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The DNA binding landscape of the maize AUXIN
RESPONSE FACTOR family
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AUXIN RESPONSE FACTORS (ARFs) are plant-specific transcription factors (TFs) that

couple perception of the hormone auxin to gene expression programs essential to all land

plants. As with many large TF families, a key question is whether individual members

determine developmental specificity by binding distinct target genes. We use DAP-seq to

generate genome-wide in vitro TF:DNA interaction maps for fourteen maize ARFs from the

evolutionarily conserved A and B clades. Comparative analysis reveal a high degree of binding

site overlap for ARFs of the same clade, but largely distinct clade A and B binding. Many sites

are however co-occupied by ARFs from both clades, suggesting transcriptional coordination

for many genes. Among these, we investigate known QTLs and use machine learning to

predict the impact of cis-regulatory variation. Overall, large-scale comparative analysis of ARF

binding suggests that auxin response specificity may be determined by factors other than

individual ARF binding site selection.
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Eukaryotic nuclear hormone signaling induces specific tran-
scriptional changes crucial for many biological processes.
While plant nuclear hormone signaling proteins differ

substantially from those of animals, their pathways share many
unexplained features including the ability to elicit diverse devel-
opmental responses in different cell types. In no plant hormone
signaling pathway is this more prominent than in the case of
auxin, which functions throughout plant development, acting
embryonically, post-embryonically, above and below ground. The
highly conserved nuclear auxin signal transduction pathway is
composed of the TIR1/AFB-Aux/IAA auxin co-receptors, the
transcriptional co-repressor TOPLESS (TPL), and the AUXIN
RESPONSE FACTORS (ARFs). According to the canonical auxin
signaling model, when auxin levels are low Aux/IAAs physically
interact with particular ARFs preventing expression of their target
genes; in conditions of high auxin however, auxin promotes
binding between Aux/IAAs and SCFTIR1/AFB E3 ligases which
results in degradation of the transcriptionally repressive Aux/
IAAs and allows certain ARFs to activate downstream target
genes1.

Due to their pivotal position in the auxin signaling pathway
and expansion in all higher plant species, ARFs are strong
candidates for triggering tissue-type and cell type-specific
transcriptional changes2–4. Phylogenetic analysis has revealed
three distinct evolutionarily conserved ARF clades5. Based on
reporter gene assays, ARFs belonging to clade A are generally
considered transcriptional activators, while clade B are repres-
sors, and clade C ARFs show no change in reporter gene
expression6,7. Although clade A activator ARFs conform to the
canonical ARF signaling pathway, the role of the clade B
repressor ARFs remains less clear especially given their
uncertain interaction with Aux/IAAs4. Recent studies suggest
that repressor ARFs may compete for binding with activator
ARFs to fine tune auxin signaling3,8.

Despite their proposed functional differences, most ARFs
share two conserved structural domains: an N-terminal DNA-
binding domain (DBD) and a C-terminal Phox and Bem1p
(PB1) domain that mediates homo- and heterodimerization, as
well as dimerization with Aux/IAAs which also contain this
domain9–11. Recent crystallization of the DBD of two Arabi-
dopsis ARFs revealed a dimerization domain within the DBD
that allows binding of two adjacent TGTCTC motifs separated
by a variable spacer12. Spacing between the two repeats was
suggested to contribute to ARF binding specificity and has been
termed the molecular caliper model. ARFs can also bind as
monomers as shown by protein binding microarray (PBM)
experiments, but dimerization appears to be relevant for ARF
activity and in vivo function12,13. Although many gene-scale
studies involving the Arabidopsis clade A ARF MONOPTEROS
(MP) have identified several direct targets1,14,15, genome-wide
in vivo binding data is available for only a handful of Arabi-
dopsis ARFs16–18, preventing large-scale comparative analysis
of the ARF family.

The maize B73 reference genome contains 33 expressed
ARFs19,20. No mutant ARF phenotypes have so far been reported
in maize, suggesting genetic redundancy and the need for alter-
native approaches to study ARF function in this important crop
where agronomic traits such as plant architecture and drought
stress are known to be influenced by auxin19,21–23. Here we report
genome-wide in vitro DNA binding site maps for fourteen maize
ARFs. Overall, our data reveal both specific and redundant
aspects of ARF binding that provide a framework for under-
standing hormone-dependent regulation in species with expan-
ded TF family repertoires. Furthermore, these datasets represent a
valuable resource for use in molecular-assisted breeding and
genome editing approaches in maize.

Results
Genome-wide binding site analysis of maize ARFs. Using DAP-
seq, an in vitro DNA-TF binding assay that captures DNA-
binding events in their native sequence context17, we profiled 26
maize ARFs. Recombinantly expressed ARFs were incubated with
maize genomic DNA libraries and ARF-bound DNA fragments
were sequenced using next-generation sequencing. Fourteen
ARFs produced datasets that passed our stringent quality controls
and were further analyzed. These included seven clade A ARFs
and seven clade B ARFs, each forming three different sub-clades
(Supplementary Fig. 1a; Supplementary Table 1). A genome
browser showing binding data is available at https://data.
waksman.rutgers.edu/aj2/gallavotti/ZmARFs. ARF datasets were
highly reproducible and showed little variation among genomic
libraries from different tissues (Supplementary Fig. 1b, c).

In total, 124,530 ARF binding sites were identified (Fig. 1a).
Genomic distribution of peaks from all ARF datasets showed
enrichment in proximal regulatory regions (Fig. 1b). This
enrichment was stronger for clade A ARFs, which showed the
majority of their peaks within 10 kb of the TSS (Supplementary
Figure 1d, e). Known auxin response genes, such as Aux/IAAs,
GH3s, and SAURs (Supplementary Fig. 2a) showed binding by
most ARFs in putative regulatory regions and frequently over-
lapped with regions of open chromatin identified using an
orthogonal ATAC-seq assay (Fig. 1c; see open chromatin
profiling section below). We also observed strong peaks in
putative regulatory regions of other known targets of Arabidopsis
ARFs, including homologs of TMO6 and LFY14,15, suggesting
conserved transcriptional regulation for certain target genes
across the >150 million years of evolution that separate
Arabidopsis and maize (Supplementary Fig. 2b, 3a–d). Additional
genes previously unknown to be directly bound by ARFs included
those involved in auxin transport (BIF2/PINOID/
GRMZM2G171822 and ZmBIG GRAIN/GRMZM2G178852),
auxin degradation (ZmDAO/GRMZM2G121700) and signaling
(ZmARF21) (Supplementary Fig. 4a–c)23–25. Strong peaks were
also located near hormone pathway genes, such as ZmDLK2
(strigolactone signaling; GRMZM2G141999) and ZmCKX4 (cyto-
kinin degradation; GRMZM5G817173), while others, such as
GRMZM2G121354 (spliceosome-related) and GRMZM2G109865
(GABA transporter) were uncharacterized (Supplementary Fig. 5a,
b)26,27.

All ARFs preferentially bound to sequences containing the core
TGTC motif, however clade A ARFs predominantly showed
enrichment for the motif TGTCGG as observed previously for
Arabidopsis12,17, whereas most clade B ARFs showed enrichment
for TGTC motifs with a cytosine rich tail (i.e. TGTCCCC, Fig. 1d).
Because the latter motif differed from previous reports12,17,28, we
speculated that genomic composition could influence motif
enrichment. We therefore performed DAP-seq experiments using
maize ARFs incubated with Arabidopsis genomic DNA and found
that all were enriched for TGTCGG or TGTC motifs (Supple-
mentary Fig. 5c). In agreement with this finding, removal of reads
mapping to maize repetitive regions showed enrichment for the
TGTCGG motif (Supplementary Fig. 5d), suggesting that genomic
content influences clade B binding.

GO enrichment analysis of high confidence putative target
genes showed enrichment for response to various types of
hormone stimuli, including auxin and ABA, as well as auxin-
mediated signaling components. Additional enrichment was
observed for organ development, cell wall related processes, and
regulation of gene expression (Fig. 1e). Enrichment terms did not
cluster according to clades or sub-clades. Taken together, these
results indicate that maize ARF DAP-seq datasets are biologically
relevant and constitute an important resource for identifying
auxin-regulated genes.
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Binding site specificity among clade A and clade B ARFs. To
assess binding site specificity among the 14 ARFs, we performed
comparative analysis and observed that 67–99% of peaks from
individual ARF datasets were present in at least one other ARF
dataset (Supplementary Table 1). To better understand this
relatively low degree of specificity, we ran pairwise Pearson cor-
relation analysis and found that strikingly, all samples strongly
clustered according to their clade A or B phylogenetic classifi-
cation (Fig. 2a). This revealed that these two major ARF clades
had distinct binding profiles but that individual members within
each major clade shared a considerable number of sites. Indeed,
over a quarter of peaks were found in at least half of the clade A
and clade B datasets (Supplementary Fig. 6a, b).

We next directly quantified the percentage of overlapping
peaks (i.e. peaks with the same genomic coordinates) by
calculating a pairwise shared peak matrix using the dataset with
the fewest number of peaks as the denominator (Supplementary
Fig. 6c). Based on this analysis, ARFs from clade A shared on
average ~79% of their peaks while ARFs from clade B shared an
average of ~73% of their peaks. This high degree of overlap was
particularly obvious in datasets with relatively fewer peaks (i.e
ARF18 and ARF13) in which ~90% of peaks were present in
another dataset from the same clade (Fig. 2b). ARFs from the
same sub-clade tended to share a higher percentage of peaks
(average 91% versus an average of 72% for ARFs from different
sub-clades) and hierarchical clustering partially recapitulated
phylogenetic sub-clades (Supplementary Fig. 6c). For example,
ARF4, which forms a sub-clade with ARF29 (96% amino acid
identity within the extended DBD; Supplementary Fig. 1a), shared
a higher percentage of peaks with ARF29 (83%) relative to ARF16
(68%) with which it shares only 64% amino acid identity
(Supplementary Fig. 6d). A similar result was observed for
ARF14, which lies in a sub-clade with ARF36 and ARF39, relative
to members of the ARF25 sub-clade (Supplementary Fig. 6d).

To further investigate sub-clade-specific binding, we mined our
datasets for peaks that were present exclusively in at least one
other ARF from the same sub-clade and found that 0.4–29% of
peaks within each ARF dataset were likely sub-clade specific
(Supplementary Fig. 7a, b; Supplementary Table 1). Motif
enrichment analysis of these sub-clade-specific peaks highlighted
differential enrichment of nucleotides flanking the core TGTC
motif in several cases (Supplementary Fig. 7c). This finding is
notable given the crystallographic evidence for direct amino acid:
DNA contact at positions outside the core TGTC motif12,29.
Overall, these results indicate that ARFs from the two major A
and B clades bind to a large set of common sites, while also
showing some sub-clade specificity.

Our correlation analysis also indicated that while large binding
site differences were observed between the two major clades, a
subset of sites were shared by both (Fig. 2a). Specifically, using
our percent shared peak matrix we found that up to 58% of
identified peaks within certain samples were present in both clade
A and B datasets (Supplementary Fig. 6c). To determine the
overall frequency of shared A and B sites, we created consensus
peak sets for all clade A and all clade B ARFs. We examined the
overlap between the two consensus datasets and observed
19,603 sites (~16%) that contained at least one clade A and one
clade B peak. These peaks, hereafter termed shared peaks (Fig. 1a),
were located near diverse genes, including ZFL1/LFY/
GRMZM2G098813, BIF2/PINOID, and a homolog of the vacuolar
auxin transport facilitator ZmWAT1/GRMZM2G010372 (Supple-
mentary Fig. 2b, 4a and 7d)30. We performed motif analysis of
clade A-only, clade B-only, and shared peaks and found that
while all were enriched for the core TGTC motif, shared peaks
resembled clade A-only peaks and lacked the cytosine tail that
characterized clade B-only peaks (Fig. 2d). Genomic distribution

analysis revealed that ~50% of clade A-only and shared peaks
resided within 10 kb of gene bodies compared to ~30% of clade B-
only peaks (Supplementary Fig. 7e).

Overall these results indicate that while ARFs from the two
major phylogenetic clades each predominantly bind to a set of
clade-specific sites defined by distinctive properties, a portion of
binding sites (16%) are bound by both clade A and B ARFs. These
shared sites may reflect the high degree of amino acid
conservation within and surrounding the B3 DBD. Seven
conserved clade-specific amino acid differences are present
within this region, including two in the B3 DBD (Supplementary
Fig. 8a, b). Further experiments are needed to determine which
residues contribute to their unique binding.

Clade A and clade B ARFs often target the same loci. We next
sought to understand whether the three types of ARF peaks
(shared, clade A-only and clade B-only) were associated with
unique putative target genes. Cumulatively, we identified 10,322
unique high confidence ARF target genes (peak within 1 kb of
TSS), of which 26% contained at least one clade A and one clade
B peak (Fig. 2e, Supplementary Fig. 9a, b). Among these, 22%
corresponded to shared peaks (Fig. 2e). GO analysis showed that
co-occupied genes were enriched for terms such as ‘response to
auxin’, whereas genes exclusively targeted by clade A ARFs were
enriched for terms that included ‘development’ and ‘response to
stress’ (Supplementary Fig. 9c). No enrichment was found for
high confidence genes exclusively targeted by clade B ARFs.
Because clade B ARF peaks were less frequently observed within
1 kb of the TSS relative to clade A ARFs, but likely still playing a
regulatory role, we expanded our locus occupancy analysis to
include distal gene targets (defined as the closest gene 10 kb
upstream, 3 kb downstream or overlapping the gene body). At
this distance, we found that 46% of target genes were co-occupied
(Fig. 2e). The additional 20% of co-occupied sites predominantly
comprised independent clade A or clade B peaks, not shared
peaks. Such situations were exemplified by the IAA3 locus, which
showed a composite arrangement of all three peak types within 6
kb of the gene body (Fig. 2f). These results indicate that clade A
and clade B ARFs could frequently co-regulate the same loci
either by binding to nearby regions or by directly competing for
the same binding site (i.e. shared peaks), either in the same cell or
in different tissues.

ARFs bind adjacent motifs with distinct spacing preferences.
Of the 15 million TGTC sequence matches found in the maize
B73v3 genome, less than 0.8% were bound by at least one of the
14 ARFs, indicating that additional features influence binding.
ARFs dimerize via two different domains, an N-terminal DBD
and a C-terminal PB1 domain12, both of which have been pro-
posed to stabilize protein and DNA interactions13,29. Surface
plasma resonance (SPR) experiments have shown that coopera-
tive binding to two adjacent TGTCTC motifs resulted in higher
affinity binding relative to monomeric binding12. To investigate
whether adjacent motifs influenced binding, we tabulated the
number of TGTC instances within 100 bp of the peak summit for
each ARF dataset. We chose to use the core TGTC motif rather
than longer motifs such as TGTCGG identified in this or previous
studies12,17 or the canonical TGTCTC motif31 due to the low
number of peaks that contained two or more of these motifs (i.e.
only 1–9% of peaks contained two or more TGTCGGs or
TGTCTCs in any orientation; Supplementary Fig. 9d, e). We
found that while 13–26% of the peaks for each dataset contained a
single TGTC, 55–86% of peaks contained two or more TGTCs
(Fig. 3a, Supplementary Fig. 9d, f). In contrast, randomly selected
100 bp genomic regions contained a much higher percentage of
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instances with zero or only one TGTC (50 and ~34%, respec-
tively), and a much lower percentage of regions with two or more
TGTCs (~16%; Fig. 3a and Supplementary Fig. 9f), indicating that
ARFs bind more frequently to sites containing multiple TGTCs
(p < 2.2e−16 Fisher’s exact test).

To test the hypothesis that high affinity ARF binding is
achieved by dimeric binding to adjacent motifs1,12, we analyzed
peak signal intensity relative to TGTC number. Overall, peaks
with no TGTCs typically showed the lowest intensities while
peaks containing higher numbers of TGTCs showed stronger

intensities, a trend particularly pronounced for clade B ARFs
(Fig. 3b, Supplementary Fig. 10a, Methods). These data suggest
ARFs preferentially bind to motif clusters, resulting in higher
affinity binding sites, or they may reflect the capture of more
genomic fragments simply due to the higher density of TGTCs.

We further investigated cooperative ARF binding by examining
the orientation and spacing between adjacent TGTCs motifs
found on the same peak. ARFs have been shown to bind TGTC-
containing repeats in three different orientations with variable
numbers of intervening nucleotides (Fig. 3c)12,17,31. We therefore
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extracted all peaks containing two TGTCs and categorized them
according to their TGTC:TGTC, TGTC:GACA, or GACA:TGTC
orientation. We then tabulated the spacing between the motifs
and its frequency. Over 90% of all peaks showed less than 50
intervening nucleotides for all three motif orientations, while
29–46% showed spacing less than 20 nucleotides. While similar
clade-specific spacing patterns were observed for most clade A
ARFs and most clade B ARFs, substantial differences were
observed among the different orientations for each major clade
(Fig. 3d; Supplementary Fig. 10b), many of which were
independently confirmed by dyad analysis32 (Supplementary
Fig. 10c). These distinct architectural preferences indicate that
motif orientation and spacing are both important features that
contribute to clade-specific binding site selection. Minor
differences were apparent among ARFs of different sub-clades
(i.e. ARF4 and 29, TGTC:GACA orientation and ARF7, TGTC:
GACA orientation; Fig. 3d).

Notably, our spacing data agreed with structural and SPR data
available for the TGTC:GACA orientation (also referred to as
everted repeat, ER)12,31 for AtARF1 (clade B) and AtARF5/MP
(clade A) which showed binding to TGTCs separated by 11 and
12 bp (ER7 and ER8)12, although our clade A ARFs preferred a
12 bp spacer. We also observed preferential binding of clade A
ARFs to TGTC:TGTC direct repeat motifs separated by 7 bp, the
equivalent of 1xDR5, a commonly used auxin response reporter
gene (Fig. 3d, dashed boxes)31. Interestingly, preferential binding
to TGTC:TGTC orientated motifs by clade A ARFs appeared to
show a 10 bp phasing pattern, a distance which corresponds to
~10 bp per helical turn of DNA. Overall, these data indicate that
ARFs are able to bind to adjacent motifs separated by multiple,
phased helical turns, and that motif architecture is a major
binding site determinant for the two major ARF clades,
suggesting that sequences outside the highly conserved DBD
influence ARF DNA binding. Furthermore, binding to TGTC
repeats separated by longer distances suggest that these interac-
tions may occur via the PB1 domain, rather than the DD domain.

Auxin-induced genes are enriched for proximal ARF binding.
To understand how ARF binding correlated with auxin response,
we performed short-term auxin treatment of maize seedlings
(100 μM IAA for 30 min) followed by RNA-seq. Differential gene
expression analysis identified 339 and 359 genes up- and down-
regulated respectively among which 148 were strongly induced
(fold change >2; FDR < 0.05; Fig. 4a). GO enrichment analysis of
the upregulated genes reported ‘auxin-mediated signaling path-
way’ as the top term and included known early response genes,
such as Aux/IAAs, SAURs, and GH3s (Supplementary Fig. 11a, b).

Using the set of auxin upregulated genes, we investigated a
number of binding site features that could contribute to auxin
inducibility. A small but significant increase in the number of
ARF peaks located within 10 kb was observed for auxin-induced
genes relative to downregulated or random genes (Fig. 4b; p-value
<4e−12, two-sided t-test). This increase was most strongly
associated with clade A-only peaks although a significantly higher
number of shared peaks were also observed near strongly induced
genes relative to randomly selected genes (Supplementary
Fig. 11c). We also found that strongly induced genes were over

two times more likely than expected (p-value <2.46e−05 clade A;
p-value <0.016 clade B, Fisher’s exact test) to have an ARF peak
located within 1 kb of the TSS relative to other genes genome-
wide (Fig. 4c). This enrichment was seen for both clade A-only
and shared peaks (p-value <4.5e−4, Fisher’s exact test) but not
clade B-only peaks (Fig. 4d). Surprisingly, these data suggest that
while robust auxin induction is influenced by the number and
location of clade A peaks, many proximal binding sites are also
occupied by clade B ARFs (shared peaks).

Open chromatin profiling reveals tissue-specific ARF binding.
Despite largely overlapping ARF expression patterns (Supple-
mentary Fig. 11d), auxin responses are tissue specific19,33. To
examine this at the level of DNA binding we sought to identify
tissue-specific ARF binding events. Chromatin accessibility is
known to impact TF binding34, and although chromatin status
cannot be directly assayed by DAP-seq, integration with open
chromatin profiling datasets such as those generated by MNa-
seHS and ATAC-seq, can provide such information.

We first analyzed open chromatin datasets from four maize
tissues: root, seedling/leaf, ear, and tassel determined by either
ATAC-seq (this study) or MNaseHS35. In agreement with
previous DAP-seq findings17, we observed that in total ~5–25%
of ARF peaks overlapped with regions of open chromatin from at
least one of these four tissues (Supplementary Fig. 12a, b), with a
subset of peaks falling in regions of open chromatin that were
unique to each tissue (Fig. 5a). The differences in peak overlap
between tissues (i.e. root vs. ear) were proportional to the
coverage (total basepairs) of open chromatin regions reported for
each tissue dataset (gray shaded areas, Fig. 5a). Overall, clade B
ARFs showed a lower percentage of peaks in open chromatin
relative to clade A ARFs (Supplementary Fig. 12b, Fig. 5a), and
clade B-only peaks were about three times less likely than clade
A-only or shared peaks to reside in regions of open chromatin
(Fig. 5b). This finding correlated with the overall distal location
relative to gene bodies of clade B ARFs (Supplementary Fig. 1e).

We next used the ear-specific peaks to investigate putative cis-
regulatory regions in a major domestication QTL that regulates
the expression of the TEOSINTE BRANCHED1 (TB1) gene
located 60 kb upstream of the coding region36. Within the
proximal component of this QTL controlling ear traits37, we
observed two ARF binding events, one of which corresponded to
a shared peak that was located within an ear-specific open
chromatin region (Fig. 5c). Given the size of the maize genome
and the coverage of ear tissue accessible chromatin regions, this
finding is unlikely to occur by chance (p-value <2.2e−16; Fisher’s
exact test). TB1 is strongly expressed in ear primordia and
differences in ARF binding strength or tissue-specific chromatin
dynamics at this region could affect TB1 expression and its
influence on modern maize architecture. We analyzed the
conservation of peak sequences in maize and teosinte landraces37

and found broad sequence conservation within and surrounding
the TGTC motifs. These findings suggest that ear-specific ARF
binding at this region may be an important feature for both maize
and teosinte, or alternatively, that despite substantial sequence
similarity, differences in DNA methylation and/or chromatin

Fig. 3 ARF peaks frequently contain multiple TGTC repeats. a Percentage of total peaks containing different numbers of TGTCs within each peak for four
representative ARF datasets and randomly selected regions (gray). b Distribution of peak signal intensity (read depth) for peaks containing different
numbers of TGTCs. Four representative ARFs and randomly shuffled signal values assigned to random regions (gray) are shown. Central line represents
median; upper and lower hinges show first and third quartiles. c Schematic showing the three possible TGTC repeat orientations and the numbering system
used to describe the number of nucleotides separating the two motifs. d Percentage of peaks containing two adjacent TGTCs in the three orientations that
contain the indicated number of nucleotides separating adjacent motifs. Black bars highlight 10 bp phasing
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accessibility at this region may be present in teosinte and could
alter ARF binding.

Machine learning predicts ARF binding across maize inbreds.
To validate our statistically derived conclusions as well as explore
additional non-intuitive sequence features that contribute to ARF
binding, we used a supervised machine learning approach to
examine TF-DNA binding38. Such neural-network-based models
have the capacity to capture motif preferences, orientational
grammar, and the effects of surrounding sequences on ARF
binding39. Similar approaches have been widely applied to study
regulatory regions of non-coding DNA and have been shown in
certain situations to outperform traditional statistical approaches
based on explicit starting assumptions40,41. We used a subset of
each ARF dataset as a training set to develop individual binding
models for each ARF. We then asked how good each model was
at predicting the binding strength of test sets, which had not been
used for training, from every ARF dataset. ARF models were able
to clearly distinguish between clade A and B ARFs (Fig. 6a),
validating the idea that ARFs within the same clade have more
similar binding rules than ARFs from a different clade. For the
clade B ARFs, robust models that explained up to 75% of the
variation seen in other clade B ARFs were generated and hier-
archical clustering based on model predictions recapitulated

phylogenetic groupings (Fig. 6b). Clade A ARF models also
predicted binding events among fellow clade A ARFs, but were
less predictive for sub-clade specificity (Fig. 6b).

The trained models developed here have the unique power to
predict the impact of cis-regulatory variation on ARF binding. We
therefore used these models to assess ARF binding potential at a
genomic region associated with an herbivore resistance QTL in
the maize inbred line Mo17, that in B73 revealed several strong
ARF peaks (Fig. 6c)42. This region contains a cluster of eight
benzoxazinoid (Bx) biosynthesis genes responsible for generating
the defense compound DIMBOA. DIMBOA confers resistance to
both aphids and European corn borer, two highly destructive
insects that affect plant fitness and grain yields43. Several of the
strongest ARF peaks in this cluster were located downstream
of the BX5 gene, in a ~4 kb region called DICE (DIstal Cis-
Element) that influences the expression of the BX1 gene, which
itself encodes the signature enzyme of the DIMBOA pathway,
located about 140 kb downstream (Fig. 6c, Supplementary
Fig. 12c)44.

Mo17 shows strong herbivore resistance and increased BX1
expression relative to B73, phenotypes associated with the
partially conserved duplicated DICE element in Mo17 (Fig. 6c,
Supplementary Fig. 12d)42,44. Application of our machine
learning-derived ARF binding models suggested that most
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clade A ARFs were likely to bind with similar affinity to both
the highly conserved first copy of DICE as well as the Mo17-
specific second DICE element (Supplementary Fig. 12e, f). We
validated the predictive power of these models by performing
DAP-seq with Mo17 genomic DNA and ARF16, and observed
strong binding in both Mo17 DICE elements (Fig. 6d).
Interestingly, ARF16 binding peaks in the second DICE
element differed slightly relative to those in the first DICE
element, likely due to substantial sequence differences (Fig. 6d,
Supplementary Fig. 12d). Overall, both modeling and empiri-
cal binding suggest that additional clade A ARF binding sites
in Mo17 could be a causative feature that leads to higher BX1
expression in Mo17. While further experiments are needed to
understand the connection between auxin and benzoxazinoid
biosynthesis (Zhou et al., 2018), this analysis demonstrates the
utility of pairing DAP-seq data with machine learning to
explore TF binding across maize inbreds.

Discussion
TF family expansion is a common feature in many organisms and
assessing DNA-binding specificity among different family mem-
bers will broadly inform our understanding of genetic redun-
dancy and diversification. This study presents large-scale analysis
of the ARF family, providing a rich resource of cis-regulatory
regions controlling many crucial pathways related to the devel-
opment, domestication, and productivity of maize, an important
food source worldwide. Given the high degree of cross-species
conservation among ARF family members and target genes, these
data also provide a framework to understand numerous aspects of
auxin-regulated transcriptional responses.

Surprisingly, we observed relatively few differences in binding
site specificity, spacing, and target genes among ARFs from the
same clade. This finding suggests that at least for the maize ARFs
examined in this study, a high degree of functional redundancy
may exist. Such a situation supports the model that the
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developmental specificity of auxin-dependent responses may
result from ARF binding-induced alterations of chromatin
structure that allow different tissue-specific TFs access to nearby
cis-elements and thus trigger particular transcriptional pro-
grams45. This finding does not preclude that despite their rela-
tively infrequent occurrence the several thousand sub-clade-
specific sites that were identified (Supplementary Fig. 7a–c) could
also be major contributors to certain aspects of auxin response
specificity. Tissue-specific ARF expression patterns and genetic
analysis in Arabidopsis provide support for both situations33,46.
Furthermore, ARF heterodimerization and/or interacting part-
ners could result in greater binding site diversity. The combina-
torial complexity generated from such interactions could be an
additional contributing factor for tissue-specific auxin-directed
processes.

As a whole, our genome-wide datasets support a cooperative
model of binding by ARF homodimers12, showing stronger and
more frequent binding to sequences containing at least two
TGTC motifs. In agreement with the molecular caliper model12,
we observe unique preferential spacing patterns for clade A and B
ARFs and show that different preferential spacing occurs for all
three possible TGTC repeat orientations at distances spanning up
to four helical turns of DNA. We note however that there appear
to be other unidentified aspects that contribute to ARF binding
since we observed a range of spacing configurations (Fig. 3d).
Such factors could include sequences within and surrounding the
spacer as demonstrated previously12,47.

While several clade A Arabidopsis ARFs have been well studied,
less is understood about clade B ARFs. Protein interaction data
suggest that most clade B ARFs may not interact with Aux/IAAs8,48

but instead harbor auxin independent functions. A recent study in
Physcomitrella, showed that the auxin transcriptional response
depends exclusively on Aux/IAAs and proposed that clade B ARFs
fine tune auxin signaling by competing for binding with clade A
ARF complexes3. Our genome-wide data showing that about one
third of clade B ARF peaks directly overlap with clade A peaks
(Fig. 1a) supports this competitive model. The finding that these
shared peaks are frequently located near auxin-induced genes
(Fig. 4d), begs the question of how these two clades differ in
transcriptional regulatory potential. The presence of the BRD motif
on clade B ARFs supports their proposed role as repressors7,49 and
could help to either shut down auxin-induced transcriptional acti-
vation by clade A ARFs or prevent spurious activation of sensitive
loci in cells where Aux/IAA repressors are not abundant.

Our finding that many clade B-only peaks (~26%; Supple-
mentary Fig. 9b) were located near shared or clade A-only peaks,
further supports a model in which clade A and B ARFs cooperate
to regulate the same target genes. One caveat to these hypotheses
is that because DAP-seq is an in vitro assay, we are unable to
assess whether these binding events are co-occurring in the same
cell. Given the overlap in many of their expression patterns
(Supplementary Fig. 11d), this possibility seems likely. We
therefore propose that clade B ARFs are involved in auxin sig-
naling in both a competitive and cooperative fashion with clade A
ARFs.

We assessed whether we could derive general rules for ARF
transcriptional control50 and discovered that early auxin
responsive genes often contained both clade A and clade B peaks
within ~1 kb of the TSS, suggesting the need for tight transcrip-
tional control. We note however that this feature alone was not
sufficient to confer auxin inducibility, since we observed many
genes with proximal ARF peaks whose expression remained
unchanged in our auxin treatment, although their response could
simply require different conditions.

We identified >100,000 putative cis-regulatory regions that
were directly bound by ARFs and estimated that these binding

sites could directly regulate more than a quarter of maize genes.
This is comparable to transcriptional analysis of a Physcomitrella
aux/iaa triple knockout mutant whereby about one third of genes
were mis-regulated3. Among putative ARF target loci we identi-
fied an herbivore resistance QTL and used neural-network-based
models of ARF binding to predict cis-regulatory potential in
different maize inbreds. This example illustrates how TF-DNA
interaction maps coupled with genetic variation data and genome
editing techniques could be used to guide the forward engineering
of plant traits to improve crop fitness.

Methods
ARF protein expression and purification. Full length maize pENTR ARFs clones
were obtained from Galli et al. 2015 or Grassius20, except ARF10, ARF12, ARF13
and ARF39 which were cloned from maize inflorescence cDNA into the SfiA and
SfiB sites of pENTRsfi using restriction enzyme digestion. Primers used for cloning
are shown in Supplementary Table 2. ORFs were transferred into pDEST15 using
LR clonaseII to create GST-ARF expression plasmids and transformed into the
BL21DE3 codon plus expression strain (Stratagene). Five hundred milliliters cul-
tures of terrific broth with antibiotics was grown to an OD of 0.4–0.8 at 37 °C,
induced with 0.4 mM IPTG and grown for 3–4 h at 23 °C. Cell pellets were frozen
in liquid nitrogen and stored at −80 °C. Cell pellets were lysed in HBD buffer (25
mM HEPES, 0.7 mM NA2HPO4, 137 mM NaCL, 5 mM KCl, pH 7.4 with 0.5 mg/
ml lysozyme) using sonication. Lysate was cleared by centrifugation for 1 h at
21,000×g. Cleared lysate was applied to a GST-gravitrap column (GE Healthcare)
washed with HBD buffer, followed by washing with HBDW (20mM HEPES, 20
mM Na2HPO4, 137 mM NaCl, 5 mM KCl, 5 mM EDTA, 1% Triton X-100), HBD,
and 50 mM HEPES, pH 7.4+DTT. GST-ARF proteins were eluted from the
column using 10 mM reduced glutathione in 50 mM HEPES, pH 8. Proteins were
concentrated in Amicon30 Ultracell (MWCO 30) and excess glutathione was
removed using two 5 ml buffer exchange steps (50 mM HEPES, pH 7.4). Con-
centrated proteins were stored in 30% glycerol at −80 °C.

Illumina library preparation and DAP-seq. Genomic DNA libraries were pre-
pared according to Bartlett et al. Specifically, gDNA was extracted from maize ear
(1–3 cm), tassel (1 cm), and leaf (immature leaves after reproductive transition)
using phenol:chloroform:IAA extraction. Five micrograms of genomic DNA was
diluted in EB (10 mM Tris-HCl, pH 8.5) and sonicated to 200 bp fragments in a
covaris S2 sonicator. DNA was purified using AmpureXP beads at a 2:1 bead:DNA
ratio. Samples were then end repaired using the End-It kit (Lucigen) and cleaned
using Qiaquick PCR purification (Qiagen) according to the manufacturer’s
recommendations. Purified samples were A-tailed using Klenow 3–5′exo- for 30
min at RT and then purified using Qiaquick PCR purification as described above.
Purified samples were then ligated overnight with a truncated Illumina Y-adapter
as described in Bartlett et al. Libraries were purified by bead cleaning using a 1:1
bead:DNA ratio, eluted from the beads in 30 μl of EB, and quantified with the
Qubit HS fluorometric assay. A quantity of 20 μl of purified GST-ARF protein
(5–20 μg) was diluted in 400 μl of 1X PBS containing 25 μl of washed MagneGST
beads (Promega) for 1 h at RT on a rotator to bind the protein to the beads. In
addition to the GST-ARF samples, a negative control GST-HALO sample was
performed using protein expressed in the TNT wheatgerm expression system
(Promega). Beads were washed four times in 1X PBS+NP40 (0.005%) and
resuspended in 100 μl of 1X PBS. One microgram of genomic DNA library (from
ear tissue except where indicated in Supplementary Fig. 1) was diluted to a final
volume of 60 μl in 1X PBS and added to the protein bound beads. Protein bound
beads and gDNA were rotated for 1 h at RT. Beads were washed four times in 1X
PBS+NP40, followed by two washes with 1X PBS. Beads were transferred to a new
tube and DNA was recovered by resuspending in 25 μl EB and boiling for 10 min at
98 °C. Eluted samples were enriched and tagged with dual indexed multiplexing
barcodes by performing 20 cycles of PCR in a 50 μl reaction51. Samples were
pooled and sequenced on a NExtSeq500 with 75 bp single end reads. A total of
10–30 million reads were obtained for each sample.

Read mapping, filtering, and peak calling. Fastq files were trimmed using
trimmomatic52 with the following parameters ILLUMINACLIP:TruSeq3-
SE:2:30:10 LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:50.
Trimmed reads were mapped to the B73v3 reference genome (nuclear chromo-
somes only) using bowtie2 v2.2.853. Mapped reads were filtered for reads con-
taining >MAPQ30 using samtools (samtools view –b –q 30) in order to restrict the
number of reads mapping to multiple locations in the genome. MAPQ filtered
reads were used for all subsequent analysis. Peaks were called using GEM v2.554

using the GST-HALO negative control sample for background subtraction and an
FDR of 0.00001 (--q 5). Peak calling was performed with the following parameters:
--d Read_Distribution_default.txt --k_min 6 --k_max 20 --outNP --sl. ChIPQC
v1.8.2 was used to determine FRiP%55. Fourteen ARF datasets showed >2% FRiP at
the 0.00001 FDR threshold and were used in all subsequent analysis. A blacklist of
peak regions appearing in all samples and the HALO-GST negative control was
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generated (Supplementary Table 3). Peaks falling in these regions represented less
than 0.7% of total peaks and were excluded from all analysis where indicated. For
visualization in the Integrative Genome Browser (IGV)56, bam files were converted
to bigwig files using deepTools v2.5.3 bamCoverage with 10 bp bin size and FPKM
normalization.

Technical reproducibility and correlation of ARF datasets. Scatterplots showing
technical reproducibility and tissue variance (Supplementary Fig. 1b, c) were cal-
culated using deepTools multiBamSummary with blacklist subtraction and the
following parameters --skipZeros --binSize 20057. Pearson correlation (Fig. 2a) was
performed on normalized read counts using the multiBigwigSummary and plot-
Correlation tools from deepTools. Heatmaps were drawn using the R heatmap
functions heatmap.2 and aheatmap.

Motif enrichment analysis. The most highly enriched motif for each individual
ARF dataset was determined using GEM. All other motifs were determined using
meme-chip v4.12.058 with the following parameters: -meme-mod anr -meme-
minw 4 -meme-maxw 15 -meme-nmotifs 3 -meme-p 8. Fasta sequence files
required as input for meme-chip were generated by extracting 50 bp upstream and
downstream of the peak summit using the bedtools v2.24.0 slop and getfasta uti-
lities59. Motif logos were generated using MotifStack60.

Target gene identification and GO analysis. Gene feature enrichment and peak
distances to the nearest gene were assigned using HOMER v4.8.361. Proximal
regulatory regions (Fig. 1b) were defined as 1 kb upstream of the transcription start
site (TSS) and 1 kb downstream of the transcription termination site (TTS) and
gene bodies (exons including 5′- and 3′-UTRs, and introns). Chipseeker62 was used
to determine overlap with gene features. Primary maize B73v3 transcripts were
obtained from phytozome (www.phytozome.org) and used for most analysis. For
target gene identification used in GO analysis and loci co-occupancy, high con-
fidence target genes were defined as the closest gene containing a peak within 1 kb
+100 bp upstream of the TSS and 1 kb −100bp downstream of the TTS (or in the
UTR). GO enrichment was performed using AgriGO2.063. The top 15 GO terms
with an FDR < 0.05 were selected, and redundant and general terms were collapsed
or removed. Meta-gene profiles showing distances relative to the TSS were gen-
erated with deepTools using a bin size of 50 bp unless otherwise indicated.

Identification of open chromatin regions using ATAC-seq. Ear (1 cm, field
grown, frozen tissue), tassel (1 cm, field grown, frozen tissue), and leaf ATAC-seq
datasets were generated as described in Lu et al. 2016. Trimmed reads were mapped
to the B73v3 reference using bowtie64 with the following parameters, -X 1000 -v
2 -m 1 --best –strata. PCR duplicates were removed by picard (http://
broadinstitute.github.io/picard/) with default parameters. To call high-quality open
chromatin regions, (1) pair-end reads were unpaired and changed to single-end
reads; (2) primary enriched regions were identified by MACS265 with the single-
end reads as input; (3) primary enriched regions were split into a series of 50 bp
windows with 25 bp overlapping and Tn5 integration events in each window were
calculated; (4) windows with Tn5 integration density >=25-fold the average level
were picked up and merged together by allowing 150 bp gap to generate the final
open chromatin regions.

Open chromatin and peak overlap analysis. Root and seedling MNase datasets
were obtained from Rodgers-Melnick et al. 2016 and merged with the ear, tassel
and leaf ATAC-seq datasets described above using bedops v2.4.2666 and bedtools
v2.24.059 for calculations related to the total overlap of ARF peaks with open
chromatin. An ARF peak was considered to overlap with an open chromatin region
if it overlapped with an ATAC-seq or MNaseHS region by at least one bp. Sta-
tistical significance regarding the chance that an ARF peak would be found in the
250 bp ear-specific region of the TB1 proximal QTL (Fig. 5c) was determined by
considering the likelihood of overlap between the ear tissue ATAC-seq dataset and
each ARF dataset using the bedtools fisher function from bedtools v2.24.0.

Diffbind v2.0.2 occupancy analysis67 was used to generate the consensus clade
A-only, clade B-only and shared peak sets. Bedops and bedtools functions were
used to generate the pairwise peak overlap matrix (Supplementary Fig. 6c) and for
sub-clade-specific peak analysis (Supplementary Fig. 7c). Peaks were considered
overlapping if at least 50% of the peak overlapped in a reciprocal fashion using the
–f 0.5 –r options of the bedtools intersect function. The dataset with the fewest
number of total peaks for each pairwise comparison was used as the denominator
to calculate the percentage of shared peaks. Peaks located in the predetermined
blacklist were subtracted for these analyses. To be classified as sub-clade-specific,
we required that peaks be found in at least two ARF datasets belonging to the same
clade, except in the case of ARF7 which formed a separate clade by itself.

Cooperative ARF binding and TGTC repeat spacing analysis. Genome-wide
and peak-specific TGTC instances were identified using seqkit68. To identify TGTC
instances in the ARF peaks, peak sequences were restricted to a 100 bp window
surrounding the peak summit. Fasta sequences were extracted from genomic
coordinates using bedtools slop and getfasta59. Randomized regions were generated

using the bedtools shuffle utility. The spacing between adjacent TGTC motifs
shown in Fig. 3d was calculated using peaks containing only two TGTC instances
in order to avoid misinterpretation of the motif spacing due to multiple TGTC
repeat possibilities. The resulting heatmap scale represents the percentage of the
peaks with the indicated spacer length out of the total number of peaks containing
two TGTCs. To rule out the possibility that artificial dimerization by the GST-tag
could affect ARF DNA binding, we compared data from one clade A and one clade
B GST-ARF fusion to in vitro expressed HALOtag-ARF-DBD fusions and found
that over 93% of the HALO-tagged ARF peaks were present in the respective GST-
tagged ARF datasets. While the HALO-ARF datasets had insufficient %RiP to be
considered in our main analysis, we obtained similar results to GST-fusions in
terms of motif enrichment, average number of TGTCs within peaks, and spacing
patterns.

Peak intensity boxplots and barplots showing read depth in peaks vs. number of
TGTCs (Fig. 3b, Supplementary Fig. 10a) were created using the narrowPeak signal
value generated by the GEM peak caller. Small but significant increases in clade A
peak intensities were observed for peaks containing two TGTCs relative to those
with only one TGTC (average 10% increase in signal value among all clade A ARFs,
p ≤ 4e−4 pairwise t-test of least significant ARF dataset). Average signal values
increased an additional 15% for peaks containing three or more TGTCs relative to
two TGTCs (p ≤ 3e−7 pairwise t-test of least significant ARF dataset). While a
similar trend was observed for the clade B ARFs, most datasets showed a significant
increase in peak intensity for peaks containing one TGTC relative to those
containing no TGTCs (average 10% increase among all clade B ARFs, p ≤ 0.02,
pairwise t-test of least significant ARF dataset). An additional ~16% average
increase in peak intensity was observed for clade B ARF peaks containing two
TGTCs relative to one (p < 0.0186, pairwise t-test of least significant ARF dataset).
Clade B ARF peaks containing three to four TGTCs did not show consistent
increases in signal intensity across all datasets, however peaks containing five or
more TGTCs displayed substantial increases in signal intensity, with an average
increase of 1.5- to 3-fold relative to peaks with only two TGTCs (p < 2.2e−16,
pairwise t-test of least significant clade B dataset).

RNA-seq analysis of auxin-induced seedlings. All aerial portions of 7-day-old
maize B73 greenhouse-grown seedlings were collected and incubated in a solution
of 100 μM IAA in 1% DMSO or 1% DMSO for 30 min. Samples were snap frozen
and total RNA was extracted using RNeasy kit (Qiagen) with DNAse treatment.
Three replicates containing three plants each were performed for each treatment.
Stranded Illumina RNA sequencing libraries were generated using the TruSeqv3 kit
(Illumina) and sequenced on a NextSeq500. Fastq sequences were quality trimmed
using trimmomatic as described above and mapped to the B73v3 reference genome
using Tophat with default settings69. Differential gene expression analysis was
performed using cuffdiff69. Genes called as differentially expressed with a fold
change >2, were considered as strongly induced genes.

Meta-profile plots showing average read coverage in relation to the TSS were
generated with deepTools using a bin size of 10 bp. The bedtools window tool was
used to calculate the number of ARF peaks present within 10 kb of auxin-induced
genes and a similar number of randomly selected genes. GO enrichment of auxin-
induced genes was performed using agriGO2.0 and redundant/general terms were
collapsed or removed.

Machine learning analysis. We utilized a modified version of the DanQ hybrid
convolutional-recurrent neural network-based algorithm38 to perform supervised
learning on the ARF DAP-seq data. The training data we used was generated by
labeling a sequence 100 basepairs 5′ and 3′ of the called peak location from the
B73v3 maize genome with the peak signal strength (read depth). We also selected
an equal number of sequences from the genome not in these regions and labeled
them with a signal strength of 0 to train the models to recognize what sequences
the ARF does not bind to. These 201 bp labeled sequences were then randomly
separated into train and test sets for each ARF dataset. All models were trained for
35 cycles and then used for predictions on all the ARF test sets. To calculate the
percentage of variability in the data explained by the model we used the pearsonr
function from the scipy library70. These values were used to generate the heatmap
in Fig. 6a using matplotlib and seaborn71. The same values were then used to do
hierarchical clustering and generate the dendrogram in Fig. 6b.

The trained models were also used to predict relative ARF binding to the Mo17
and B73 DICE elements. We did this by predicting the binding strength of the
ARFs to every sequential 201 bp sequence in the DICE element. These data were
plotted versus position in Supplementary Fig. 12e using matplotlib and seaborn71.
The area under each curve in these plots was calculated to give a cumulative ARF
binding score to that DICE element and then normalized by the length of the
element. This was plotted in Supplementary Fig. 12f using matplotlib and
seaborn71.

Data availability
Sequence data for experiments performed in this study are available under GEO
accession GSE111857. A genome browser displaying mapped reads is available at https://
data.waksman.rutgers.edu/aj2/gallavotti/ZmARFs. The python code used to perform
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supervised learning on the ARF DAP-seq data can be found at https://github.com/
arjunkhakhar/Maize-DapSeq-Machine-Learning.
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