivation in HCC [168,169]. Another direct and negatively regulated target of miR-375
is YAP, an oncogene involved in the HCC development [169]. Therefore, miR-375 may
represent an important molecular link between NAFLD-associated insulin resistance and
hepatocarcinogenesis, playing a part in the pathogenesis of both conditions.

Zheng et al. investigated a different mechanism for the pathogenesis of NAFLD and
HCC through miR-10b, another ncRNA involved in the hepatic lipid metabolism and an ac-
tive contributor to liver steatosis by modulating PPAR-α expression [170]. Celikbilek et al.
reported the overexpression of miR-10b in steatosis hepatocytes while promoting intra-
cellular lipids and triglyceride accumulation. However, serum levels of miR-10b were
found to decrease in NAFLD patients and were inversely associated with the degree of
liver inflammation [171]. In 2014, Liao et al. found the expression levels of miR-10b to be
increased in HCC tissues and cell lines (MHCC-97L), which promoted HCC cell motility
and invasion through the regulation of HOXD10/RhoC/uPAR/MMPs axis [172]. Jiang
et al. noticed that serum levels of miR-10b progressively increased throughout the transi-
tion from the healthy liver to chronic hepatic disease and towards HCC. This progressive
increase in miR-10b expression across the NAFLD-HCC change could imply its use in the
surveillance of NAFLD patients in the HCC [173].

Another miRNA thought to play a part in the NAFLD-HCC progression is miR-34a,
which was investigated by Castro et al. and found to be upregulated in NAFLD patients
where it reflected the severity of the associated steatohepatitis. In addition, the researchers
noted an inverse correlation between SIRT1 and disease severity, and a positive one between
p53 acetylation and NAFLD progression, representing direct targets of miR-34a [174]. The
expression level of miR-34a was also upregulated in serum samples of NAFLD-confirmed
patients [175]. However, regarding HCC, miR-34a was downregulated in liver tissues of
HCC patients and associated with tumor invasiveness and metastasis [176]. In a recent
study by Sun et al., the lower expression level of miR-34a in comparison with nontumoral
tissues was confirmed. Furthermore, miR-34a expression was negatively associated with the
regulation of HDAC1, one of its direct targets, which is generally found to be overexpressed
in HCC tissues and correlated with cancer-specific mortality [177–179]. Hence, miR-34a
was involved in the pathogenesis of both NAFLD and HCC; additional investigation is
required to understand the mechanisms that make miR-34a a link between these two
hepatic diseases.

Research on murine models conducted by Miller et al. showed that miR-155 expression
is elevated and exhibits protective effects upon the development of NAFLD. In part, these
findings were correlated with the interaction between hepatic miR-155 and its target LXRα,
which prevented the excessive lipid accumulation in the liver of murine NAFLD mice [180].
Lin et al. further confirmed the protective roles of miR-155 in a study conducted on liver
samples from transgenic mice where the hepatic overexpression of miR-155 was found
to alleviate NASH development through one of its direct targets Ces3/TGH [181]. In
the context of steatosis to hepatocarcinogenesis progression, miR-155 was significantly
upregulated in the early stages of hepatocarcinogenesis, alongside the reduced expression
of its target C/EBPβ, a tumor suppressor frequently inhibited in HCC. In addition, the
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research group reported an association between the ectopic expression of miR-155 and the
growth of HCC cells, while its downregulation inhibited their growth [182]. The oncogenic
behavior of hepatic miR-155 was also confirmed by Yan et al. They correlated its elevation
with the downregulation of SOCS1, which activated STAT3, previously confirmed as an
important prognostic biomarker in other cancers, such as glioblastoma [183], and further
downregulated MMP9 expression, consequently promoting HCC tumor invasiveness [184].
Research on animal models shows that hepatic miR-155 overexpression has a protective role
in NAFLD and, paradoxically, a tumor-promoting one in HCC [185]. Therefore, although
extensive data are required to understand its implication in NAFLD-HCC progression,
miR-155 was found to be preferentially accumulated in the liver after the administration
of exosomes containing synthetic miR-155 mimics into miR-155-knockout mice. This
preferential distribution of miR-155 in the liver shows its potential as a disease modulator
in both conditions [186].

Multiple studies reported increased circulating levels of miR-16, a transcript known
for its involvement in liver fibrosis and hepatocarcinogenesis, in patients with histologically
confirmed NAFLD [187–189]. However, it appears that plasma levels of miR-16 decrease
with NAFLD progression, down to the point of being downregulated in HCC, mainly in
patients with tumors over 5 cm in diameter [190]. Thus, lower tissue and serum levels
of miR-16 were confirmed by several studies conducted on HCC patients and further
proposed as reliable diagnostic biomarkers. The miR-16 level transition can be used as a
monitoring biomarker to assess the NAFLD progression sequentially. A biomarker panel
composed of miR-16 with AFP, AFP-L3%, and DCP was reported to offer more sensitivity
and specificity for HCC patients with smaller tumors [191,192]. Taken together, alone, or in
combination with other biomarkers, miR-16 could be a valuable biomarker. Still, extensive
research is required to understand better its roles behind the transition from simple steatosis
to hepatocarcinogenesis. A summary of other dysregulated miRNAs that could play a part
in the NAFLD-related HCC pathogenesis is presented in the following table (Table 1).

Table 1. Other dysregulated miRNAs involved in both NAFLD and HCC.

miRNA Expression Study Sample Molecular Targets Effects Refs.

miR-23a ↑ Liver tissue samples from a murine model of
NAFLD-related HCC

↓ PGC-1α
↓ G6PC Inhibition of gluconeogenesis [193]

miR-33

↓ NAFLD C57BL/6N mice ↑ SREBP1 Hepatic lipogenesis [194]

↑ Serum samples of patients with NAFLD after
liver transplantation ↑ SREBP1/2 Increased steatosis.

Increased inflammation [195]

↑
86 pairs of primary HCC tissues and adjacent
nontumor liver tissues
Human HCC cell lines, HepG2, Huh7

↓ PPAR-α Induced cellular proliferation.
Inhibition of apoptosis [196]

miR-15b

↑
One NAFLD group of 8 SD rats fed with HFD and
one control group of 8 SD rats fed with
normal diet.
Diet-induced obesity C57BL/6N mice

↓ INSR
↓ CCNE1
↓ LPK
↑ PPRC1

Increased hepatic insulin resistance
Decreased cell
proliferation
Decreased glucose utilization
Decreased triglyceride metabolism

[197–202]

↑
Human liver L02, QSG7701, HepG2 cell lines
Serum samples from 69 NAFLD patients and 42
healthy subjects

↑

25 pairs of primary HCC and adjacent nontumor
liver tissues
Human HCC cell lines SNU475, SNU761, Huh-7,
and HepG2, one cholangiocarcinoma cell line
(KMBC) and immortalized human hepatocytes.
Plasma samples of 37 HCC patients, 29 cirrhosis
patients, 31 healthy cases

↓ Bcl-w
Negatively correlated with HCC recurrence
Reduction in cell proliferation
Enhancement of cellular apoptosis

[203,204]

↑ STAM steatotic mice, NASH-fibrotic, and
full-fledged HCC stages of liver carcinogenesis

↑ TGF-β
↑ Wnt/β-catenin Hepatocarcinogenesis [205]

miR-181

↑
25 patients with NAFLD and 25 healthy controls
HFD-fed C57BL/6 mice
Human HCC cell line HepG2

↓ SIRT1 Alleviation of hepatic steatosis [206]

↑ HFD-fed C57BL/6 mice
Human HCC HepG2, Hep3B cells

↑ TGF-β
↓ TIMP3 Promotion of hepatocarcinogenesis [207]
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Table 1. Cont.

miRNA Expression Study Sample Molecular Targets Effects Refs.

miR-143
↑ Human white pre-adipocytes ↑ ERK5 Adipocyte differentiation [208]

↑ Human HCC cell line HepG2 ↑ NF-κB Promotion of cell migration [209]

miR-192

↓ Nonalcoholic steatohepatitis rat models fed
with HFD ↑ SCD-1 Negative regulatory role in lipid synthesis [210]

↓

101 HCC primary tumors and adjacent
nontumor tissues
Human HCC cell lines Huh-7, SK-Hep-1,
SNU-449, and HEK-293T, MHCC- 97L,
MHCC-97H, and LM3

_ _

[211]

↑ miR-192 mimic transfected human HCC cell lines
HCC-LM3, Huh-7, and SK-Hep-1 ↓ SLC39A6/SNAIL Reduction in tumor metastasis

miR-194

↑ Human-derived HepG2 cells
HFD-fed C57BL/6J mice ↓ FXR/Nr1h4

NAFLD development
Disruption of hepatic inflammatory response
Metabolic disruption

[212]

↑
Tumor tissues and adjacent healthy liver tissues
from 131 HCC patients
HCC cell lines SMCC7721, LM3, Hep3B,
MHCC97H, and normal hepatic cell line THLE-3

↓ CADM1
Increased malignant behavior of HCC cells.
Increased proliferation of HCC cells in vivo
Increased growth of HCC tumors in vivo

[213]

6. Dysregulated lncRNAs and Their Role in NAFLD-Related HCC

The other primary class of ncRNAs that has recently emerged as a significant contribu-
tor in the NAFLD-related HCC progression is the lncRNAs [51,119]. In recent years, several
research studies explored the roles of lncRNAs in the pathogenesis of NAFLD and HCC
and in some of the molecular events that occur during the transition between these two
chronic hepatic conditions [54,214]. The cellular and tissue changes that occur in the hepatic
architecture throughout the pathologic transition of healthy liver to NAFLD and further
towards HCC [46,129], together with the main dysregulated lncRNAs that modulate these
disease-promoting processes are illustrated in Figure 2.

In 2017, Wang et al. used an in vivo HFD-induced NAFLD SD rat model and an in vitro
FFA-exposed BRL3A rat cell line to study the involvement of NEAT1 in the development
and progression of NAFLD. Their findings showed increased levels of NEAT1 and mTOR
signaling-pathway-associated protein, consistent in both in vivo and in vitro models of
NAFLD. To assess the effects of NEAT1, the researchers transfected the rat hepatic BRL3A
cells with either pcDNA-NEAT1 lentivirus or si-NEAT1. Overexpression of NEAT1 was
positively correlated with the upregulation of acetyl-CoA carboxylase (ACC) and fatty
acid synthase (FAS), both of which take part in NAFLD pathogenesis. On the other
hand, the FFA-exposed BRL3A cells transfected with si-NEAT1 presented a reversed
phenotype. Similarly, overexpression of NEAT1 increased the levels of p-mTOR and p-
p70S6K1, while inhibition of NEAT1 showed the contrary effect. Finally, after a 4-week
treatment with si-NEAT1 lentivirus, the triglyceride and cholesterol levels were alleviated
in the animal model. These findings support the involvement of lnc-NEAT1 in NAFLD
through regulating the h mTOR/S6K1 signaling pathway in rats. At the same time, its
downregulation is proposed as a potential treatment for NAFLD [215].

In 2019, the upregulation of NEAT1 in hepatic models of NAFLD was confirmed by
two separate studies and implicated in the miRNA-based mechanisms involved in NAFLD
development. Sun et al. found that upregulation of NEAT1 was positively associated
with the expression levels of miR-140 in liver tissues of C57 NAFLD mice and FFA-treated
HepG2 cells, both responsible for NAFLD progression by inactivating AMPK/SREBP-1
signaling pathway. Silencing of miR-140 inhibited NEAT1 expression, decreasing the lipid
deposition in HepG2 cells [216]. The same year, Chen et al. found that upregulation of
NEAT1 inactivates the AMPK/SREBP-1 signaling pathway by sponging miR-146a, thus
liberating the expression of ROCK1, promoting NAFLD progression through hepatic lipid
accumulation [217]. Nonetheless, NEAT1 was involved in regulating NAFLD-associated
fibrosis and inflammation, besides regulating lipid metabolism. Jin et al. reported that
knockdown of NEAT1 inhibited GLI3 and promoted miR-506 expression, while overex-
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pression of miR-506 silenced both NEAT1 and GLI3 in an in vitro model (BRL3A rat cell
line). Thus, the authors concluded that NEAT1 plays a critical role in hepatic fibrosis and
inflammation by regulating the miR-506/GLI3 axis [218]. Regarding its involvement in
HCC development and progression, lnc-NEAT1 has been extensively studied. In 2015,
Guo et al. conducted one of the first such projects. They reported an elevated expression
of NEAT1 in the liver tissue samples from 95 HCC patients, which was further associated
with several hallmarks of HCC, including the number of tumor nodes, metastasis, clinical
TNM stage, the status of portal vein tumor embolus, vascular invasion, and the infiltration
of tumor cells. Thus, authors consider NEAT1 as a pivotal player in tumorigenesis and
metastasis of HCC [219]. In 2017, Fang et al. reported that upregulated NEAT1 promotes
HCC progression by regulating a miR-129-5p-VCP-IκB [220]. In 2020, Zhang et al. came
to a similar conclusion, as NEAT1 expression was found to be significantly upregulated
in Huh-7 and MHCC-97H HCC cell lines compared with the HSC LX-2 cells. MiR-230a,
a direct target of NEAT1, was significantly downregulated in HCC cells, confirmed in an
in vivo nude mouse model. Moreover, a dual-luciferase activity assay identified LAGE3, a
prognostic biomarker associated with progression, as a direct target of miR-320a. The re-
searchers concluded that NEAT1/miR-320a/LAGE3 axis participates in HCC development
and that NEAT1 could be a potential therapeutic target [221].

In addition, the researchers observed that induced overexpression of NEAT1 abolished
the inhibitory effects of miR-504 on HCC cell viability, migration, and invasion, thus
promoting cellular apoptosis. The underlying mechanism proved to be the negative
regulation of miR-504 on SMO expression levels. Hence, the NEAT1/miR-504/SMO
axis deserves a closer look, especially since the downregulation of NEAT1 alleviated
HCC hallmarks in vitro, which promotes NEAT1 as a valuable molecular target for HCC
treatments [222]. Yeermaike et al. observed that m6A demethylase ALKBH5 is responsible
for the upregulation of NEAT1 in human HCC cell lines SMMC-7721, Huh-7, and L02,
which further regulates HCC cell proliferation and migration by sponging miR-214 [223].
Based on these studies, the relationship between NEAT1 and miRNAs appears to be
involved at different levels in HCC pathogenesis. Therefore, it deserves a more in-depth
analysis to better understand and benefit from these findings. Moreover, Sakaguchi et al.
continued the in vitro studies on human HCC cell lines, Huh-7, HLF, and Huh-6, identifying
a novel oncogenic role for NEAT1, that of inducing cellular autophagy through GABARAP
expression, which promotes radioresistance. Hence, NEAT1 and GABARAP are attractive
molecular targets that could improve radiation therapy [224].

In 2019, Shen et al. observed an increased hepatic expression of HULC lncRNA in rat
models of NAFLD. Furthermore, the research group demonstrated that inhibition of HULC
expression was associated with improved pathological state and liver-function-related
indexes of hepatic lipid deposition, improved degree of hepatic fibrosis, reduced hepatocyte
apoptosis but, also, the inhibition of MAPK signaling pathway, evidence that all supports a
clear association between increased HULC expression and NAFLD progression [225]. A few
years before, Li et al. reported an elevated expression of HULC in the liver tissue of 39 HCC
patients compared with 21 healthy controls. This upregulation was positively correlated
with their clinical stage, suggesting that HULC may also be involved in the development
and progression of HCC. The increased expression of HULC was also confirmed in Huh-6,
Huh-7, HepG2, BEL-7402, MHCC-97H, Sk-Hep1, and SMMC-7721 cell lines. At the same
time, the knockdown of HULC resulted in an inhibition of cellular proliferation and in the
induction of cellular apoptosis in vitro. Moreover, their research data indicate that HULC
negatively regulates miR-200a-3p, upregulating ZEB1 expression in HCC cells, which
enhances EMT. Finally, it was also observed that HULC is involved in tumor growth and
intrahepatic metastasis, thus being considered a promoter of HCC pathogenesis through
miR-200a-3p/ZEB1 EMT pathway [226]. Altogether, these findings highlight a promising
research direction, but extensive studies are required for a complete understanding of
HULC implication in NAFLD-related HCC.
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Wang et al. aimed to investigate which part of SNHG20 lncRNA plays in the patho-
genesis of NAFLD-related HCC and whether polarization of liver resident macrophages,
Kupffer cells (KCs), is a contributive factor. Their findings showed that SNHG20 expression
is decreased in human NAFLD but increased in human NAFLD-HCC livers, the results
are also consistent in the mouse models. Both human and mouse NAFLD KCs displayed
M1 polarization compared with NAFLD-HCC KCs, while silencing SNHG20 induced
M1 polarization in RAW264.7 macrophages and delayed the progression of NAFLD to
HCC in the animal model. However, SNHG20 overexpression induced M2 polarization by
activating STAT6 in RAW264.7 macrophages. Based on these results, SNHG20 could be
a viable therapeutic target against NAFLD progression to HCC, as it regulates liver KCs
polarization [227].

Previous studies have shown that hepatic cholesterol is one of the main lipotoxic
molecules involved in the progression of NAFLD to HCC [228–230]. In a recently pub-
lished article, Liu et al. orchestrated a comprehensive study design conducted on HCC
patients, human liver cell lines HepG2, HEK293T, and Huh-7 cells, cholesterol-driven
C57BL/6J NAFLD–HCC mice, liver orthotopic xenograft tumors, and on patient-derived
xenograft (PDX) tumors with high expression of SNHG6. The researchers observed a
dynamic interplay between cholesterol and the SNHG6, a putative cholesterol effector,
and their engagement in a self-amplified cycle that accelerated the NAFLD-related HCC
development. From a mechanistic point of view, it was shown that cholesterol binds to
the ER-anchored FAF2 protein, which allows the formation of the SNHG6–FAF2–mTOR
complex, through which the SNHG6 co-ordinates the mTORC1 kinase cascade activation
and cellular cholesterol biosynthesis in a self-amplified cycle that speeds up the cholesterol-
driven NAFLD to HCC transition. Moreover, the loss of SNHG6 expression was responsible
for mTORC1 signaling inhibition and the growth impairment of PDX liver tumors, promot-
ing SNHG6 as a promising biomarker for developing HCC targeted therapies [231].

In 2020, Wang et al. found that GAS5 lncRNA is downregulated in tumor tissue
samples collected from HCC patients and in HCC HepG2 and HepB3 cell lines. This
downregulation of GAS5 expression contributed to an elevated level of miR-21 and, later,
to suppression of expression of PTEN, which finally resulted in HCC cell proliferation,
inhibition of cellular apoptosis, and increased resistance to doxorubicin treatment. Hence,
the researchers highlight the potential of restoring GAS5 expression as a new therapeutic
approach for HCC [232]. One year later, Cui and his research group investigated the
same lncRNA in a NAFLD C57BL/6 mice model and revealed that GAS5 and NOTCH2
expression is elevated, while miRNA-29a-3p expression is decreased. They concluded that
GAS5 overexpression augmented NOTCH2 levels in liver cells and promoted NAFLD
progression by sponging miR-29a-3p in vivo. To prove these findings, the researchers also
demonstrated that GAS5 knockdown attenuated hepatic steatosis and lipid accumulation,
thus reducing the NAFLD activity score in HFD mice. Moreover, GAS5 knockdown caused
a reduction in serum triglyceride cholesterol levels while inhibiting alanine aminotrans-
ferase and aspartate aminotransferase activities in vivo. Their results suggest that GAS5 is
a potent regulator of the miR-29a-3p/NOTCH2 axis while actively involved in NAFLD
progression, which recommends it as a potential therapeutic target against NAFLD [125].
These findings reflect a possible role of GAS5 in the progression of NAFLD to HCC, but
extensive research and validation are required.

Wu et al. performed a series of comprehensive investigations focused directly on a
cohort of NAFLD-related HCC cases and in vivo and in vitro lab-grown study models.
M2 to M1 phenotype is an essential transition in cancer development that can reverse the
tumor-promoting effects of M2 macrophages [227,233,234]. The expression of lncRNA FTX
and M1/M2 KCs ratio decreased during the NAFLD conversion to HCC. At the same time,
upregulation of FTX inhibited this pathological transition via promoting KCs polarization
to M1 phenotype [233]. Chi et al. investigated the role of lncARSR in NAFLD and its role in
the progression towards HCC. They revealed an elevated expression status of lncARSR in
HFD-fed mice and FFA-treated HepG2 cells. Moreover, they observed that lncARSR binds
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to YAP1, a crucial component of the Hippo pathway and a regulator of HCC progression,
thus blocking its nuclear translocation while activating IRS2/AKT pathway further to
increase lipid accumulation, proliferation, and invasion. LncARSR proves to be involved in
NAFLD and HCC through the regulation of the YAP1/IRS2/AKT axis, while silencing its
expression seems to reduce lipid accumulation in the NAFLD mice model [235].

MALAT1 lncRNA expression was elevated in liver tissue samples of NAFLD patients,
serum samples of HFD-fed mice model of NAFLD, and inHepG2 cells treated with 1 mM
of FFA (in vitro model of NAFLD). The researchers demonstrated that knockdown of
MALAT1 upregulated the expression of PPARα and reduced CD36 levels, thus reversing
fatty-acids-induced lipid accumulation in HepG2 cells. In addition, knockdown of MALAT1
was found to be responsible for the reduced levels of miR-206, while it also increased the
expression of ARNT, which is known to be involved in NAFLD development. These
findings pinpoint the PPARα/CD36-mediated hepatic lipogenesis roles of MALAT1 in
NAFLD through regulating the miR-206/ARNT axis [236]. Wu et al. reported that MALAT1
is an active promoter of NAFLD-associated fibrosis as it was found to upregulate post-
TGF-β1 exposure and was associated with a reduced expression of SIRT1 in CCL4-treated
mice and in LX-2 HSCs [237]. At the same time, Malakar et al. described MALAT1 as
a critical oncogene involved in the upregulation of SRSF1 and the activation of the Wnt
pathway, thus promoting HCC growth and development in liver tumors of HCC mouse
model [238]. Therefore, although the current lack of data limits understanding of the
implications of MALAT1 in NAFLD-related HCC pathogenesis, these findings highlight a
promising research avenue.

A summary of other dysregulated lncRNAs that could play a part in the NAFLD-
related HCC pathogenesis and deserve further investigation is presented in the following
table (Table 2).

Table 2. Other dysregulated lncRNAs involved in both NAFLD and HCC.

lncRNA Expression Study Sample Molecular Targets Effects Refs.

H19

↑ HFD NAFLD C57BL/6mice model
FFA-treated HepG2 and Huh-7 cells

↑ PPARγ
↑ ACC1
↑ SCD1
↑ FASN
↑ SREBP1
↓ miR-130a

Increased hepatic lipogenesis
NAFLD progression [239]

↑

46 Fresh-frozen HCC tissues and matched
adjacent normal liver tissues
HCC cell line HepG2, SMMC-7721, Bel-7402,
Huh-7, and human normal liver cell lines
WRL-68,293T

↑ CDC42/PAK1
↓ miR-5b

Promotes EMT
Promotes HCC cells proliferation,
migration, and invasion
HCC progression

[240]

HOTAIR

↑ HFD-induced NAFLD mice model
FFA-treated HepG2 cells ↓ miR-130b-3p/ROCK1 Lipid accumulation [241]

↑
46 HCC tissue samples
HCC cell lines L02, HepG2, Bel-7402,
MHCC97L, MHCC97H, HCCLM3, HEK-293T

↑ FUT8/α-1,6
core-fucosylatedHsp90/
MUC1/STAT3
↑ JAK1/STAT3

HCC progression [242]

MEG3

↓ HFD-fed NAFLD C57/BL6 mice ↑ SIRT6
↓ EZH2

Protective effects against lipogenesis and
inflammation [243]

↓
HCC tissues matched with adjacent normal
tissues from 30 patients
HCC cell lines SK-HEP-1, Huh-7, and
embryonic kidney cell line 293T

↑ miR-9-5p
↓ SOX11 Inhibition of HCC cells growth [244]

RMRP
↑

Liver tissues from 30 NAFLD patients and 30
healthy volunteers
FFA-treated AML-12 cells

↑ miR-206
↑ PTPN1

NAFLD progression, but its
downregulation has an opposite effect [245]

↓ HCC cell lines Huh7, HLE ↑ PERK Induced apoptosis of HCC cells [246]

HCG18

↑
Serum samples from 116 NAFLD patients and
101 healthy controls
HFD-fed NAFLD C57Bl/6 mice

↑ miR-197-3p
IL18

Promotes insulin resistance and fat
accumulation [247]

↑
60 HCC tissues paired with adjacent normal
ones from HCC patients
- HCC cell lines Huh-7, MHCC97-H, and
normal liver cell line THLE-2

↓ miR-214-3p
↑ CENPM

Promotes the proliferation and migration
of HCC cells [248]
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7. Conclusions

The medical advances that lead to a decrease in hepatitis B and hepatitis C infection,
combined with changes in the populational diet and disease prevalence with an increase in
obesity and T2D, indicate that NAFLD will become the leading risk factor associated with
the development of HCC.

In this regard, the need to reconsider HCC clinical guidelines to include clear screening
and clinical surveillance recommendations for patients with noncirrhotic NAFLD. Pro-
gresses in genomic medicine led to the identification of multiple regulatory pathways
involved in the development of NAFLD and the progression of NAFLD towards HCC.
Among the newly discovered regulatory elements, a particular interest has been decoding
the roles of ncRNAs in modulating these regulatory pathways. These ncRNA molecules,
represented mainly by miRNAs and lncRNAs, play a central regulatory role.

A better understanding on the progression of NAFLD towards HCC and molecular
alterations present in the tumor cells and surrounding tumor microenvironment can be
achieved by the study of molecular markers, such as ncRNAs, that represent an important
tool for decoding cellular dynamics during early-tumor progression. Functional ncRNA
species are mainly represented by miRNA, lncRNAs, and, more recently, an important
regulatory role seems to be associated with circularRNAs. These ncRNAs species were
shown to be important regulators of the important processes involved in HCC development
and progression, such as chronic inflammation, maintaining a hypoxic microenvironment,
and angiogenesis.

Chronic inflammation is an important pathogenic factor in the development of NAFLD
and further in the progression towards HCC. In addition to metabolic stressors that are
known to be involved in the initiation and progression of inflammation, we showed that an
important regulatory role at a molecular level is represented by miRNAs and lncRNAs that
orchestrate a complex network. Evaluation of the dynamics of these molecules can identify
at-risk patients that can be further screened or supposed to therapeutic interventions to
limit further disease progression.

Recent evidence showed that ncRNAs are involved in the regulation of hypoxia in
HCC via HIF-1α and are responsible for the development of an immunosuppressive tumor
microenvironment, which facilitates immune evasion of tumor cells [249]. A hypoxic envi-
ronment further promotes angiogenesis, which enhances tumor growth and dissemination.
Therefore, decoding the regulatory ncRNA network involved in the promotion of angio-
genesis can identify new approaches of limiting tumor growth and dissemination [250].

Understanding their dynamics in NAFLD and HCC can identify new biomarkers
and therapeutic targets that will allow a better future follow-up and management of these
patients. Therefore, our review aims to provide an up-to-date analysis of recent advances
in the field of ncRNA involvement in NAFLD development and progression, focusing on
possible translational usage of these molecules.
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