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Burst Firing and Spatial Coding in Subicular Principal Cells

Jean Simonnet! and Michael Brecht!2
'Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universitit zu Berlin, 10115 Berlin, Germany, and 2NeuroCure Cluster of Excellence,
Humboldt-Universitét zu Berlin, 10099 Berlin, Germany

The subiculum is the major output structure of the hippocampal formation and is involved in learning and memory as well as in spatial
navigation. Little is known about how neuronal diversity contributes to function in the subiculum. Previously, in vitro studies have
identified distinct bursting patterns in the subiculum. Here, we asked how burst firing is related to spatial coding in vivo. Using juxta-
cellular recordings in freely moving male rats, we studied the bursting behavior of 102 subicular principal neurons and distinguished two
populations: sparsely bursting (~80%) and dominantly bursting neurons (~20%). These bursting behaviors were not linked to anat-
omy: both cell types were found all along the proximodistal and radial axes of the subiculum and all identified cells were pyramidal
neurons. However, the distinct burst firing patterns were related to functional differences: the activity of sparsely bursting cells showed
a stronger spatial modulation than the activity of dominantly bursting neurons. In addition, all cells classified as boundary cells were
sparsely bursting cells. In most sparsely bursting cells, bursts defined sharper firing fields and carried more spatial information than
isolated spikes. We conclude that burst firing is functionally relevant to subicular spatially tuned neurons, possibly by serving as a

mechanism to transmit spatial information to downstream structures.
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ignificance Statement

act as a unit of information dedicated to spatial coding.

The subiculum is the major output structure of the hippocampal formation and is involved in spatial navigation. In vitro, subicular
cells can be distinguished by their ability to initiate bursts as brief sequences of spikes fired at high frequencies. Little is known
about the relationship between cellular diversity and spatial coding in the subiculum. We performed high-resolution juxtacellular
recordings in freely moving rats and found that bursting behavior predicts functional differences between subicular neurons.
Specifically, sparsely bursting cells have lower firing rates and carry more spatial information than dominantly bursting cells.
Additionally, bursts fired by sparsely bursting cells encoded spatial information better than isolated spikes, indicating that bursts
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Introduction
The subiculum is the major output structure of the hippocam-
pus, receiving its main inputs from CA1 and sending divergent
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outputs to many subcortical and cortical areas (Amaral and Wit-
ter, 1989; Witter, 2006). The subiculum is involved in spatial
learning and memory (Morris et al., 1990; Galani et al., 1998; Roy
etal., 2017; Cembrowski et al., 2018) but has not been the major
focus of studies analyzing hippocampal function in spatial
navigation.

In vivo, the vast majority of subicular neurons carry positional
information (Sharp and Green, 1994; Brotons-Mas et al., 2010,
2017) but subicular firing fields are not as well defined as those of
CA1 place cells or the eye-catching medial entorhinal grid cells
(O’Keefe and Dostrovsky, 1971; Hafting et al., 2005), because of
higher basal firing rates in the subiculum compared with cells
from these two other areas. Nevertheless, the subiculum spatial
signals could play a determining role in forming and stabilizing
other spatial codes. Subicular neurons seem to generalize across
different environments because firing fields of subicular cells do
not remap in response to novel environments, nor do they remap
in darkness (Sharp, 1997; Lever et al., 2009; Brotons-Mas et al.,
2010). The encoding of environmental boundaries, via boundary
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cells, is a prominent feature of the subiculum (Barry et al., 2006;
Lever et al., 2009; Lee et al., 2018), which is likely to play a role in
forming and anchoring spatial maps in adult animals (O’Keefe
and Burgess, 1996; Hartley et al., 2000; Barry et al., 2006; Hard-
castle et al., 2015; Krupic et al., 2015) and from early stages of
development (Bjerknes et al., 2014; Muessig et al., 2015).

Determining how the subiculum generates its own activity
and could influence spatial signals in other areas requires further
investigation, more specifically at the level of the microcircuit.
Indeed, the microcircuitry underlying spatial tuning in the subic-
ulum is largely unresolved. The subicular anatomy is not as
clearly stratified as the stratum pyramidale of CA1 (proximal to
subiculum) and also lacks the elaborate lamination of six-layered
cortical structures such as the presubiculum (distal to subicu-
lum). The analysis of cell morphology indicates some internal
structure (O’Mara, 2005) as well as laminar or modular organi-
zation based on long-range connectivity (Naber and Witter,
1998; Ishizuka, 2001; Witter, 2006; Y. Kim and Spruston, 2012).
In vitro, subicular principal neurons may be distinguished by
their firing patterns: some are intrinsic bursting (from 45 to 80%)
and others are regular spiking cells (Greene and Totterdell, 1997;
Staff et al., 2000). Bursting relates to subicular anatomy; deeper
cells as well as cells located on the distal part are more likely to be
intrinsic bursting neurons (Greene and Totterdell, 1997; E. Har-
ris et al., 2001; Y. Kim and Spruston, 2012; Cembrowski et al.,
2018). However, how bursting relates to subicular function re-
mains mostly unresolved, even though a few functional correlates
of bursting have been suggested. First, the biophysical properties
of subicular cells could be predicted by their efferent target area
(Y. Kim and Spruston, 2012; Cembrowski et al., 2018), suggesting
that intrinsic bursting or regular spiking cells might generate dif-
ferent streams of information (Cembrowski et al., 2018). Lastly,
local connectivity and recruitment by sharp wave ripples sug-
gested distinct roles for regular spiking and intrinsic bursting cells
in the subicular microcircuit function (Bo6hm et al., 2015).

Here, we asked how subicular bursting relates to spatial cod-
ing in vivo. We took advantage of high-resolution juxtacellular
recordings, which enabled us to reliably resolve small amplitude
spikes; especially those resulting from sodium-channel inactiva-
tion during bursts. Using this technique in freely moving rats we
asked: (1) Can bursting patterns be used to classify subicular
neurons in vivo as in vitro? (2) How does the burstiness of dis-
charges relate to spatial coding? (3) Do bursts and isolated spikes
convey different types of information? We classified cells based
on their burstiness and found that sparsely bursting cells are
more spatially modulated than dominantly bursting cells. In ad-
dition, we found that all subicular boundary cells were sparsely
bursting cells. In a large fraction of spatially modulated neurons
(34/51, 66%), we found that bursts encoded position significantly
better than isolated spikes. Here, bursts are distinct units contain-
ing more spatial information than isolated spikes. Because bursts
and isolated spikes are differently encoded by short-term synap-
tic dynamics, our results imply that spatial information should be
transmitted more effectively by facilitating synapses to down-
stream areas.

Materials and Methods

All experimental procedures were performed according to German
guidelines on animal welfare.

Juxtacellular recordings in freely moving rats. Experimental procedures for
obtaining juxtacellular recordings in freely moving rats were performed
similarly to earlier publications (Tang et al., 2014). Recordings were
made in 40 male Long—Evans rats (150—350 g) maintained in a 12 h
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light/dark phase and recorded during the dark phase. Surgical proce-
dures were all performed under ketamine (80 mg/kg) and xylazine (10
mg/kg) anesthesia. Rats were implanted with a head-implant including a
metal post for head-fixation, a placement of a miniaturized preamplifier
coupled to two LEDs (red and blue), and a protection cap. To target the
dorsal subiculum, a plastic ring was glued to the skull surface 5.7-6 mm
posterior to bregma and 2.9-3.2 mm left to midline. The craniotomy and
the positioning of the metal post for holding the miniaturized microma-
nipulator (Kleindiek Nanotechnik) were done either during the same
surgery or in a subsequent surgery. After implantation, rats were allowed
to recover and were habituated to head-fixation for 2-5 d. Rats were
trained to forage for chocolate pellets in an open-field arena, a 70 X 70 X
50 cm (WDH) box with a white polarizing cue card on one of the walls,
before and after implantation (3-7 d, multiple sessions of 15-20 min
each per day).

For recordings, rats were head-fixed and the miniaturized microma-
nipulator and preamplifier were secured to the metal posts.

Glass pipettes with resistance 4—6 M) were filled with Ringer solution
(n = 103/109) containing the following (in mm): 135 NaCl, 5.4 KCl, 5
HEPES, 1.8 CaCl,, and 1 MgCl,; or patch-clamping internal solution
(n = 6/109) containing the following (in mm): 130 K-gluconate, 10 Na-
gluconate, 10 HEPES, 10 phosphocreatine, 4 MgATP, 0.3 GTP, 4 NaCl.
In both cases, the pH was adjusted to 7.2, neurobiotin (1-2%) was added
to the solution, and the osmolality was adjusted to 285-305 mmol/kg.
The patch-clamp solution was used to perform juxtacellular stimula-
tions, of which the results are not used in the context of the current
study. The firing rate and the firing pattern were not different between
subicular cells recorded with the two different solutions; therefore, the
two subsets have been merged and considered as one group.

The glass recording pipette was advanced into the brain; and a thick
agarose solution (3—4% in Ringer) was applied into the recording cham-
ber for sealing the craniotomy and for stabilization. Animals were then
released into the behavioral arena and juxtacellular recordings were es-
tablished while animals were freely exploring the environment. The jux-
tacellular signals were acquired with an ELC-03XS amplifier (NPI
electronic) and digitized with a Power 1401 data-acquisition interface
coupled to Spike2-v7 (CED, Cambridge Electronic Design) where signals
were sampled at 50 kHz. The arena was filmed from above with a color
camera so the position of red and blue LEDs could be tracked to deter-
mine the animal’s location and head-direction. All signal processing and
analyses were performed in MATLAB (MathWorks).

Anatomy. The neurobiotin in the pipette allowed us to perform juxta-
cellular labeling at the end of the recording session (Pinault, 1996; Tang
etal, 2014). A number of recordings were either lost before the labeling
could be attempted, or the recorded neurons could not be clearly iden-
tified, but the location of all the cells included in the current study was
positively assigned to the subiculum. Ten to 30 min after the labeling
protocol, the animals were killed by overdose of isoflurane, and perfused
transcardially with 0.1 m PBS followed by 4% paraformaldehyde solu-
tion. Brains were dissected out of the animal’s skull and were placed in
the same 4% paraformaldehyde solution for 12-24 h, and then in 0.1 m
PB. Parasagittal sections (60—150 wm thick) were obtained using a vi-
bratome (Mikrom, HM 650 V, ThermoFisher Scientific). Sections were
washed in PBS 0.1 M (2 X 10 min, agitation 60 rpm), in PBS 0.1 M
containing 0.5% Triton (2 X 10 min, agitation 60 rpm), and then pre-
incubated in PBS 0.1 M containing 2.5% BSA and 0.5% Triton (1 h at
room temperature, agitation 60 rpm). Sections were then incubated with
PBS 0.1 M containing 1:500 AlexaFluor488-streptavidin, 1% BSA and
0.5% Triton (overnight at 4°C, agitation 60 rpm), revealing the neuro-
biotin. Sections were then washed in PBS 0.1 M (2 X 10 min, agitation 60
rpm). Sections were not mounted, but were instead briefly transferred on
slides for acquiring fluorescent signals (Leica DM 5500B) and then kept
in PBS 0.1 M containing 0.01 M sodium azide at 4°C for short term storage
(max 1-2 months).

We distinguished three levels along each one of the proximodistal and
radial axes (depth) of the subiculum. From CA1, the first 2/5 was con-
sidered as proximal subiculum, the last 2/5 as distal subiculum, and the
1/5 in the middle as an intermediate part. We did not assign recordings
from the most superficial 2/5 of the subiculum, mostly because it mainly
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contains fibers and interneurons. We defined the next three 1/5 as super-
ficial, middle, and deep subiculum. Ideally, recovered cells or recording
sites could be assigned to a proximodistal and depth level of the subicu-
lum (n = 34/102). Only the proximodistal level of the recordings could
be assigned using the pipette track location (n = 60/102). In some cases
(n = 8/102), the pipette tracks had penetrated the subiculum following
an angle that made the assignment impossible (e.g., proximal in the
deeper part and distal in the most superficial part).

To reconstruct the morphology of recovered cells, we converted the
fluorescent signals to a dark diaminobenzidine (DAB) precipitate so we
could use a bright-field microscope (Olympus, BX 51) coupled with
Neurolucida (MBF Bioscience) for reconstructing cellular morpholo-
gies. The conversion procedure was performed as follows: sections were
washed in TBS (tris-HCI 0.05 M, 0.9% NaCl) (1 X 10 min, agitation 60
rpm) and then in TBS containing 0.3% Triton (TBS-X, 3 X 10 min);
sections were then incubated with TBS-X containing 20% BSA for 20
min, quickly washed in TBS-X, and then incubated in the TBS-X con-
taining 1:100 of the B solution of the Vectastain ABC-kit (Biozol; 4—6 h
at room temperature, agitation 60 rpm). Sections were then incubated in
TBS-X containing 1:100 of the A-B solutions (from the Vectastain ABC-
kit) overnight at 4°C, then washed in TBS (1 X 10 min) and in PB 0.1 M
(2 X 10 min); then, sections were incubated in a pre-staining solution
composed of PB 0.1 M containing 0.004% NH,Cl, 0.2% glucose, 0.004%
NH,NiSO, and 5.5% 3,3'-DAB (20 min, darkness, agitation 60 rpm).
The final step of the procedure was performed by incubating the sections
with a staining solution (pre-staining solution + 2.4 U/ml of glucose
oxidase) for 20—60 min at room temperature and then stopping the
reaction by washing with PB 0.1 m (3 X 10 min). Sections were mounted
in a non-aqueous medium (e.g., Eukitt, Sigma-Aldrich) to prevent faint-
ing of Ni-precipitates.

Spike and bursts detection. For spike detection, the raw signals were
filtered (0.3—6 kHz, zero phase bandpass Butterworth filter of order 8).
Transients were then detected using a threshold of 2.0 times the root
mean square (rms) of the signal. High amplitude artifacts, because of
behaviors like grooming, could increase the rms value significantly and
prevent the detection of the smallest transients; the values in a window of
2.0 ms around these artifacts were therefore clipped and replaced by
zeros. A second step for separating spikes from noise consisted of calcu-
lating the principal components of the transients followed by manually
clustering the events into spikes and noise. This cleaning step was first
performed on filtered waveforms and subsequently on raw waveforms.
Eventually, the accuracy of spike detection was visually checked, scrolling
throughout the whole recording. The cleaning step was repeated until the
detection was optimal (minimizing false-positives and -negatives).

Finally, spikes were categorized as belonging to a burst if the interval
from the prior spike and/or to the next spike was shorter than a threshold
set at 6 ms. One burst was therefore defined as a group of spikes (=2)
interleaved with <6 ms. We calculated the proportion of bursts with >2
spikes as well as the mean spike count per burst as measures of burst
strength. The burst time stamp was set to that of the first spike in a burst.
The intraburst interval was set as the mean interspike interval (ISI) dur-
ing bursts.

Spike waveform analysis. The raw signals were filtered (6 kHz, zero
phase low-pass Butterworth filter of order 8) to minimize high-frequency
noise. Spike shape parameters were determined based on the spike aver-
age waveform calculated from these low-pass filtered traces. Before the
calculation of the average spike, the single waveforms had to be properly
aligned. To this end, every spike waveform was oversampled at 1000 kHz
using a spline interpolation to better estimate its shape. Signal-to-noise
ratios often differed between recordings and with it, the spike amplitude.
To compare spike shape parameters between cells, the waveform was
normalized so that the rising amplitude was 1 mV. We then calculated the
derivative of each waveform. The threshold was set to the first sample,
where both the voltage and its derivative were at least 5% of their
maximal value. The rising amplitude (mV) was set to the difference of
potential between the peak and the threshold voltage. The afterhyperpo-
larization was set to the point at minimum voltage after the peak, when
the derivative =0. The spike duration was set to the threshold-to-
afterhyperpolarization duration.
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Spike accommodation is classically defined as a reduction in the am-
plitude of subsequent spikes fired within a burst. Here, it was calculated
as the ratio of amplitudes (from peak to afterhyperpolarization) between
the second and the first spikes of each burst. An accommodation of 1
means that there was no decrease of spike amplitude; 0.5 means that
amplitude was divided by 2.

Putative fast-spiking interneurons (n = 6/109) were identified based
on four criteria: their high firing rate (typically >30 Hz), their spike
duration (typically to 0.6 ms), their high maximum derivative (typically
>9 mV/ms), and low minimum derivative (typically <—9 mV/ms).
Cells meeting at least three of these four criteria were considered as
fast-spiking interneurons and were not used for the subsequent analyses.

Analysis of burstiness. In vivo, firing pattern features and burstiness are
commonly addressed using methods relying on either distribution of ISIs
or spike autocorrelations.

The first set of methods, based on the distribution of ISIs, has previ-
ously been used to study burstiness in the subiculum (Sharp and Green,
1994; Lever et al., 2009; Brotons-Mas et al., 2010) and other areas such as
parahippocampal cortices (Ebbesen et al., 2016). In principle, IST distri-
bution analyses estimate burstiness by either determining a bursting in-
dex, being the proportion of ISI below the bursting threshold (here we
used 6 ms) or by classifying the cells after performing a principal com-
ponent analysis of the ISI histogram matrix. The limit of these analyses is
that ISI interval distribution might overestimate burstiness for cells with
elevated firing rates, and therefore they report a variability that correlates
with cells’ firing rates (S. M. Kim et al., 2012).

The second set of methods rely on spike autocorrelations (S. M. Kim et
al., 2012; Latuske et al., 2015; Coletta et al., 2018). Latuske et al. (2015), as
well as Coletta et al. (2018) both used principal component analysis of the
first 12 ms of the spike-autocorrelation to classify the cells in different
bursting groups. S. M. Kim et al. (2012) calculated a bursting index as the
ratio of the integrated power of the autocorrelogram between 1 and 6 ms
normalized by the overall power between 1 and 20 ms. Using these meth-
ods does not bias the burstiness estimation for high firing neurons (S. M.
Kim et al., 2012). However, we realized that it could overestimate the
bursting probability of neurons with low firing rates and occasional
bursts because only the first few milliseconds of the spike autocorrelation
were considered.

Our classification of subicular principal cells in distinct subpopula-
tions was inspired by the two different sets of methods. We used histo-
grams of the logarithm of ISIs (loglSI) instead of using only the initial
bins of the ISI-histograms (e.g., 1-60 ms; Ebbesen et al., 2016). It has
been used by others for burst analysis (Ko et al., 2012) and depicts the
whole ISI distribution with a good focus on short intervals. Specifically,
we defined 60 bins regularly spaced between log(0.0005) and log(10), so
as to have a distribution of intervals between 0.0005 and 10 s. When
logISI histograms were used in figures (Figs. 1, 2), the logISI x-axis values
were replaced by the corresponding ISI values for more clarity. Principal
component analysis was done on both the logISI frequency matrix and
for the 1-20 ms lag frequency matrix (resolution of 1 ms). We focused on
the first principal components (PCs) explaining most of the variance
(Fig. 1C,D).

PCl1, PC2 and PC3 of the logISI histograms (PCg1, PCs;2, and
PCyg;3) explained, respectively, 35, 29, and 15% of the total variance
(approximately 78% total; Fig. 1C). PC1 and PC2 of the spike autocor-
relation matrix (PC,1 and PC,-2) explained 68 and 22% of the total
variance (90% total; Fig. 1D). The loading of ISI and lags into these first
components are represented in Figure 1, E and F, respectively. These first
components from each PCA were used to represent the firing pattern
features of all recorded neurons in a 5-dimensional space. We then gen-
erated a cluster tree using Ward’s method on the normalized Euclidean
distance between cells (Fig. 2A4). The Ward’s method establishes hierar-
chical clusters by iteratively grouping the two closest observations or
groups of observations together. Consequently, cells with very similar
firing patterns are primarily grouped together and groups with very dif-
ferent properties are linked at the end of the procedure (Ward, 1963).
Two clusters strikingly emerged from the agglomerative cluster tree (Fig.
2A), defining two groups of neurons that we named sparsely bursting
cells and dominantly bursting cells based on their potency to initiate
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bursts (see Results; Fig. 1). We compared our
classification based on the first component of
the spike autocorrelation only. The last re-
sulted in a less relevant classification, where
more groups should be defined to isolate the
most bursting cells from the others (data not
shown).

Analysis of spatial information. The position
of the rat was defined as the midpoint between
the two head-mounted LEDs. A running speed
threshold (3 cm/s) was applied for isolating pe-
riods of rest from navigation. For generating
color-coded firing maps, space was discretized
into pixels of 2.5 X 2.5 cm. For each such pixel
the occupancy o(x) was calculated as follows:

o(x) = Zwl(lx — x)Ar,

where x, is the position of the rat at time #, At
the inter-frame interval, and w a Gaussian
smoothing kernel with o = 5 cm. Then, the
firing rate r was calculated for each pixel x:

EiW(‘x - x,|)
r(x) = o ,
where x; is the position of the rat when spike i
was fired.

For recordings in which the animal’s trajec-
tory covered at least 60% of the open field (n =
84/102), we calculated the spatial information
rate, I (bits/spike), from the spike train and rat
trajectory as follows:

1 r(x)
I= T r(x)log, — o(x)dx,
where r(x) and o(x) are the firing rate and oc-
cupancy as a function of a given pixel x in the
rate map. 7 is the overall mean firing rate of the
cell, and T is the total duration of a recording
session (Skaggs et al., 1993).

A cell was declared to have a significant
amount of spatial information if the observed
spatial information rate exceeded the 95th per-
centile of a random distribution of values of I
obtained by circular shuffling. A circular time-
shift ' € [0 T] was applied to the recorded
spike train timestamp (von Heimendahl et al.,
2012; Bjerknes et al., 2014), T being the total
duration of the recording session. This proce-
dure maintains the temporal structure of the
cell’s firing but alters the spatial distribution of
spikes and therefore I. It was performed 1000
times to generate the random distribution of I
that was used to determine the significance of
spatial information.

Analysis of boundary cells. To determine
whether subicular spatial neurons could be
classified as border cells, we computed border
scores (Solstad et al., 2008; Bjerknes et al.,
2014) as follows. Firing fields were detected on
the rate maps as a collection of neighboring
pixels covering at least 100 cm * (16 pixels) with
a minimum rate of 1/3 of the firing rate range.
Only fields with a peak firing of at least 2/3 of
the firing rate range were considered. For each
cell, we could detect the main and also second-
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Figure 1.  Principal component analyses of IS distributions and spike autocorrelations during navigation. 4, Top, Histogram of
theloglS! forall subicular principal cells (n = 102). The values of the x-axis have been replaced by the corresponding interval values
in seconds. B, Top, Spike autocorrelation for all subicular principal cells (n = 102). The plot is normalized so the 0 ms-lag value is
equal to 1 (out of the axis range here). The vertical dashed line is placed at 6 ms. Only navigating periods have been considered for
these analyses (rat's speed >3 cm/s). C, Percentage of variance explained by the 10 first principal components of logISI histogram.
PCs,1, P52 and PCig;3 explain, respectively, 35, 29, and 15% of the total variance, so approximately 78% in total. D, Percentage
of variance explained by the 10 first principal components of spike autocorrelations. PC,1and PC, 2 explain, respectively, 68 and
22% of the total variance, s0 90%in total. £, Loading of the logSI bins into the first three principal components (PC,g,1, PC,s,2 and
PC,3) of the loglS! histogram matrix. The vertical dashed line is placed at 6 ms corresponding to our threshold for burst firing. The
short intervals (<C6 ms) are similarly loaded in the first three components in contrast with the more delayed intervals. F, The
autocorrelation lags are loaded according to similar patterns into the first two principal components (PC, 1, and PC,.2).
G, TheloglS! histogram frequency matrix has been ordered according to values on P, 1, PC,2, and PCig,3, and plotted in grayscale.
One line is one cell; dark values correspond to high frequencies and light values to low frequencies. Cells with an initial peak tend
to be distributed on one side (top or bottom), but not clearly grouped together. For each plot, a structure emerges in the delayed
151 range. Using the three first principal components of the logISI frequency matrix seems biologically relevant because they all
depict both bursting and other discharge patterns, such as firing rates or theta modulation (peak ~0.1s). H, The spike autocor-
relation frequency matrix has been ordered according to values on PC,1and PC,2, and plotted in grayscale. One line is one cell;
dark values correspond to high frequencies and light values to low frequencies. PC, 1 s clearly a good parameter to classify cells
according to burstiness as cells with an initial peak (<6 ms) are grouped together at the bottom of the color plot. PC, 2 is not as
good for predicting bursting behavior, even though a few cells with an initial peak can be found again at the bottom of the color plot.
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Figure2. Classification of subicular principal cells based on their firing patterns during navigation. A, Hierarchical cluster tree of
subicular principal cells based on the loglSI and spike autocorrelation principal component analyses. The Ward's method, an
agglomerative hierarchical clustering procedure was used to generate the cluster tree based on normalized Euclidean distance
between cellsin a 5-dimensional space, defined by PC;1, P(,2, PC;5;3, PCo 1, and PC, 2. The black branch corresponds to SBs and
the blue branch corresponds to DBs. B, €, logISI histogram and spike autocorrelation frequency matrices have been ordered as on
the cluster tree in A and are represented in grayscale plots (black, high values; white, low values). The vertical dashed red lines are
positioned at 6 ms. Horizontal magenta lines show the cluster separation on the color plots. Cells with a prominent initial peak in
logISI histogram and spike autocorrelation are grouped at the bottom of the representations and correspond to dominantly
bursting cells. D, loglS! histograms for SBs (n = 82; top) and DBs (n = 20; hottom). Note the prominent initial peak for dominantly
bursting cells, absent for sparsely bursting cells, which highlights a higher proportion of low intervals corresponding to prominent
burst firing. E, Spike autocorrelations for sparsely bursting cells (n = 82, top) and dominantly bursting cells (n = 20, bottom). As
for the logISI histogram, note the prominent initial peak for dominantly bursting cells, absent for sparsely bursting cells. F,
ISI-based bursting index corresponding to the proportion of ISIs <<6 ms is significantly higher for dominantly bursting cells. G,
Spiking rate (Hz) is significantly higher for dominantly bursting cells. Statistics: two-tailed Mann—Whitney U test; box plots
showing median and interquartile ranges.

ary fields when they were present. For each detected field, the average rate
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We calculated each cell’s border score (bs..;)
by normalizing the contribution of each field f
to their average rate:

E Absfiea X rateg,q)
Efm tefield '

Fields with higher rates have higher contribu-
tion on the bs_,. Border scores also ranged
from —1 to 1 and are typically high for stereo-
typical boundary cells, with firing fields cover-
ing one or several boundaries. We tested the
significance of border scores following the
same procedure as for spatial information.

Statistical analyses. We always show all data
points on our population data plots. Boxplots
always show medians and interquartile ranges.

In many cases, the significance of the differ-
ence observed between distinct groups was
assessed with nonparametric tests only. Two-
tailed Mann—Whitney U tests were used to de-
termine whether two groups of unpaired
observations were significantly different from
each other (e.g., comparing sparsely bursting
and dominantly bursting cells).

We used Fisher’s exact tests to assess
whether there was some significant trend
within the distribution of cell types along the
proximodistal and radial axes of the subiculum
(Fig. 4G,H). Three levels were distinguished
for each axis. We performed the Fisher’s exact
test on the three possible pairs (1-2, 2-3,
1-3) and corrected the p value for signifi-
cance so the overall error o would be 0.05.
The distribution within the two tested pairs
would be considered different rather than
random if the Fischer’s exact test p value
was < 0.0167 (0.05/3).

We used Fisher’s exact tests to address
whether spatially modulated cell types were
equally distributed between the two popula-
tions of cells (Fig. 5D).

The size difference between the two clusters
of subicular neurons and the small size of the
group of dominantly bursting cells used for
spatial information calculation [sparsely burst-
ing cells (SB) = 48 vs dominantly bursting cells
(DB) = 5] led us to test the significance of the
difference with a bootstrapping procedure. N
(number DB cells) values of spatial informa-
tion were randomly selected from the sparsely
bursting population. By repeating the proce-
dure 1000 times, we could obtain a boot-
strapped distribution of the median spatial
information for sparsely bursting cells. The dif-
ference was significant if the rank of the
median spatial information of dominantly
bursting cells was within the fifth percentile of
the bootstrapped distribution (p = 0.05).

bscell =

We wanted to test whether the spatial information encoded by bursts

(rateq. q) and the average distance from the closest wall (distg,,4), as well
as the linear distance covered along the wall (covg,,4, average on the two
first lines of pixels along the wall) were calculated. Each (bsg.4) was then
calculated as follows:

b — COVielg — distge
field CoVea + distiad

bsgeaq Values ranged from —1 to 1, —1 for fields that do not cover any

wall, and 1 for fields that would perfectly line-up along one of the walls.

was significantly different from the spatial information encoded by iso-
lated spikes. A direct comparison of spatial information values would not
be appropriate, as the total number of events and smoothing parameters
used for generating the rate maps can introduce bias in information mea-
sures (K. D. Harris et al., 2001). Consequently, we used a randomization
method similar to K. D. Harris et al. (2001). In instances where there were
less bursts than isolated spikes, we would compare information given by the
N bursts to the information given by 1000 random subsets of N isolated
spikes. Bursts were significantly more informative than isolated spikes if the
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rank of the burst spatial information exceeded
the 95th percentile of the distribution of the spa-
tial information given by the random subsets of
isolated spikes.

In some instances where highly bursting
cells had less isolated spikes than bursts (n =
3/102), we compared the information given by
N isolated spikes to the information given by
1000 random subsets of N bursts. In this case,
bursts were significantly more informative
than isolated spikes if the rank of the isolated
spike spatial information was within the fifth
percentile of the distribution of the spatial in-
formation given by the random subsets of

A sparsely bursting
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distinct firing patterns in vivo

Previous in vitro work (Greene and Tot-
terdell, 1997; Staff et al., 2000; E. Harris et
al., 2001; Y. Kim and Spruston, 2012) in-
dicated the existence of distinct patterns
of bursting in different types of subicular
principal cells. In our in vivo recordings,
we also noted distinct bursting patterns of
subicular principal cells during naviga-
tion. We then categorized cells according to their burst discharge
pattern during active locomotion (speed >3 cm/s).

First, we performed principal component analyses of histo-
grams of the logarithm of ISI (logISI histograms) and spike au-
tocorrelations (Fig. 1A,B). We focused on the first principal
components (PCg; and PC, ) explaining most of the variance.

PCiq 1, PCig;2, and PCig3 explained 35, 29, and 15% of the
total variance (approximately 78% total; Fig. 1C). PC,1 and
PC,2 explained 68 and 22% of the total variance (90% total; Fig.
1D). We checked how each component was describing cell’s fir-
ing patterns. First, we looked at how each parameter (each logISI
bins or autocorrelation lags) loaded onto each principal compo-
nent (Fig. 1 E,F). Second, we ordered the logISI histograms and
autocorrelation matrices according the cells’ value on each com-
ponent and plotted them as grayscale images (Fig. 1G,H). To
summarize, the selected five parameters successfully captured
most features of subicular neurons’ firing patterns, isolating
bursting behavior as well as other temporal aspects of their firing.

Each subicular principal cell could therefore be positioned ina
5-dimensional space summarizing most of the firing pattern vari-
ability. From there an agglomerative cluster tree was generated
based on the Euclidean distances between cells and groups of cells
(Fig. 2A; see Materials and Methods for more detailed explana-
tion) grouping cells according to their firing patterns features
(Fig. 2 B,C). Two distinct groups were identified: sparsely burst-
ing cells (n = 82 of 102 cells, 80%) and dominantly bursting cells
(n = 20 of 102 cells, ~ 20%; Fig. 2A—C), named after their po-
tential for burst initiation. Indeed, plotting each group separately

6000 Hz) trace of recording from a sparsely bursting cell. Spikes occurring in bursts are labeled with orange dots and
isolated spikes with green dots. B, Magnification of the burst (orange, left) and the isolated spike (green, right) indicated
with a star. A and B have the same vertical scale. C, Same as A for a dominantly bursting cell. D, Same as B for a dominantly
bursting cell. Cand D have the same vertical scale. 4 and C, as well as B and D have the same horizontal scale. E, Spike
duration, from threshold to afterhyperpolarization, is not different between sparsely bursting and dominantly bursting
cells. F, Bursts of dominantly bursting cells have more spikes than bursts fired by sparsely bursting cells. G, The mean ISIs
inside bursts are shorter in dominantly bursting cells compared with sparsely bursting cells. Statistics: two-tailed Mann—
Whitney U test; box plots showing median and interquartile ranges.

showed that dominantly bursting cells displayed early peaks (<6
ms) in both logISI histograms (Fig. 2D) and spike autocorrela-
tions (Fig. 2E) as opposed to sparsely bursting cells. The burst-
ing index, calculated as the proportion of ISIs <6 ms, was
significantly higher for dominantly bursting cells than for
sparsely bursting cells (Fig. 2F; median: SB = 0.131, DB =
0.512, Mann-Whitney U test, p = 9.10 '?). Dominantly
bursting cells had higher bursting rates than sparsely bursting
cells (medians: SB = 0.8 Hz, DB = 4.3 Hz; Mann—Whitney U
test, p = 1.10 ~®). Firing rates were variable and rather high, as
previously reported for subicular neurons (Sharp and Green,
1994; Lever et al., 2009; S. M. Kim et al., 2012). Firing rates
were higher for dominantly bursting cells than for sparsely
bursting cells (Fig. 2G; medians: SB = 13.6 Hz, DB = 20.1 Hz;
Mann—Whitney U test, p = 0.012).

Having distinct burst indices, burst rates or firing rates be-
tween the two groups of cells was not unexpected, as our classifi-
cation was established on firing pattern features. We then looked
at the burst features and noticed further differences between
sparsely bursting and dominantly bursting cells.

Sparsely and dominantly bursting cells have distinct

burst features

Representative recordings and magnification of bursts and iso-
lated spikes from sparsely bursting and dominantly bursting cells
are shown in Figure 3A-D. Spike duration (from threshold to
afterhyperpolarization) of sparsely bursting cells and dominantly
bursting cells were not different from one another (Fig. 3E; me-
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4A-C) and 3 dominantly bursting cells
(Fig. 4D-F). As expected from their
spike shapes all could be identified as
pyramidal neurons, however, our little
data does not allow for firm conclusions
about potential morphological differences
between sparsely bursting and dominantly
bursting cells.

Analysis of subicular burstiness in vitro
suggested that regular spiking and intrin-
sic bursting pyramidal cells were not
uniformly distributed along the proxim-
odistal in the subiculum, with more burst-
ing cells on the distal part (Greene and
Totterdell, 1997; Staff et al., 2000; E. Har-
ris et al., 2001; Y. Kim and Spruston,
2012). A recent study even suggested a

G proximo-distal axis H radial axis sharp transition rather than a gradual evo-
ns ns lution of bursting along the proximodistal

100 %L: 100 %L: axis (Cembrowski et al., 2018). These ele-
ments led us to check the distribution of

. 80 _ 80 sparsely bursting cells and dominantly
R 60 X 60 bursting cells within the subiculum. We
% 40 % 40 could determine the proximodistal level
o 20 o 20 of 94 neurons (proximal, intermediate, or
distal) as well as the depth of 30 neurons

0 Sroximalmiddle distal superficial _middle _deep (superﬁaal, intermediate, or deep). Our
n=32 n=28 n=34 n=12 n=13 n=9 analysis showed that dominantly burst-

Figure4. A-F,Reconstructions of 6 subicular principal cells. Dendrites are in black (sparsely bursting cells) or blue (dominantly
bursting cells) and axons are in orange. Some of the anatomical outlines have been drawn, such as CA1 stratum pyramidale (sp),
the stratum lacunosum moleculare (sim) and the limit of the subiculum with the dorsal hippocampal commissure (dhc). dg:
dendate gyrus. All cells are oriented as indicated in panel D; prox: proximal; dist: distal; sup: superficial. In 4, scale bar = 200 wm.
G, Distribution of sparsely bursting and dominantly bursting cells along the proximo-distal axis of the subiculum. Fisher's exact
tests, with level of significance corrected to be equal 0.05 in total: ns: p > 0.05/3; proximal vs middle, p = .7211; middle vs
distal = 0.5457; superficial vs distal = 0.2183. H, Distribution of sparsely bursting and dominantly bursting cells along the radial
axis of the subiculum. Fisher's exact tests (ns: p > 0.05/3); superficial versus middle, p = 0.593; middle versus deep = 0.0231;

superficial versus deep = 0.1588.

dian: SB = 0.824 ms, DB = 0.868 ms; Mann—Whitney U test, p =
0.25). In contrast, bursts seem to be intrinsically different be-
tween the two cells types (Fig. 3 B, D). Bursts spike accommoda-
tion, quantified here as the ratio of the second spike amplitude to
the first spike amplitude, is slightly more pronounced in domi-
nantly bursting cells (median: SB = 0.817, DB = 777, Mann—
Whitney U test, p = 0.009). The proportion of bursts with >2
spikes (Fig. 3F; median: SB = 10%, DB = 22%, Mann—Whitney
U test, p = 1.10 ®), as well as the average number of spikes per
burst (median: SB = 2.1, DB = 2.27, Mann—Whitney U test, p =
1.1077) was significantly higher in dominantly bursting cells.
Finally, the intraburst intervals (ISI in bursts) are on average
longer in sparsely bursting cells (Fig. 3G; median: SB = 4.29 ms,
DB = 3.66 ms, Mann—Whitney U'test, p = 1.10 ~'"). Overall, our
analyses show that bursts are different between the two cell types,
being intrinsically faster and stronger in dominantly bursting
cells than in sparsely bursting cells.

Sparsely and dominantly bursting cells do not segregate on an
anatomical level

So far, our analysis has shown that subicular cells could be clus-
tered into two distinct populations with distinct bursting be-
havior and distinct burst features. In our analysis, we managed
to morphologically identify 16 sparsely bursting cells (Fig.

ing and sparsely bursting cells could be
found everywhere within the proxim-
odistal and depth levels of the subicu-
lum. Although dominantly bursting
cells seemed to be distributed more to-
ward distal and in deep subiculum,
these trends were not significantly dif-
ferent from random distributions (mul-
tiple Fisher’s exact tests with corrected p
values; see Materials and Methods; Fig.
4G-H). To conclude, it seems the two
populations of neurons, well defined by their bursting fea-
tures, do not show clear anatomical differences.

Sparsely bursting cells show a stronger spatial modulation
than dominantly bursting cells

It was found that cells with distinct bursting behavior could have
distinct functions because they tend to project toward different
areas (Y. Kim and Spruston, 2012; Cembrowski et al., 2018). For
example, cells that project to areas involved in spatial navigation,
such as the medial entorhinal cortex or presubiculum, tend to be
intrinsic bursting cells when recorded in vitro. Therefore, we
asked whether sparsely bursting cells and dominantly bursting
cells differ in their spatial tuning properties.

We determined the spatial tuning of subicular cells only for
recordings where at least 60% of the open-field arena was ex-
plored (n = 84 of 102). Animals’ running trajectories with the
superimposed spike positions (Fig. 5A-C, left) and the resulting
rate maps (Fig. 5A—C, middle) were used to calculate each cell’s
spatial information (see Materials and Methods). Significance of
the spatial information was determined using a cell-by-cell circu-
lar shuffling procedure. For a given cell, a random and consistent
shift in the spike timestamp maintains the temporal structure of
firing but alters the spike positions on the rat’s trajectory, result-
ingin a new rate map and different spatial information. Applying
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this procedure 1000 times allowed us to
generate a distribution of spatial informa-
tion that could be obtained by chance with
that cell’s firing structure. A cell was
then categorized as spatially modulated
if its spatial information exceeded the
95th percentile of the distribution ob-
tained by circular shuffling (Fig. 5A-C,
right).

Figure 5A is an example of a sparsely
bursting cell. The spikes are mostly con-
fined to the south section of the environ-
ment (Fig. 5A, left), and the rate map
reveals a primary field in the southwest
corner and a secondary field (lower rate)
in the southeast corner (Fig. 5A, middle).
Here, the spatial information is 0.89 bits
per spike and highly significant (p =
0.002), because that value is far above the
95th percentile of the shuffled distribu-
tion (Fig. 54, right).

Another sparsely bursting cell is shown
in Figure 5B. Here, the spike distribution
pattern is not as clearly defined, however
the rate map shows a clear field all along
the southern wall (Fig. 5B, middle). This
cell also encoded significant spatial in-
formation (0.36 bits/spikes; p = 0.001;
Fig. 5B, right) and was categorized as a
boundary cell with a significant border
score of 0.73 (p = 0.012; see Materials
and Methods).

A dominantly bursting cell is shown in
Figure 5C; neither the spikes plotted on
the rat’s trajectory (Fig. 5C, left) nor the
rate map (Fig. 5C, middle) suggests a
sharp spatial tuning. The basal firing rate
is very high and spatial information is low
(0.06 bits per spikes), but significant (p =
0.03), as shown in the comparison with
the shuffle distribution (Fig. 5C, right).

In total 51 of 84 (63%) subicular cells,
including 46 of 69 (67%) sparsely bursting
cells and 5 of 15 (33%) dominantly burst-
ing cells were spatially modulated (Fig.
5D). Sparsely bursting cells appear to be
spatially modulated more often than
dominantly bursting cells, as shown by
the nonrandom distribution of spatial
neurons within the two populations
(Fisher’s exact test, p = 0.022). Looking
at the proportion of sparsely bursting
cells and dominantly bursting cells
within spatially modulated cells (Fig.
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Figure5. Sparsely bursting cells provide more spatial information than dominantly bursting cells. A-C, Left, Trajectories
of ratin gray with superimposed spikes in red. Middle, Corresponding rate maps with their color-map ranging from 0 to the
maximum firing rate of the cells (Hz). Right, Cell-by-cell spatial significance analyses. Each cell’s spatial information (red
vertical line) was ranked within the distribution of spatial information values determined using a cell-by-cell circular
shuffling procedure (black histogram, see Materials and Methods). For each cell, spatial information was declared signif-
icantif the cell’sinformation exceeded the 95th percentile of the random distribution obtained after circular shuffling (see
Materials and Methods). All the cells shown in A—C are spatially significant (p << 0.05; see Materials and Methods).
NeuronsinAand B are sparsely bursting cells; the neuron in Cis a dominantly bursting cell. The neuron in B was categorized
as a boundary cell (boundary score = 0.73, p = 0.01; see Materials and Methods). D, Spatial information and significance
were calculated for subicular cells recorded while the animal explored (speed >3 cm/s) at least 60% of the open-field
arena (n = 84/102). The bar graph shows the percentage of spatially modulated cells from all subicular cells (n = 51/84;
gray), and then from sparsely bursting cells (1 = 46/69; black) and dominantly bursting cells (5/15 cells; blue). Sparsely
bursting cells are more often spatially modulated than dominantly bursting cells (p = 0.022: significant Fisher's exact
test). E, Percentage of each cell type within spatial cell categories. Left, Sparsely bursting cells represent the majority (n =
46/51) of subicular spatial units. Right, All boundary cells were sparsely bursting cells F, Spatial information calculated for
spatially significant sparsely bursting and dominantly bursting cells (p = 0.032, bootstrapping, significant) G, Spatial
information calculated for all sparsely bursting cells and dominantly bursting cells (p = 0.001, bootstrapping, significant).

5E, left), it is clear that sparsely bursting cells constitute a
prominent spatial unit within the subiculum. Lastly, 17 of 51
spatially modulated cells (31%) could be classified as bound-
ary cells (as the cell in Fig. 5B), and all of them were sparsely
bursting cells (Fig. 5E, right).

In addition to being less often spatially modulated, spatially
tuned dominantly bursting cells provide lower spatial informa-
tion than sparsely bursting cells (compare Figs. 5A, B, 5C; Fig. 5F;
medians: SB = 0.36 bits/spike, n = 46; DB = 0.16 bits/spike, n =

5; p = 0.032, tested with bootstrapping procedure; see Materials
and Methods). Observing spatial information encoded by the entire
population, including cells which are not significantly modulated
(Fig. 5G), also showed a significant difference between the groups
(median: SB = 0.19 bits/spike, n = 69; DB = 0.06 bits/spike, n = 15;
p = 0.001, tested with bootstrapping procedure).

To conclude, these last results suggest that our classification of
subicular neurons according to burst discharge patterns relates to
significant differences in spatial coding.
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Bursts provide spatial information in spatially

modulated cells

Here, we classified cells based on each cell’s probability to initiate
bursts, the least bursting cells being the more spatially modu-
lated. But how is burst firing itself relevant for spatial coding,
especially in cells that do not fire bursts often such as sparsely
bursting cells? This prompted us to consider how bursts contrib-
uted to the transmission of spatial information.

The examples shown in Figure 5A—-C show that many spikes
occurred outside of the main spatial firing field. To evaluate how
the firing patterns contributed to the coding of spatial informa-
tion at the single cell level, we separated isolated spikes and bursts
into distinct plots. These examples from sparsely bursting cells
(Fig. 6A—F) suggest that isolated spikes occurred in numerous
locations, even though a preferred location is still evident in the
rate map (Fig. 6A-F, isolated spikes). A strikingly different pic-
ture emerged when we only plotted bursts. Well defined firing
fields emerged by looking at the bursts’ positions on the trajec-
tory and the corresponding rate map (Fig. 6A—F, bursts).

The difference in the number of events per group (bursts or
isolated spikes) can bias spatial information values; it tends to be
higher while computed on alower number of events (K. D. Harris
etal., 2001). For an individual neuron, there were typically more
isolated spikes than bursts, so we compared the spatial informa-
tion from the n bursts with 1000 random subsets of # isolated
spikes. Information was considered higher in bursts if it exceeded
the 95th percentile of the distribution of information calculated
from the random subsets of isolated spikes (Fig. 6A—F, signifi-
cance; see Materials and Methods for when there are fewer iso-
lated spikes than bursts). The difference between isolated spikes
and bursts was significant for 31 of the 46 (67%) spatially mod-
ulated sparsely bursting cells and 3 of the 5 (60%) spatially mod-
ulated dominantly bursting cells (Fig. 6G,H ). For the 31 sparsely
bursting cells with a significant difference, burst spatial informa-
tion (median = 0.95 bits/burst) was on average 2.31 times higher
than isolated spike spatial information (median, 0.41 bits/iso-
lated spike; Fig. 6I). Similarly, it was 1.83 times higher for the
three dominantly bursting spatial cells, even though the burst
spatial information remained among the lowest from our dataset
(0.16, 0.19, and 0.33 bits/burst; Fig. 6I). Finally, 12 of 17 bound-
ary cells (~70%; Fig. 6I) showed significantly more spatial infor-
mation in bursts than in isolated spikes. Burst spatial information
of boundary cells (median = 1.19 bits/burst) was 2.39 times
higher than their isolated spike spatial information (median =
0.5 bits/isolated spike).

Discussion
We studied how burst firing related to spatial coding in the subic-
ulum of rats. We first classified subicular neurons according to
their bursting patterns and distinguished two classes of subicular
neurons, a large fraction (80%) of sparsely bursting cells and a
small fraction (20%) of dominantly bursting cells. Both cell types
are located along the entire proximodistal and radial axes of the
subiculum and all identified neurons were pyramidal cells. Most
sparsely bursting cells were spatially modulated and we found
boundary cells only within that population. Dominantly bursting
cells carried little spatial information and were more rarely sig-
nificantly spatially tuned. Finally, we found that bursts carried
more spatial information than isolated spikes in spatially modu-
lated neurons, especially in boundary cells.

The initial impetus for our study came from in vitro studies,
which identified bursting in subicular neurons. Most interest-
ingly, bursting was shown to be correlated with the projection
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target of the respective neuron (Y. Kim and Spruston, 2012) sug-
gesting a functional relevance of the bursting phenotype. In pre-
vious studies, bursting relationship to spatial coding has been
investigated in the subiculum without being clearly defined
(Sharp and Green, 1994; Lever et al., 2009; Brotons-Mas et al.,
2010; S. M. Kim et al., 2012). Previous reports on CA1 place cells
suggested than intrinsic bursting cells, rather than regular spiking
cells, were more likely to be spatially modulated (Epsztein et al.,
2011). Unlike previous studies on the subiculum, we observed
marked functional differences between cell classes defined by
their bursting behavior. However, our results were quite opposite
to those reported for CAl. Indeed, we found that dominantly
bursting cells fire at higher rates and their spikes carry little spatial
information, which greatly supported the idea that the overall
bursting properties of subicular cells correlates with their spatial
coding capabilities. We believe that the high resolution of the
juxtacellular recordings, as well as our method to cluster subicu-
lar cells in distinct groups reflecting burstiness, was a key element
in our findings.

However, it is not yet clear how our in vivo classification of
sparsely bursting and dominantly bursting cells is related to var-
ious classifications of bursting based solely on intrinsic proper-
ties. Different in vitro studies on subicular neurons reported
varying estimates for the fraction of intrinsically bursting neu-
rons, ranging between 45 and 80% (Mason, 1993; Stewart and
Wong, 1993; Behr et al., 1996; Greene and Totterdell, 1997; Staff
et al., 2000; E. Harris et al., 2001; Y. Kim and Spruston, 2012;
Joksimovic et al., 2017). Only ~20% of the neurons observed in
our study were of the dominantly bursting subtype. These num-
bers do not match previous reports and it seems unlikely that the
dominantly bursting cells observed here correspond to the broad
definition of intrinsic bursting cells used in in vitro studies. It
seems possible that the dominantly bursting cells observed by us
correspond to a subgroup of neurons with a particularly strong
tendency for intrinsic bursting described in vitro. In contrast,
generating bursts does not appear to be a default mode of firing
for most sparsely bursting cells. These cells might be weakly
bursting or regular spiking cells requiring more complex mech-
anisms such as the interaction of intrinsic mechanisms and syn-
aptic inputs for bursting (Larkum, 2013).

A commonly accepted idea is that intrinsic bursting and reg-
ular spiking cells, recorded in the slice preparation, are non-
uniformly distributed along the proximodistal and radial axes of
the subiculum (Greene and Totterdell, 1997; E. Harris et al., 2001;
Y. Kim and Spruston, 2012; Cembrowski et al., 2018). Here, we
could not observe distinct anatomical distribution of sparsely
bursting cells and dominantly bursting cells. Nevertheless, the
fact that dominantly bursting cells can be found all along the
proximodistal axis of the subiculum challenges the idea that in-
trinsic bursting cells are found exclusively on the distal portion of
the subiculum (Cembrowski et al., 2018). The absence of a clear
pattern in our data could be due to the fact that our classification
does not identify the classical cell types described in vitro. How-
ever, as our data suggests that dominantly bursting cells should be
a subpopulation of intrinsic bursting cells, it was surprising to
find a non-uniform repartition of these cells.

Matching numbers of bursting cells between distinct studies is
complicated as experimental conditions may be different from
one study to another, especially because burst generation de-
pends on many factors, which are not easy to control in vivo.
Indeed, a variety of cellular mechanisms of burst generation have
been suggested for subicular neurons. For instance, bursting re-
quires T-type voltage gated calcium currents (Joksimovic et al.,
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Figure 6.  Sharp spatial tuning of burst firing in spatially modulated sparsely bursting cells. A-F, Example plots of sparsely bursting spatial neurons. Spikes, Spikes (red dots) superimposed onto
theanimal's trajectory (gray line). Isolated spikes, Isolated spikes (green dots) superimposed onto the animal’s trajectory (gray line) and corresponding rate map; corrected spatial information below.
Bursts, Bursts (orange dots) on animals’ trajectories (gray line) and corresponding burst rate maps; spatial information below. Each color-map ranges from 0 to the rate map maximum rate (Hz).
Significance, Results of the bootstrapping used to determine significance of burst spatial information compared with isolated spike information. The orange line represents spatial information
calculated from the N bursts fired by each cell and the green histogram shows the distribution of spatial information calculated from 1000 random samples of N isolated spikes. Cells in C~F are
boundary cells. G, Fraction of cells where burst spatial information is significantly higher than isolated spike spatial information. Within groups, Proportion of all spatial cells, sparsely bursting spatial
cells and dominantly bursting spatial cells with a significant difference. From groups, Proportion sparsely bursting cells and dominantly bursting cells in cells showing a significant difference.
Boundary cells, Proportion of boundary cells with a significant difference. H, Information per burst versus information per isolated spike for spatially modulated neurons (n = 46 sparsely bursting
cells, black circles and purple circles corresponding to boundary cells; n = 5 dominantly bursting cells, blue circle). Solid circles indicate cells with a significant increase of spatial information between
bursts and isolated spikes (n = 31/46 for sparsely bursting cells including n = 12/17 boundary cells and n = 3/5 for dominantly bursting cells). /, Spatial information per isolated spike and bursts
only for spatial cells with a significant difference, with sparsely bursting cells in black and dominantly bursting cells in blue and boundary cells in purple. Corrected info, Spatial information calculated
using similar numbers of bursts and isolated spikes (from the bootstrapping).

2017) that can be affected by neuromodulatory signals, such as  downstream areas. Indeed, peak frequencies of subicular spatial
serotonin, which was shown to downregulate T-type channels  neurons are rather high compared with CA1, as are their baseline
and burst generation in the subiculum (Petersen et al., 2017). frequencies (Sharp, 1997, 2006; Y. Kim and Spruston, 2012).

As the output structure of the hippocampus, the subiculum  Nevertheless, spatial signals can be refined if the precise firing
sends high-frequency, but rather imprecise, spatial coding to  pattern of subicular neurons is taken into consideration. Indeed,
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isolated spikes and bursts are functionally distinct units of infor-
mation in most spatially modulated neurons (~60%), especially
in cells encoding environmental boundaries. Although bursts
were often fired in well defined “place” fields, isolated spikes were
more spatially dispersed. Such differential coding by isolated
spikes and bursts is similar to information processing in sensory
systems (Krahe and Gabbiani, 2004). Nonetheless, our findings
are remarkably different from CA1, where bursts sharpen spatial
information in only ~20% of place cells (K. D. Harris et al.,
2001). Such a difference shows the relevance of burst firing in
noisy spatial cells, such as subicular cells, compared with sharply
tuned CALI place cells.

Bursts and isolated spikes are two units of information that
can be read differentially through the interaction between short-
term plasticity and postsynaptic integrative properties (Lisman,
1997; Izhikevich et al., 2003). The spatial information conveyed
by a burst could be decoded by the summation of excitatory
events at facilitating synapses whereas poorly tuned spatial inputs
could be better decoded through depressing synapses (Lisman,
1997). This should be the case for long-range projections and
could as well define functional subcircuits within the local micro-
circuit (Simonnet et al., 2017; Nassar et al., 2018). The ongoing
activity and resonating properties of targeted neurons could de-
fine the response to these signals (Izhikevich et al., 2003). How-
ever, the neuronal targets of subicular spatial neurons and how
these integrate and convert multiplexed signals at the cellular and
microcircuit levels are unknown elements. These will need to be
resolved for a better understanding of the subicular role in dis-
tributing hippocampal output spatial codes.
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