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Abstract. Return of cell surface glycoproteins to com- 
partments of the secretory pathway has been examined 
in HepG2 cells comparing return to the trans-Golgi net- 
work (TGN), the trans/medial- and cis-Golgi. Transport 
to these sites was studied by example of the transferrin 
receptor (TfR) and the serine peptidase dipeptidylpep- 
tidase IV (DPPIV) after labeling these proteins with 
the N-hydroxysulfosuccinimide ester of biotin on the 
cell surface. This experimental design allowed to distin- 
guish between glycoproteins that return to these bio- 
synthetic compartments from the cell surface and newly 
synthesized glycoproteins that pass these compart- 
ments during biosynthesis en route to the surface. Re- 
entry to the TGN was measured in that surface glyco- 
proteins were desialylated with neuraminidase and 
were monitored for resialylation during recycling. Re- 
turn to the trans-Golgi was traced measuring the trans- 
fer of [3H]fucose residues to recycling surface proteins 
by fucosyltransferases. To study return to the cis-Golgi, 

surface proteins were metabolically labeled in the pres- 
ence of the mannosidase I inhibitor deoxymannojirimy- 
cin (dMM). As a result surface proteins retained N-gly- 
cans of the oligomannosidic type. Return to the site of 
mannosidase I in the medial/cis-Golgi was measured 
monitoring conversion of these glycans to those of the 
complex type after washout of dMM. Our data demon- 
strate that DPPIV does return from the cell surface not 
only to the TGN, but also to the trans-Golgi thus link- 
ing the endocytic to the secretory pathway. In contrast, 
no reentry to sites of mannosidase I could be detected 
indicating that the early secretory pathway is not or 
is only at insignificant rates accessible to recycling 
DPPIV. In contrast to DPPIV, TfR was very efficiently 
sorted from endosomes to the cell surface and did not 
return to the TGN or to other biosynthetic compart- 
ments in detectable amounts, indicating that individual 
surface proteins are subject to different sorting mecha- 
nisms or sorting efficiencies during recycling. 

URING internalization and recycling plasma mem- 
brane glycoproteins of different function may re- 
turn from the cell surface to the trans-Golgi net- 

work (TGN) 1 thus linking the endocytic to the secretory 
pathway. Return from the surface to the TGN was clearly 
demonstrated for receptors, ectoenzymes, the synaptic 
vesicle marker protein synaptophysin and other not yet 
characterized proteins that may efficiently recycle through 
the TGN 5-10 times during their lifespan (Snider and 
Rogers, 1985; Woods et al., 1986; Fishman and Fine, 1987; 
Hedman et al., 1987; Duncan and Kornfeld, 1988; Kreisel 
et al., 1988; Reichner et al., 1988; Stoorvogel et al., 1988; 
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1. Abbreviat ions used in this paper, dMM, 1-deoxymannojirimycin; DP- 
PIV, dipeptidylpeptidase IV; Endo H, endo-l~-N-acetylglucosaminidase 
H; GSH, glutathione; NHS-SS-biotin, sulfosuccinimidyl-2-(biotinamido) 
ethyl-l,3-dithiopropionate; PNGase F, peptide N4-(N-acetyl-13-glucosami - 
nyl) asparagine amidase F; TfR, transferrin receptor; Tf, transferrin. 

van Deurs et al., 1988; Br/indli and Simons, 1989; Jin et al., 
1989; Green and Kelly, 1990, 1992; Prydz et al., 1990). 
Routes of recycling to the TGN have been suggested to 
exit from late endosomes and to function as a salvage 
pathway removing internalized membrane proteins from 
sequestration to lysosomes (Green and Kelly, 1992). In 
contrast, conflicting results have been presented for the re- 
turn of surface proteins to more proximal sites of the bio- 
synthetic route. Whereas recycling to galactosyltrans- 
ferases in the trans-Golgi was shown for the mannose 
6-phosphate/insulin-like growth factor-II receptor in the 
mutant CHO cell line ldlD (Huang and Snider, 1993), re- 
turn to these sites could not be detected for both the cat- 
ion-dependent and the cation-independent mannose 
6-phosphate receptor in BW 5147 mouse lymphoma cells 
(Duncan and Kornfeld, 1988). Furthermore, return of sur- 
face proteins to fucosyltransferases presumably localized 
in trans/medial-Golgi compartments (for review see Roth, 
1987) was shown for the serine peptidase DPPIV in rat 
hepatocytes (Kreisel et al., 1988), but was so far not con- 
firmed for other proteins. Morphological studies on the re- 
cycling itinerary of plasma membrane TfR tagged with 
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anti-TfR antibodies in mouse myeloma cells indicated that 
there is considerable membrane traffic from the cell sur- 
face even to middle and cis-Golgi cisternae (Woods et al., 
1986). This assumption was supported by the finding that 
surface TfR may return to mannosidase I in cis-Golgi com- 
partments of erythroleukemia K562 cells (Snider and Rog- 
ers, 1986). On the other hand, Neefjes et al. (1988) were 
unable to confirm that the TfR or HLA class II antigens 
return to mannosidase I in the cis-Golgi in different cell 
lines. Moreover, studies on the cation-dependent and -in- 
dependent mannose 6-phosphate receptor showed that 
neither one of these two receptors does routinely return to 
cisternae containing mannosidase I (Duncan and Korn- 
feld, 1988). Hence, it remains unknown if cell surface pro- 
teins may traffic back as far as to the trans-Golgi and to 
medial/cis-Golgi compartments. The conflicting results on 
the return of surface glycoproteins to trans-, medial-, and 
cis-Golgi compartments may be due to the fact that recy- 
cling was in part studied by means of proteins that had not 
been labeled on the cell surface, or had been labeled non- 
covalently with ligands or antibodies that may dissociate 
from the labeled proteins during endocytosis and recy- 
cling. Hence, proteins recycling from the cell surface to 
biosynthetic compartments could not unequivocally be 
distinguished from newly synthesized proteins en route to 
the cell surface. As it has to be assumed that the majority 
of glycoproteins trafficking through the Golgi apparatus 
represents newly synthesized glycoproteins, whereas cell 
surface glycoproteins returning to the Golgi apparatus or 
to the TGN make up only a minor fraction (Reichner et 
al., 1988; Br~indli and Simons, 1989), studies on this route 
of membrane protein traffic connecting the endocytic to 
the biosynthetic route crucially depend on the reliable dif- 
ferentiation of recycling cell surface glycoproteins from 
newly synthesized ones. 

Therefore, in the present study reentry of recycling sur- 
face proteins to the biosynthetic pathway was examined in 
HepG2 cells using a novel experimental approach that al- 
lows to unambiguously discriminate surface glycoproteins 
recycling from the cell surface to compartments of the bio- 
synthetic pathway from newly synthesized glycoproteins 
trafficking through biosynthetic compartments en route to 
the cell surface. The novel experimental approach uses 
two criteria for differentiation, (a) covalent labeling of cell 
surface glycoproteins with NHS-SS-biotin and (b) genera- 
tion of differences in the glycan moiety of glycoproteins 
recycling from the cell surface as compared to the glycan 
moiety of newly synthesized glycoproteins en route to the 
cell surface. The use of two criteria provided very high 
powers of differentiation and allowed to trace return of 
surface glycoproteins to the biosynthetic pathway under 
utmost reliable conditions. Employing this technique re- 
turn of proteins from the surface was systematically exam- 
ined comparing return to peripheral, medial and more 
proximal sites of the biosynthetic route, i.e., to the TGN, 
to trans/medial-Golgi cisternae as well as to the cis-Golgi. 
Reentry of recycling surface glycoproteins to these sites 
was traced using oligosaccharide modifications effected on 
recycling glycoproteins by processing glycosidases and gly- 
cosyltransferases subcompartmentalized within the bio- 
synthetic pathway as markers (for review see Roth, 1987; 
Paulson and Colley, 1989). Two surface glycoproteins with 

different internalization characteristics were compared: 
the human TfR that is efficiently internalized with a short 
half-life of :'-5 rain at the cell surface (Ciechanover et al., 
1983), and the serine peptidase DPPIV (CD26) that is in- 
ternalized at a comparably low rate (Matter et al., 1990). 
Neither one of the two proteins returned to the sites of 
mannosidase I in detectable amounts and, hence, do not 
significantly recycle to cis-Golgi cisternae. In contrast, 
DPPIV, but not TfR was recycled from the surface back to 
the trans-Golgi as well as to the TGN. These results dem- 
onstrate that cell surface proteins in HepG2 cells may not 
only return to the TGN, but also to the trans-Golgi, 
whereas earlier parts of the secretory pathway are not or 
are only at insignificant rates accessible to recycling sur- 
face proteins. 

Materials and Methods 

Materials 
Constituents of cell culture media were obtained from Gibco (Eggenstein, 
Germany); other materials for cell culture were purchased from Falcon 
(Heidelberg, Germany) or Nunc (Wiesbaden, Germany). L-pS]Methio- 
nine (>48 TBq/mmol), L-[6-3H]fucose (>800 GBq/mmol), D-[6-3H]galac - 
tose (0.74 TBq/mmol), D-[2-3H]mannose (370 GBq/mmol), [125I] sodium 
iodide (3.7 GBq/ml) and UDP-D-[U-14C]galactose (7.4 GBq/mmol) were 
from Amersham Buchler (Braunschweig, Germany). BSA, NP-40, strepta- 
vidin agarose, deferoxamine mesylate, DL-dithiothreitol, and iodoacetamide 
were purchased from Sigma (Deisenhofen, Germany). Sulfosuccinimidyl-2- 
(biotiamido)ethyl-l,3-dithiopropionate (NHS-SS-biotin), sulfosuccinimi- 
dyl-6-(biotinamido)hexanoate, and IodoGen iodination reagent (1,3,4,6- 
tetrachloro 3a-6a-diphenylglycoluril) were obtained from Pierce (Oud 
Beijerland, The Netherlands). Protein A--Sepharose and ampholines (pH 
3.5-9.5, 40%) were from Pharmacia (Freiburg, Germany). Endo-13-N- 
acetylglucosaminidase H (Endo H) from Streptomyes plicatus (EC 
3.2.1.96), peptide N4-(N-acetyl-13-glucosaminyl) asparagine amidase F 
(PNGase F) from Flavobacterium meningosepticum (EC 3.2.2.18), 
neuraminidase from Vibrio cholerae (EC 3.2A.18), and dMM were from 
Boehringer Mannheim (Mannheim, Germany). Neuraminidase from 
Clostridium perfringens was from Sigma. Oligomannosidic ofigosaccha- 
rides Mans_9GlcNAc2 used as standards were from Oxford Glycosystems 
(Abingdon, UK). Unless otherwise stated, all other chemicals and re- 
agents were of analytical grade and were obtained either from Sigma or 
from Serva (Heidelberg, Germany). 

Animals, Cells, and Antibodies 
Male Wistar rats (120-150 g) were fed a commercial diet (Altromin; Al- 
tromin GmbH, Lage, Lippe, Germany) and water ad lib. HepG2 cells 
(Knowles et al., 1980) (obtained from the American Type Culture Collec- 
tion [ATCC], Rockville, MD) were grown in DME (Gibco), supple- 
mented with 10% (by vol) heat-inactivated FCS (Gibco), insulin (0.08 
mU/ml), 2 mM L-glutamine, penicillin (100 U/ml) and streptomycin (100 
Ixg/ml) (complete DME) in a humidified atmosphere with 5% CO2 at 
37°C. Cells (2.5 × 106) were seeded into 100-mm tissue culture dishes and 
were used 24 h later at 70% confluence, OKT9 hyhridoma cells (Suther- 
land et al., 1981) (obtained from the ATCC) producing mAb reactive with 
human TfR were grown in low protein hybridoma medium (Gibco) sup- 
plemented with penicillin (100 U/ml), streptomycin (100 izg/ml) and 2 mM 
L-glutamine. mAb OKT9 was purified from hybridoma cell culture super- 
natants by affinity chromatography on protein A-Sepharose. Ascites fluid 
containing mAb HBB3/775 recognizing human DPPIV was produced in 
pristane-primed BALB/c mice (Hauri et al., 1985). Affinity-purified rabbit 
anti-mouse IgG was from Dakopatts (Hamburg, Germany). The antibod- 
ies used in this study are directed against protein epitopes and do not rec- 
ognize carbohydrate antigens on the glycoproteins. 

Metabolic Labeling of Cells 
For labeling with L-[35S]methionine, cells were washed and preincubated 
with MEM with Earle's salt without L-methionine and L-cysteine for 30 

The Journal of Cell Biology, Volume 130, 1995 538 



min. Cells were then grown for 4 h in MEM without L-methionine/L-cys- 
teine containing L-[35S]methionine (5.5 MBq/3 × 106 cells), washed, and 
chased for 2 h in complete DME containing 1 mM unlabeled L-methio- 
nine. For labeling with radioactive sugars, cells were cultured for 6 h in 
complete DME containing either L-[6-3H]fucose (15 MBq/3 × 106 cells), 
D-[2-3H]mannose (18 MBq/3 × 106 cells ), or D-[6-3H]galactose (7.4 MBq/ 
3 × 106 cells). Cells were then washed and chased for 2 h in medium sup- 
plemented with i mM unlabeled sugar. 

Cell Surface Biotinylation 
Cell surface proteins were labeled with biotin essentially as described 
(Busch et al., 1989). After cooling on ice, cells were washed four times 
with ice-cold PBS/Ca2÷/Mg 2+ (8 mM Na2HPO 4, 1 mM KH2 PO4, pH 7.2, 3 
mM KCI, 137 mM NaCI, 0.9 mM CaCI2, 0.5 mM MgC12), and incubated 
with a freshly prepared solution (1 mg/ml) of NHS-SS-biotin in PBS/Ca2+/ 
Mg 2+ for 20 min on a rocking platform at 4°C. Cells were then washed 
twice with PBS/Ca2+/Mg 2+ containing 0.1% (mass/vol) BSA, twice with 
PBS/Ca2+/Mg 2+, and were then either recultured under the conditions de- 
scribed above or harvested for further analysis. 

Preparation of Cellular Membranes from HepG2 Cells 
A membrane fraction of HepG2 cells was prepared by the method of 
Hortsch (1994) with some modifications. Cells were washed, scraped from 
the dishes with a rubber policeman, and collected in homogenization 
buffer (50 mM Tris/HC1, pH 8.0, 150 mM NaCI, 1 mM EDTA; 0.25 ml/3 × 
106 ceils), containing 1 mM PMSF, and the protease inhibitors pepstatin, 
leupeptin, antipain, and chymostatin at a final concentration of 10 ~g/ml 
each. Cell suspensions were homogenized by 15 strokes in a tight-fitting 
Dounce glass homogenizer on ice and centrifuged (5 min, 500 g). Superna- 
tants were collected and kept on ice. The pellets were once more ex- 
tracted in homogenization buffer by 15 strokes in a Dounce homogenizer 
followed by centrifugation (5 rain, 500 g). Both supernatants were pooled 
and cleared by a third centrifugation step (5 min, 2,500 g). The finally ob- 
tained pellet was discarded, and membranes were obtained from the su- 
pernatants by ultracentrifugation. For this, centrifugation tubes were 
filled with 0.6 ml of homogenization buffer containing 0.25 M sucrose, 
overlaid with 3.75 ml of supernatant and centrifuged (60 min, 100,000 g). 
The pelleted membrane fraction was resuspended in Golgi buffer (100 
mM NaAc, pH 6.0, 0.1% NP-40 [by vol]) by 15 strokes in a Dounce ho- 
mogenizer. 

Preparation of Golgi Membranes from Rat Liver 
Golgi apparatus was isolated from rat liver using published procedures 
(Tauber et al., 1986). Purity of the isolated Golgi fraction was checked by 
electron microscopy and by assay of the marker enzymes glucose-6-phos- 
phatase, galactosyl transferase, 5'-nucleotidase and succinate-INT-reduc- 
tase with methods given in the references (DeDuve and Appelmans, 1955; 
Pennington, 1961; Mitchell and Howthorne, 1965; Bauer et al., 1974). 

Immunoaffinity Absorption 
All steps were carried out at 4°C. Cells were washed four times with ice-cold 
PBS/Ca2~-/Mg 2÷, scraped from the dishes with a rubber policeman and col- 
lected in lysis buffer A (20 mM Tris/HC1, pH 8.0, 150 mM NaCI, 1 mM 
EDTA, 1% (by vol) NP-40; 0.75 ml/3 × 106 cells), containing 1 mM PMSF, 
and the protease inhibitors pepstatin, leupeptin, antipain, and chymostatin 
at a final concentration of 10 txg/ml each. For detergent extraction, cell 
suspensions were homogenized by 10 gentle strokes in a tight-fitting 
Dounce homogenizer and rotated end-over-end for 2 h. Detergent-insolu- 
ble material was removed by centrifugafion (100,000 g, 30 min). Protein 
concentration in the supernatants was determined by the bicinchoninic 
acid assay (Pierce) using BSA as standard. Supernatants were diluted with 
lysis buffer B (10 mM Tris/HC1, pH 8.0, 150 mM NaCI, 1 mM EDTA, 
0.1% [mass/vol] globulin-free BSA, 1% [by vol] NP-40) to a concentration 
of cell proteins of 0.2 mg/ml, followed by addition of pepstatin, leupeptin, 
antipain, and chymostatin to a final concentration of 2 p~g/ml each. For im- 
munoaffinity absorption 10 Ixg of monoclonal anti-TfR antibody OKT9 or 
4 Izl of ascites fluid containing anti-DPPIV mAb HBB3/775 were added to 
5 ml of supernatant and rotated end-over-end for 2 h. TfR/mAb OKT9 
immunocomplexes were collected by binding to protein A-Sepharose CL- 
4B precoated with affinity-purified rabbit anti-mouse IgG. For precoat- 
ing, protein A-Sepharose (10 rag) was incubated with rabbit anti-mouse 
IgG (3 mg) in lysis buffer B for 2 h arid washed twice in the same buffer. 

Precoated protein A-Sepharose beads were added to 5 ml of the mixture, 
rotated end-over-end for 12 h, pelleted by centrifugation, washed once 
with washing buffer A (50 mM Tris/HCl, pH 8.0, 500 mM NaCI, 1 mM 
EDTA) with 1% (by vol) NP-40, 0.1% (mass/vol) BSA, twice with wash- 
ing buffer A with 1% (by vol) NP-40, once with washing buffer A with 
0.1% (by vol) NP-40, once with washing buffer A with 0.1% (by vol) NP- 
40 and 0.5% (mass/vol) SDS, and once with PBS. Immunocomplexes cou- 
pled to protein A-Sepharose were eluted either by heating (95°C) for 3 
min with 90 Ixl SDS electrophoresis sample buffer (2% [mass/vol] SDS, 
28.6% [by vol] glycerol, 5% [by vol] mercaptoethanol, 0.01% [mass/vol] 
bromophenol blue, 62.5 mM Tris/HCl, pH 6.8) (for SDS-PAGE) or by 
shaking three times for 5 rain with each 30 Ixl of 3 M KSCN, 0.5% (by vol) 
NP-40 at room temperature (for chromatography on streptavidin aga- 
rose). 

DPPIV/mAb HBB3/775 immunocomplexes were collected by adsorp- 
tion to protein A-Sepharose that was preincubated with detergent ex- 
tracts of nonlabeled ceils in order to block unspecific binding sites. For 
preincubation, protein A-Sepharose (10 rag) was incubated with 50 I-d of 
detergent extract (1 mg of protein/ml lysis buffer A) and 500 p,1 lysis 
buffer B for 2 h, and washed twice with lysis buffer B. Incubation of pre- 
coated protein A-Sepharose with the immunoadsorption mixture, wash- 
ing of the beads and elution of immunocomplexes was done as described 
for TfR, except that SDS was used at a concentration of 0.1% instead of 
0.5% in the last washing buffer. 

Isolation of Biotinylated Proteins 
For isolation of total biotinylated proteins from cell homogenates, strepta- 
vidin agarose (100 p,1) washed four times in lysis buffer A was added to 1 
ml of detergent lysate of cells (1 mg protein/ml lysis buffer A) containing 
antipain, chymostatin, leupeptin, and pepstatin at a concentration of 20 ixg/ 
ml each, and rotated end-over-end at 4°C for 2 h. Streptavidin agarose was 
then pelleted by centrifugation, washed four times with 50 mM Tris/HCl, 
pH 8.0, 500 mM NaC1,1 mM EDTA, 1% (by vol) NP-40,1 M KSCN, twice 
with the same buffer without KSCN, and once with PBS. Proteins bound to 
streptavidin agarose were eluted with 50 mM OL-dithiothreitol in 10 mM 
Tris/HCl, pH 8.0, 150 mM NaC1, 1 mM EDTA, 0.1% (by vol) NP-40. 

For isolation of biotinylated TfR and DPPIV, both proteins were immu- 
noadsorbed beforehand (see above) and eluted from protein A-Sepharose 
with 3 M KSCN, 0.5% (by vol) NP-40. Eluates were diluted l:10 in dilu- 
tion buffer (10 mM Tris/HCl, pH 8.0, 150 mM NaC1, 1 mM EDTA, 0.1% 
[by vol] NP-40). Streptavidin agarose (25 Ixl) washed four times in dilution 
buffer was added to the eluates obtained from 1 mg protein of detergent 
extract and diluted with dilution buffer to a final volume of I ml. After ad- 
dition of leupeptin, antipain, pepstatin, and chymostatin to a final concen- 
tration of 10 v.l/ml each, suspensions were rotated end-over-end at 4°C for 
2 h, washed four times in 50 mM Tris/HCl, pH 8.0, 500 mM NaC1, 1 mM 
EDTA, 1% (by vol) NP-40, 0.3 M KSCN, twice in the same buffer without 
KSCN, and once with PBS. Proteins bound to streptavidin agarose were 
eluted with 50 mM oL-dithiothreitol in dilution buffer or with SDS elec- 
trophoresis sample buffer. 

SDS-Polyacrylamide Gel Electrophoresis 
Proteins were separated on 7,5 % SDS--polyacrylamide slab gels (Laemmli, 
1970) and stained with silver (Heukeshoven and Dernick, 1988). Gels with 
35S- or 3H-labeled samples were processed and fluorographed according to 
Bonnet and Laskey (1974) using Kodak XAR-5 x-ray film. Bands on flu- 
orograms were quantitated by densitometry using a Hirschmann Elscript 
400 Scanner (Hirschmann, Mianchen, Germany). Molecular mass stan- 
dards were et2-macroglobulin from human plasma (180 kD), 13-galactosi- 
dase from Escherichia coli (116 kD), fructose-6-phosphatase from rabbit 
muscle (84 kD), pyruvat kinase from chicken muscle (58 kD), and fuma- 
rase from porcine heart (48.5 kD). 

Isoelectric Focusing 
Proteins were separated by IEF as described by van den Bosch et al. 
(1988) with some modifications. TfR and DPPIV bound to streptavidin 
agarose were eluted with 25 pA of 50 mM oL-dithiothreitol in dilution 
buffer, mixed with 8 }~l of 8% (mass/vol) SDS, 34.8% (by vol) glycerol, 
20% (by vol) mercaptoethanol, 250 mM Tris/HC1, pH 6.8, boiled for 3 rain 
at 95°C, cooled, and added to 50 ~1 of urea sample buffer (9.5 M urea, 2% 
(by vol) NP-40, 2% (by vol) ampholines (40%, pH 3.5-9.5), 97 mM DL- 
dithiothreitol). Vertical 4% polyacrylamide gels containing 9.0 M urea, 
2% (by vol) NP-40, 6% of a mixture of 40% ampholines (pH 3.5-9.5), 
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0.05% (by vol) TEMED and 0.02% (mass/vol) ammonium persulfate, 
were run for 15 rain at 200 V, for 30 rain at 300 V, and for 1 h at 400 V, us- 
ing 20 mM H3PO4 as anodic buffer in the lower chamber and 50 mM 
NaOH as cathodic buffer in the upper chamber. Thereafter, samples were 
applied to the gel, overlaid with 4.75 M urea, 2% (by vol) NP-40, 1% (by 
vol) ampholines (40%; pH 3.5-9.5), 49 mM DL-dithiothreitol, and the gels 
were run for additional 18 h at 400 V. Gels were then processed for fluo- 
rography according to Bonner and Laskey (1974). 

Carbohydrate Constituent Analysis 
Glycoproteins (300 ~g) were hydrolyzed for i h at 100°C in 1 N HC1. The 
resulting samples were analyzed by HPLC according to Lohmander 
(1986) on a HPX-87H column (300 m m ×  7.8 ram; Bio-Rad, Mtinchen, 
Germany) using 0.01 N sulfuric acid as solvent at a flow rate of 0.6 ml/min 
and a temperature of 65°C, Fractions (300 p~l) were counted in a Packard 
Tri-Carb 1500 liquid scintillation system. N-Acetylneuraminic acid, L-fUCOSe, 
n-mannose, D-galactose, N-acetyl-o-galactosamine and N-acetyl-o-glucos- 
amine served as internal standards. 

Treatment of Glycoproteins with Glycosidases 
Immunoadsorbed TfR and DPPIV were eluted from protein A-Sepharose 
by boiling at 95°C for 5 rain in 0.4% (mass/vol) SDS, 5% (by vol) mercap- 
toethanol, and 40 mM EDTA, and were diluted fourfold in the appropri- 
ate glycosidase digestion buffer. Biotinylated proteins bound to streptavi- 
din agarose were eluted with 50 mM DL-dithiothreitol in dilution buffer, 
concentrated by ultrafiltration in a Centricon-10 microconcentrator (Ami- 
con), and suspended in glycosidase digestion buffer. Samples were split 
into two portions. One of these was incubated with the respective glycosi- 
dase at 37°C for 16 h, whereas the other was mock-digested under identi- 
cal conditions without enzyme. Before addition of the glycosidases, all 
samples (100 p~l) were heated at 95°C for 5 rain, and a mixture of protease 
inhibitors (leupeptin, antipain, chymostatin, and pepstatin [10 ~g each]) 
was added after cooling. Digestion with 10 mU of Endo H was performed 
in 20 mM sodium phosphate buffer, pH 5.5, 0.1% (by vol) NP-40, that 
with 10 mU of PNGase F in 20 mM sodium phosphate buffer, pH 7.5, 
0.1% (by vol) NP-40, and that with 10 mU neuraminidase from Vibrio 
cholerae in 20 mM sodium phosphate, pH 5.5, 4 mM CaC12. 

Treatment of Cells with Neuraminidase 
Cells (3 × 106 in 100 ram-dishes) were cooled on ice, washed three times 
with ice-cold PBS, pH 5.5, 1 mM CaC12, 1 mM MgCI 2 and were then incu- 
bated with 200 mU of neuraminidase (from Clostridium perfringens) in 4 
ml PBS, pH 5.5, 4 mM CaC12,1 mM MgCl2 for 2 h at 4°C on a gently rock- 
ing platform. After washing five times with PBS/Ca2+/Mg 2÷ cells were ei- 
ther recultured or harvested for further analysis. Desialylation of cell sur- 
face TfR required the prior removal of receptor-bound transferrin (Tf). 
Dissociation of the surface TfR-Tf  complex was achieved adapting a pro- 
cedure described by Dautry-Varsat et al. (1983). After washing cells were 
incubated at 4°C with deferoxamine mesylate (0.4 mM in PBS, pH 5.5, 1 
mM CaC12, 1 mM MgCl2), for 10 rain and washed once with 0.05 mM def- 
eroxamine mesylate in the same buffer, to dissociate and to chelate iron 
from Tf at an acidic pH. Apo-Tf was then dissociated from the receptor by 
incubation of cells for 5 rain in 20 mM Tris/HCl, pH 8.0, 150 mM NaCl, 1 
mM CaC12, 1 mM MgC12, 0.05 mM deferoxamine mesylate, followed by 
two washing cycles in the same buffer. 

Determination of the Rate of Endocytosis 
Rates of endocytosis were measured with a method similar to that de- 
scribed by Bretscher (1989) and Green and Kelly (1992). Cells were pulse- 
labeled with L-[35S]methionine for 4 h, chased for 2 h, surface-labeled with 
NHS-SS-biotin at 4°C, and were then recultured at 37°C. At different 
times of reculture, the biotin label was removed by treating cells with the 
membrane impermeant thiol glutathione (GSH) at 4°C. Cell surface pro- 
teins that are internalized to intracellular compartments thereby acquire 
resistance to GSH, and, hence, retain the biotin label. Two dishes were 
frozen immediately after biotinylation without GSH treatment, to deter- 
mine the total amount of biotinylated TfR and DPPIV. Two other dishes 
were treated with GSH immediately after biotinylation to determine the 
level of biotin label remaining bound to the proteins after GSH reduction. 
For treatment with GSH, cells were cooled to 4°C, washed three times 
with PBS/CaZ÷/Mg 2÷, and incubated twice with freshly prepared 190 mM 
GSH in 75 mM NaC1, 1 mM CaCl2, 1 mM MgC12, 290 mM NaOH, and 

0.1% BSA (mass/vol), for 20 rain each on a rocking platform. Subse- 
quently, dishes were washed twice with PBS/Ca2÷/Mg 2+, incubated with 
50 mM iodoacetamide in 75 mM Tris/HC1, pH 7.5, 1 mM CaCI2, 1 mM 
MgCI2 for 30 rain at 4°C, and washed four times with PBS/Ca2+/Mg 2+. 
Cells were harvested, detergent-extracted, and TfR and DPPIV were im- 
munoadsorbed. The biotinylated forms of the two proteins were isolated 
on streptavidin agarose, subjected to SDS-PAGE and fluorographed. The 
films were scanned and the rates of internalization were calculated from 
the time-dependent increase of biotinylated TfR and DPPIV. The total 
amount of biotin-labeled TfR and DPPIV was determined from the dishes 
harvested immediately after biotinylation without being treated with 
GSH, and was taken as 100%. The amount of surface exposed protein re- 
taining biotin label after treatment with GSH was determined from the 
dishes treated with GSH immediately after biotinylation, and was sub- 
tracted. 

Half-lives of Biotinylated and Nonbiotinylated 
Surface Proteins 
Cells were pulse-labeled with L-[35S]methionine for 4 h and chased for 2 h. 
For determination of half-lives of the biotinylated form of TfR and DPPIV, 
ceils were surface-labeled with NHS-SS-biotin immediately after the 
chase and were recultured for increasing periods of time (protocol a). For 
determination of half-lives of nonbiotinylated surface TfR and DPPIV, 
cells were surface-labeled with NHS-SS-biotin after reculture immediately 
before harvesting (protocol b). After detergent extraction of the cells, the 
biotinylated forms of TfR and DPPIV were isolated by immunoadsorp- 
tion and binding to streptavidin agarose, separated by SDS-PAGE and 
fluorographed. Radioactivity of the polypeptide bands in the gel was 
quantitated by densitometry of fluorographs. Half-lives and rate constants 
of degradation were calculated from the decay of the radioactivity of the 
bands as described (Tauber et al., 1989). 

Analysis of Recycling to the trans-Golgi Network 
Cells were pulse labeled with L-[35S]methionine for 4 h and chased for 2 h. 
Thereafter, cells were biotinylated at the surface at 4°C, treated with def- 
eroxamine mesylate to dissociate Tf from cell surface TfR, and treated 
with neuraminidase (200 mU, Clostridium perfringens) at 4°C for 2 h on a 
gently rocking platform (details see above). After washing five times with 
ice-cold PBS/Ca2+/Mg 2+ to remove neuraminidase, cells were recultured 
in complete DME supplemented with 1 mM L-methionine. At different 
times of reculture aliquots of cells were detergent extracted, and TfR and 
DPPIV were immunoadsorbed. Biotinylated forms of the two proteins 
were isolated on streptavidin agarose, separated by IEF and fluoro- 
graphed. 

To analyze recycling of asialo-Tf to the TGN, ceils (3 × 106 in 100-mm 
dishes) were preincubated for 30 rain with 4 ml of DME containing 100 
~M asialofetuin, 650 p,M 2,3-dehydro-2-deoxy-N-acetylneuraminic acid. 
Incubation was continued after addition of Fea+-loaded 125I-asialo-Tf (1.5 
ixg/4 ml, 4 kBq/p,g) to the culture medium. At different times, Tf in the 
culture medium was separated by IEF for analysis of resialylation. Fe 3~- 
Loaded asialo-Tf was prepared in that Tf was loaded with Fe 3+ according 
to Karin and Mintz (1981), and was then labeled with 1251 sodium iodide 
by the method of Fraker and Speck (1978) to a specific radioactivity of 4 
kBq/l~g. 125I-Tf (1.5 Ixg) was desialylated by digestion for 12 h at 20°C with 
40 mU neuraminidase (Clostridium perfringens) immobilized to agarose 
(Sigma) and suspended in 200 p,I PBS, pH 5.5, 4 mM CaCI2, containing an- 
tipain, pepstatin, chymostatin, and leupeptin at a final concentration of 20 
p~g/ml each. 

Analysis of Recycling to the 
trans/medial-Golgi Apparatus 
Cells were cooled on ice, biotinylated at the surface, washed extensively to 
remove unreacted NHS-SS-biotin, and warmed to 37°C by addition of pre- 
warmed complete DME. After addition of dMM to a final concentration 
of 1 mM and preincubation for 30 rain, L-[6-3H]fucose (15 MBq/3 × 106 
cells) was added, and the incubation was continued for 6 h or 12 h, all in 
the presence of dMM. Cells were then washed four times with ice-cold 
PBS/Ca2+/Mg 2+, and detergent extracted. For analysis of incorporation of 
L-[6-3H]fucose into total cell surface proteins, biotinylated proteins were 
isolated from the homogenate on streptavidin agarose. For analysis of in- 
corporation of L-[6-3H]fucose into biotinylated TfR and DPPIV, the two 
proteins were immunoadsorbed, and the biotinylated forms were isolated 
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by affinity chromatography on streptavidin agarose, separated by SDS- 
PAGE, and fluorographed. 

Analysis of Recycling to the cis-Golgi Apparatus 
Cells were preincubated with 1 mM dMM in MEM without L-methionine/ 
cysteine for 30 min at 37°C, followed by addition of L-[35S]methionine (5.5 
MBq/3 × 106 cells) and further incubation for 4 h. Cells were then washed 
three times with complete DME supplemented with 1 mM L-methionine, 
and incubated for further 2 h all in the presence of 1 mM dMM. After 
cooling on ice, cells were surface-biotinylated at 4°C, washed four times to 
remove unreacted NHS-SS-biotin, rewarmed to 37°C by addition of com- 
plete DME without dMM, but supplemented with 1 mM L-methionine, 
and recultured. An aliquot of the cells was recultured in the presence of 1 
mM dMM. After 12 h cells were detergent extracted, and the biotinylated 
forms of TfR and DPPIV were isolated by immunoadsorption and affinity 
chromatography on streptavidin agarose, separated by SDS-PAGE and 
fluorographed. 

Susceptibility of Oligomannosidic Cell Surface DPPIV 
to Golgi Mannosidases 
After preincubation with 1 mM dMM for 30 min, HepG2 cells were la- 
beled with o-[2-3H]mannose (18 MBq/3 x 106 cells) for 16 h in the pres- 
ence of 1 mM dMM and were thereafter surface-labeled with NHS-SS- 
biotin. From these ceils a membrane fraction containing the plasma mem- 
brane was isolated and divided into two portions. One portion (3 mg pro- 
tein) was incubated with Golgi apparatus isolated from rat liver. For this, 
isolated Golgi apparatus (3.5 mg protein) and the isolated membranes 
from [3H]mannose-labeled HepG2 cells were mixed in a final volume of 4 
ml Golgi buffer (100 mM NaAc, pH 6.0, 0.1% NP-40 [by vol]), resus- 
pended by 15 strokes in a Dounce homogenizer, sonified for 30 s using a 
Branson B-R sonifier (Branson Ultrasonics Corp., Danbury, CT), and in- 
cubated at 37°C for 16 h. The other portion (2 mg) was treated likewise, 
but without isolated Golgi membranes. After incubation membranes were 
solubilized by addition of NP-40 to a final concentration of 1% (by vol). 
Insoluble material was removed by ultracentrifugation (30 rain, 100,000 
g). From the supernatants the biotinylated form of DPPIV representing 
cell surface DPPIV was isolated by immunoaffinity chromatography in 
conjunction with affinity chromatography on streptavidin agarose. 

Analysis of Oligosaccharides by 
HPAE Chromatography 
Oligosaccharides were released from isolated DPPIV by PNGase F and 
separated from residual proteins by chloroform/methanol precipitation. 
The samples (300 Ixl) were mixed thoroughly with 600 p,l methanol, 100 p~l 
chloroform, and 100 p~l water, and centrifuged at 10,000 g for 5 min. The 
upper phase was collected, dried under vacuum, redissolved in 100 }xl wa- 
ter and applied to a C18-cartridge (Waters Chromatography Div., Mil- 
ford, MA) to remove traces of detergents. After washing with water the 
eluants (2 ml) were dried and desalted by gel filtration on Bio-Gel P-2 col- 
umns as previously described (Orberger et al., 1992). Fractions containing 
radioactivity were pooled, dried, redissolved in 100 i~1 water, and analyzed 
by HPAE chromatography. Separations were carried out using a Dionex 
(Sunnyvale, CA) BioLC system and a CarboPac PA-100 column (4 × 250 
mm) in series with a CarboPac PA-100 guard column according to Pfeiffer 
et al. (1990). A 50% solution of NaOH (Baker, Gross-Gerau, Germany) 
and sodium acetate (Fluka, Buchs, Switzerland) were used to prepare the 
eluants (Eluant A, 200 mM NaOH in water; Eluant B, 200 mM NaOH, 
250 mM sodium acetate in water). Columns were calibrated with authentic 
oligomannosidic oligosaccharides Mans.gGlcNAc~ isolated from thyreo- 
globulin and from ribonuclease (Yamamoto et al., 1981). Oligosaccharides 
were eluted at a flow rate of 1 ml/min using a linear gradient from 0 to 
15% B within 45 rain and collected in 1-ml fractions. After addition of 
scintillation cocktail (Packard Instruments, Meriden, CT) the fractions 
were monitored for radioactivity with a model 4450 liquid scintillation 
counter (Packard Instruments, Meriden, CT). 

Results 

Glycosylation of TfR and DPPIV in HepG2 Cells 
In order to characterize N-glycosylation of TfR and DPPIV 

in HepG2 cells, both glycoproteins were immunoadsorbed 
from cells metabolically labeled with L-[aSS]methionine 
and were digested with either Endo H, PNGase F, or 
neuraminidase (Fig. 1). Digestion of TfR with Endo H, 
cleaving N-glycans of the high mannose and the hybrid 
type (Trimble and Maley, 1984), reduced the apparent 
molecular mass of TfR from 95 to 90 kD, while digestion 
with PNGase F, cleaving all types of N-glycans (Tarentino 
et al., 1985), resulted in the formation of a 86-kD polypep- 
tide. Neuraminidase reduced the apparent molecular mass 
of TfR from 95 to 93 kD. This indicates that TfR in HepG2 
cells is sialylated and has N-glycans of the high mannose or 
the hybrid type and of the complex-type, in accordance 
with results obtained in several different human lympho- 
blastoid cell lines (Omary and Trowbridge, 1981; Schneider 
et al., 1982), and with the glycan structure analysis of TfR 
from HepG2 cells (Orberger et al., 1992). 

DPPIV was resistant to Endo H, but was sensitive to 
both PNGase F and neuraminidase, reducing the apparent 
molecular mass from 125 to 95 and 115 kD, respectively. 
Hence, N-glycans of DPPIV in HepG2 cells are mainly, if 
not entirely of the sialylated complex type. Likewise, TfR 
and DPPIV could be metabolically labeled with L-[6- 
3H]fucose, D-[2-3H]mannose and D-[2-3H]galactose (data 
not shown). As shown in pulse-chase experiments, oli- 
gosaccharide processing of TfR and DPPIV occurred 
within 60 to 120 min (data not shown). 

Surface Labeling of HepG2 Cells with NHS-SS-Biotin 
Surface proteins of HepG2 cells were labeled with NHS- 
SS-biotin and were separated from nonbiotinylated pro- 
teins by affinity chromatography on streptavidin agarose. 
As has been demonstrated recently, labeling with NHS- 
SS-biotin is selective for cell surface proteins of hepatoma 
cells and hepatocytes under the conditions applied (Busch 
et al., 1989; Loch et al., 1992). The biotinylated form both 
of total cell surface proteins (Fig. 2 A) and of surface TfR 
and DPPIV (Fig. 2 B) could be separated from the nonbi- 
otinylated proteins. Proteins from nonbiotinylated cells 
were not bound to streptavidin agarose (Fig. 2 A). 

To determine the portion of TfR and DPPIV, that could 
be biotinylated at the cell surface and isolated by affinity 
chromatography on streptavidin agarose, aliquots of total 
TfR and DPPIV obtained by immunoadsorption from the 
detergent extracts, and of the biotinylated species eluted 
from streptavidin agarose were separated by SDS-PAGE, 
fluorographed and quantified densitometrically. About 

Figure 1. Diges t ion  of  T f R  
and D P P I V  with E n d o  H, 
P N G a s e  F and neuramini -  
dase.  D P P I V  and TfR  were  
i m m u n o a d s o r b e d  f rom de-  
te rgent  extracts  of  H e p G 2  
cells metabol ical ly  labeled 
for 2 h with L-[35S]methio - 
n ine  (5.5 MBq/3 × 106 ceils) 
and chased for  2 h. The  iso- 
la ted pro te ins  were  split into 

five por t ions  and were  e i ther  mock-d iges ted  (lanes 1 and 5) or  
were  t r ea ted  with E n d o  H (lane 2), P N G a s e  F (lane 3), or  
neuramin idase  (lane 4) as deta i led  in Mater ia l  and Methods .  

Volz et al. Recycling of Cell Surface Glycoproteins 541 



Figure 2. Separation of biotinylated and nonbiotinylated proteins 
of HepG2 cells on streptavidin agarose. (A) Total cell proteins. 
HepG2 cells were surface labeled with NHS-SS-biotin at 4°C 
(lanes I and 3), or were mock-treated (lanes 2 and 4) as described 
in Material and Methods. Detergent extracts from both biotiny- 
lated and nonbiotinylated cells were subjected to affinity chroma- 
tography on streptavidin agarose as detailed in Material and 
Methods. Protein samples obtained before chromatography 
(lanes I and 2) and proteins eluted with DTT (lanes 3 and 4) were 
separated by SDS-PAGE and were silver stained. (B) TfR and 
DPPIV. HepG2 cells were labeled with L-[35S]methionine (5.5 
MBq/3 × 106 cells, 4 h pulse, 2 h chase) and were either biotiny- 
lated at the cell surface or mock-treated as in A. TfR and DPPIV 
were immunoadsorbed from detergent extracts and were sub- 
jected to streptavidin agarose chromatography. Samples obtained 
before chromatography and after elution with DTI" were sepa- 
rated on 7.5% SDS-polyacrylamide gels and were fluorographed. 
TfR and DPPIV from biotinylated (lanes 2, 4, 6, and 8) and non- 
biotinylated cells (lanes 1, 3, 5, and 7), before (lanes 1, 2, 5, and 
6), and after (lanes 3, 4, 7, and 8) separation on streptavidin aga- 
rose. 

20% of total cellular TfR and 60% of total cellular DPPIV 
could be biotinylated and retrieved from the affinity ma- 
trix (not shown). This was highly reproducible in all the 
experiments. 

To exclude that biotinylation influences the metabolic 

stability of the proteins, half-lives of biotinylated and non- 
biotinylated surface TfR and DPPIV were compared. For 
determination of the half-life of the nonbiotinylated form 
of surface TfR and DPPIV, HepG2 cells were pulse-chase 
labeled with L-[35S]methionine for 4 h and were further 
cultured for up to 32 h. At different times surface proteins 
were isolated in that cells were cooled to 4°C, surface- 
labeled with biotin, and detergent extracted. Biotinylated, 
i.e., surface exposed proteins were then isolated by 
streptavidin agarose chromatography. In comparison, the 
stability of biotinylated surface TfR and DPPIV was mea- 
sured in cells that were surface-labeled with biotin imme- 
diately after the pulse/chase and were thereafter recul- 
tured for different periods of time. For determination of 
half-lives proteins were separated by SDS-PAGE and flu- 
orographed. Half-lives were calculated from the decay of 
the relative intensities of the radiolabeled polypeptide 
bands (Fig. 3). Both, the biotinylated and the nonbiotiny- 
lated form of surface TfR were degraded with the same 
half-life of 7.0 h and 7.2 h, respectively, indicating that bi- 
otinylation did not affect the stability of the glycoprotein. 
Likewise, biotinylation did not affect the stability of DP- 
PIV (not shown) that was degraded with a half-life of 
about 30 h in the biotinylated and nonbiotinylated form. 

Rates of Internalization of TfR and DPPIV 

Rates of internalization of TfR and DPPIV were deter- 
mined using the following experimental design. After met- 
abolic labeling with L-[35S]methionine cells were labeled 
with NHS-SS-biotin at 4°C and were recultured at 37°C to 
allow surface proteins to be internalized. At different 
times of reculture, cells were cooled to 4°C, and biotin res- 
idues remaining on the cell surface were removed by re- 
duction with GSH. GSH treatment of cells at 4°C quantita- 
tively removed biotin residues exposed on the cell surface 
as was assured beforehand and in parallel cultures in each 
experiment. In these control experiments, cells were 
treated with GSH immediately after biotinylation. No or 
only traces of biotin label remained on the cells after GSH 
treatment. Proteins retaining biotin label after GSH treat- 
ment, hence, represent molecules that have been internal- 
ized into intracellular compartments. As shown in Fig. 4, 
50--60% of surface TfR were internalized within 15 min of 
incubation. This percentage slowly increased during fur- 
ther incubation of cells most likely because TfR requiring 
~15 min for one cycle (Klausner et al., 1983) reappears on 
the cell surface where it becomes sensitive to GSH treat- 
ment again. After 60 min of reculture ~80% of surface 
TfR had become GSH-resistant, in accordance with previ- 
ous studies using other experimental approaches (Klaus- 
ner et al., 1983; Rothenberger et al., 1987; Collawn et al., 
1993). DPPIV became GSH resistant to a much lower ex- 
tent. After 4 h of incubation at 37°C, only 15% of cell sur- 
face DPPIV was internalized (Fig. 4). 

Surface TfR and Surface DPPIV Do Not Significantly 
Return to Mannosidase I in the cis-Golgi 

Covalent labeling of surface proteins with NHS-SS-biotin 
in conjunction with the experimental strategy, initially de- 
scribed by Snider and Rogers (1986), Duncan and Korn- 
reid (1988), and Neefjes et al. (1988) was used to study 
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Figure 3. Half-lives of biotinylated and nonbiotinylated surface 
TfR in HepG2 cells. Surface TfR in nonbiotinylated cells (proto- 
col a): HepG2 cells were labeled for 4 h with L-[35S]methionine 
(5.5 MBq/3 × 106 cells) and chased. At the times indicated, cells 
were cooled to 4°C, surface-labeled with NHS-SS-biotin, and de- 
tergent extracted. Surface TfR in biotinylated cells (protocol b): 
Cells were pulse labeled with L-[35S]methionine as in a and 
chased for 2 h. Thereafter, cells were cooled to 4°C, surface la- 
beled with NHS-SS-biotin, rewarmed to 37°C and were further 
cultured for the times indicated. At the different time points, cells 
were detergent extracted. For determination of half-lives TfR 
was immunoadsorbed from detergent extracts and subjected to 
affinity chromatography on streptavidin agarose. Biotinylated 
TfR was eluted with DTT, separated by SDS-PAGE and fluoro- 
graphed (top). Fluorographs were scanned and peak areas were 
plotted semilogarithmically against time (bottom). Half-lives (tlr2) 
were calculated from the slope of the regression line, and correla- 
tion coefficients (r) were calculated. Half-lives are the means of 
three independent experiments. 

transport  of TfR and D P P I V  from the cell surface to cis- 
Golgi cisternae. Using this experimental design it was pos- 
sible to distinguish recycling surface glycoproteins from 
newly synthesized proteins en route to the cell surface. 

Mannosidase I of the cis-Golgi is reversibly inhibited by 
dMM (Bischoff and Kornfeld, 1984; Elbein et al., 1984; Fuhr- 
mann et al., 1984). As a consequence, the N-glycans of 
newly synthesized glycoproteins normally processed to the 
complex type, retain high-mannose structures. These non- 
processed forms of the glycoproteins were labeled meta- 
bolically in pulse-chase experiments. Upon  transport to 
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Figure 4. Kinetics of internal- 
ization of TfR and DPPIV in 
HepG2 cells. Cells were la- 
beled with L-[3SS]methionine 
for 4 h (5.5 MBq/3 × 10 6 

cells) and chased for 1 h. Af- 
ter surface labeling with 
NHS-SS-biotin at 4°C, cells 
were recultured at 37°C for 
the times indicated. Cells 
were then cooled to 4°C, 
treated with GSH as de- 
scribed in Material and 

Methods and detergent extracted. DPPIV and TfR were immu- 
noadsorbed from the detergent extracts. The biotinylated forms 
of the two proteins were isolated by affinity chromatography on 
streptavidin agarose, separated by SDS-PAGE and fluoro- 
graphed. The fluorograms were densitometered, and the percent- 
age of internalization of TfR and DPPIV was calculated as de- 
tailed in Material and Methods. 

the cell surface, these glycoproteins were additionally sur- 
face labeled with NHS-SS-biotin. Thereafter,  inhibition of 
mannosidase I was reversed by washout of  the inhibitor. 
Biotinylated cell surface glycoproteins with high mannose 
oligosaccharides that subsequently return to the cis-Golgi 
complex should be tr immed by mannosidase I and further 
processed to glycoproteins with complex-type glycans. 
Conversion of high-mannose oligosaccharides to complex- 
type structures in glycoproteins labeled with both [35S]me- 
thionine and biotin would, hence, report  recycling of these 
glycoproteins from the cell surface to the cis-Golgi com- 
partment. 

dMM at a concentration of 1 mM inhibited N-glycan 
processing of D P P I V  and TfR. D P P I V  and TfR labeled in 
the presence of dMM (Fig. 5, lane 3) appeared on the cell 
surface with intensities similar to the intensities of  D P P I V  
and TfR labeled in the absence of the inhibitor (lane 1) in- 
dicating that dMM does not inhibit transport of newly syn- 
thesized D P P I V  and TfR to the cell surface, in accordance 
with other reports (Neefjes et al., 1988; Loch et al., 1992). 
Both glycoproteins had a reduced apparent molecular 
mass of 110 and 90 kD, respectively, when labeled in the 
presence of dMM (lanes 3 and 8) compared to a molecular 
mass of  125 and 9 5 k D ,  respectively, observed in the ab- 
sence of the inhibitor (lanes I and 7). Likewise, both gly- 
coproteins were Endo H sensitive when labeled in the 
presence of dMM (lane 4), but were either fully resistant 
to Endo H as for D P P I V  or partly resistant to Endo H as 
for TfR in the absence of dMM (lane 2). 

To test reversibility of the inhibition of mannosidase I 
by dMM, HepG2 cells were incubated with dMM for 6 h, 
followed by washout of the inhibitor and metabolic label- 
ing. TfR and D P P I V  synthesized under  these conditions 
(Fig. 5, lanes 5, 6, and 9) exhibited the same apparent  mo- 
lecular mass and the same Endo  H resistance as those 
from untreated control cells (lanes 1, 2, and 7). 

To find out whether TfR and D P P I V  return from the 
cell surface to cis-Golgi cisternae, both glycoproteins were 
pulse-chase labeled with L-[aSS]methionine in the presence 
of dMM and were biotinylated on the cell surface. Cells 
were then recultured after washout of the inhibitor and 
the biotinylated forms of TfR and D P P I V  were isolated 
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Figure 5. Reversibility of mannosidase I inhibition by dMM. For 
demonstration of the effect of dMM, cells were incubated with 1 
mM dMM for 30 min and were then labeled with L-[35S]methio- 
nine (5.5 MBq/3 x 106cells) for 4 h, followed by a 2 h chase. Pres- 
ence of 1 mM dMM was maintained during the pulse and chase 
period (lanes 3, 4, and 8). Controls were pulse-chase labeled for 
the same times without dMM (lanes 1, 2, and 7). To prove revers- 
ibility of inhibition by dMM, ceils were incubated for 6 h with 1 
mM dMM, followed by washout of the inhibitor (see Material 
and Methods) and metabolic labeling with L-[35S]methionine (4 h 
pulse, 2 h chase, lanes 5, 6, and 9). Cells were then surface-labeled 
with NHS-SS-biotin. Total cellular DPPIV and TfR were immu- 
noadsorbed from detergent extracts (total fraction, lanes 7-9). 
The surface exposed, i.e., biotinylated forms of TfR and DPPIV 
(lanes 1--6) were isolated from the total fraction by affinity chro- 
matography on streptavidin agarose. Proteins eluted from 
streptavidin agarose with DTT were split into two portions, one 
of which was digested with Endo H (lanes 2, 4, and 6), while the 
other was mock-digested (lanes 1, 3, and 5). 

and subjected to gel electrophoresis .  For  comparison,  in 
paral le l  cultures presence of  d M M  was main ta ined  during 
reculture,  whereas  a third por t ion  of the cells was labeled,  
biot inylated and recul tured in the absence of the inhibitor.  
When  compared  to the processed forms of TfR and D P P I V  
synthesized in the absence of the inhibi tor  (Fig. 6, lane 2), 
both  glycoproteins,  even after 12 h of recul ture  in the ab- 
sence of  dMM re ta ined  the reduced molecular  mass (lanes 
I and 4) that  was observed when the presence of  dMM was 
main ta ined  during recul ture  (lane 3). Reprocessed  forms 
of cell surface D P P I V  and of TfR were not  de tec table  
even after ex t reme overexposure  of the gels. This indicates 
that  D P P I V  and TfR do not  significantly recycle from the 
cell surface to the cis-Golgi compar tment .  

Susceptibility of Oligomannosidic Cell Surface DPPIV 
to Golgi Mannosidases 

The result  that  the biot inyla ted ol igomannosidic  glyco- 
form of the two cell surface glycoproteins is not  conver ted  
to the complex type glycoform, indicating exclusion of  
t r anspor t  to the  cis-Golgi, could  also ref lec t  res i s tance  
of  the biot inylated,  ol igomannosidic  surface type of the 
g lycopro te ins  to Golg i  mannos idases .  It was, the re fo re ,  
necessary  to prove that  the b io t inyla ted  ol igomannosidic  
glycoform of surface D P P I V  can be t r immed by Golgi  
mannosidases  in principle.  To this end, this species of  DP- 
PIV was incubated in vitro with isolated Golgi  appara tus  
and was, thereafter ,  analyzed with respect  to t r imming of  

Figure 6. Return of TfR and 
DPPIV to cis-Golgi cister- 
nae. HepG2 cells were prein- 
cubated for 30 min with 1 
mM dMM and were pulse- 
chase labeled (4 h pulse, 2 h 
chase, 5.5 MBq/3 x 106 cells) 
with L-[35S]methionine, all in 
the presence of dMM. There- 
after, cells were biotinylated 
at the cell surface at 4°C, and 
dMM was washed out. After 
rewarming to 37°C cells 
were recultured for further 
12 h either in the presence 

(lane 3) or absence (lanes 1 and 4) of dMM in parallel cultures. 
Control cells were labeled, biotinylated and recultured in the ab- 
sence of dMM (lane 2). TfR and DPPIV were immunoadsorbed 
from detergent extracts of the cells. Biotinylated forms (lanes 2-4) 
were isolated by affinity chromatography on streptavidin agarose, 
separated by SDS-PAGE and fluorographed. Lane 1 represents 
an aliquot of immunoadsorbed TfR and DPPIV before chroma- 
tography on streptavidin agarose. 

its o l igomannosidic  oligosaccharides.  Cells were metabol i -  
cally labe led  with D-[2-3H]mannose in the presence of 
dMM, fol lowed by derivat izat ion of  cell surface prote ins  
with NHS-SS-biot in.  A membrane  fraction containing sur- 
face membranes  was p repa red  from the labe led  cells and 
was then incubated  with isolated Golgi  apparatus.  Biotiny- 
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Figure 7. Susceptibility of oligomannosidic glycans of biotinylated 
cell surface DPPIV to Golgi mannosidases. HepG2 cells were 
preincubated for 30 min with 1 mM dMM and were metabolically 
labeled with D-[2-3H]mannose (16 h, 18 MBq/3 x 106cells) in the 
presence of dMM. After biotinylation of surface proteins mem- 
branes were isolated and incubated with isolated Golgi apparatus 
as detailed in Materials and Methods. A control was treated like- 
wise in the absence of Golgi apparatus. Biotinylated DPPIV was 
isolated from both preparations and glycans were released by 
PNGase F. After removal of residual proteins by chloroform/ 
methanol precipitation and desalting on a BioGel P-2 column gly- 
cans were fractionated by HPAE chromatography using a Carbo- 
Pac PA-100 column (4 x 250 mm) and a linear gradient of 250 
mM sodium acetate in 200 mM NaOH. Fractions (1 ml) were col- 
lected at 1 ml/min and monitored for radioactivity. Glycans ob- 
tained from DPPIV incubated in the absence (A) or presence (B) 
of Golgi apparatus are shown. Arrows in A and B indicate the elu- 
tion times of oligomannosidic oligosaccharide standards with Mans- 
GlcNAc2 (a), Man6GlcNAc2 (b), Man7GlcNAc2 (c), MansGlcNAc2 
(d), and Man9GlcNAc 2 (e). 
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lated DPPIV was isolated from the membranes by immu- 
noaffinity chromatography in conjunction with affinity 
chromatography on streptavidin agarose. Oligosaccha- 
rides were released from DPPIV by PNGase F and ana- 
lyzed by HPAE chromatography. Cell surface DPPIV, 
which was not incubated with Golgi membranes was glyco- 
sylated with Man9GlcNAc2 and MansGlcNAc2 in a ratio of 
2:3 (Fig. 7 A), in line with the inhibitory effect of dMM on 
ER- and Golgi mannosidases (for review see Daniel et al., 
1994). After incubation with Golgi membranes >75% of 
Man8_9GlcNAc2 was trimmed to smaller sized oligosaccha- 
rides (Fig. 7 B). Comparison with authentic oligomanno- 
sidic oligosaccharides used as internal standards showed 
that the smaller sized glycans included Mans.7GIcNAc2 
with MansGIcNAc2 being the main product. With respect 
to the reported properties of a-mannosidases (for review 
see Daniel et al., 1994), generation of the observed pattern 
of trimming products should involve the action of man- 
nosidase I. Hence, biotinylated cell surface DPPIV can be 
trimmed by Golgi mannosidases. In summary, the inability 
to demonstrate return of cell surface DPPIV to the cis- 
Golgi does not reflect in principle resistance of the biotin- 
ylated high mannose type glycoform of DPPIV to Golgi 
mannosidases. 

Surface DPPIV, but Not Surface TfR Returns to Sites 
o f  Fucosyltransferases 

Surface glycoproteins continuously loose fucose residues 
during recycling and, hence, have acceptor sites for new 
fucose residues (Tauber et al., 1983; Kreisel et al., 1988). 
To analyze return of surface glycoproteins to sites of fuco- 
syltransferases, surface proteins of HepG2 cells cultured 

under standard conditions were biotinylated at 4°C fol- 
lowed by reculture of the cells at 37°C in the presence of 
L-[6-3H]fucose (Fig. 8). Incorporation of L-[3H]fucose into 
the biotinylated form of a glycoprotein should report re- 
turn of this glycoprotein from the cell surface to sites of fu- 
cosyltransferases. Since it had to be expected that during 
reculture [3H]fucose was primarily incorporated into 
newly synthesized glycoproteins en route to the cell sur- 
face, it was essential to unambiguously differentiate incor- 
poration of [3H]fucose into preformed surface glycopro- 
teins (recycling to the Golgi apparatus) from that into 
newly synthesized glycoproteins (trafficking through the 
Golgi apparatus en route to the cell surface). In addition 
to labeling surface proteins with biotin as the first criterion 
for differentiation we, therefore, employed the differences 
in the molecular mass of preformed and of newly synthe- 
sized glycoproteins as a second criterion for differentia- 
tion. To accomplish this, reculture of cells with L-[3H]fu - 
cose was performed in the presence of dMM. In the 
presence of dMM, newly synthesized proteins incorporat- 
ing L-[3H]fucose were not processed and, hence, retained a 
reduced apparent molecular mass. For DPPIV, the non- 
processed form showed an apparent molecular mass of 110 
kD, and could be easily distinguished from the preformed 
DPPIV generated in the absence of dMM and, therefore, 
having an apparent molecular mass of 125 kD (Fig. 9 A, 
lanes 1 and 2). In the recycling experiments preformed cell 
surface DPPIV and TfR generated in the absence of dMM, 
and, hence, having the higher molecular mass were bio- 
tinylated and were then monitored for incorporation of 
[3H]fucose. Incorporation of [3H]fucose into this species 
of the two glycoproteins should, therefore, report return of 
surface DPPIV or TfR to the sites of fucosyltransferases, 

Figure 8. Experimental de- 
sign to study return of sur- 
face TfR and DPPIV to sites 
of fucosyltransferases. (1) 
Cell surface glycoproteins of 
HepG2 cells were biotiny- 
lated at 4°C. (2) After warm- 
ing to 37°C cells were recul- 
tured with [3H]fucose in the 
presence of i mM dMM. (3) 
DPPIV and TfR were isolated 
from detergent extracts of 
cells by immunoadsorption. 
(4) The biotinylated surface 
form of DPPIV and TfR were 
isolated by affinity chroma- 
tography on streptavidin aga- 
rose and analyzed by SDS- 
PAGE and fluorography. (a) 
Oligosaccharide processing 
of newly synthesized glyco- 
proteins, (b) surface trans- 
port, (c) inhibition of oli- 
gosaccharide processing of 
newly synthesized glycopro- 
teins by dMM, (d) inter- 
nalization, (e) transfer of 
3H-fucose to surface glyco- 
proteins recycling to the Golgi 
complex. 
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Figure 9. Return of surface gly- 
coproteins to sites of fucosyl- 
transferases. HepG2 cells were 
surface labeled with NHS-SS- 
biotin at 4°C, rewarmed to 37°C 
and recultured in the presence 
of L-[3H]fucose (15 MBq/3 x 10 6 
cells) and 1 mM dMM for 6 or 
12 h. Controls for unspecific 
binding of proteins to streptavi- 
din agarose were treated like- 
wise, but without prior labeling 
with NHS-SS-biotin. (A) TfR 
and DPPIV. TfR and DPPIV 
were immunoadsorbed from de- 
tergent extracts and subjected to 
chromatography on streptavidin 

agarose as detailed in Material and Methods. Lanes 3 and 4: nonbiotinylated DPPIV/TfR not bound to streptavidin agarose; lanes 5 and 
6: biotinylated DPPIV/TfR eluted from streptavidin agarose with D'IT. To monitor the effect of dMM on incorporation of L-[aH]fucose 
into newly synthesized glycoproteins, nonbiotinylated cells were cultured with L-[3H]fucose in the presence (lane 1) or absence of 1 mM 
dMM (lane 2) for 6 h. (B) Total surface glycoproteins. Aliquots of detergent extracts were subjected to chromatography on streptavidin 
agarose. Lanes 1-4: Aliquots of cell homogenates before affinity chromatography on streptavidin agarose. Lanes 5-8: Proteins from bi- 
otin-labeled or mock-treated cells eluted from streptavidin agarose with DTF. Proteins were separated on 7.5% SDS-polyacrylamide 
gels and fluorographed. 

whereas incorporation of [3H]fucose into the nonbiotiny- 
lated form of DPPIV or TfR with the lower molecular 
mass would reflect labeling of newly synthesized glycopro- 
teins en route to the surface. When biotinylated DPPIV 
and TfR were analyzed after reculture of cells for 12 h in 
the presence of L-[3H]fucose, fucose was incorporated into 
the biotinylated 125-kD form of DPPIV, evidencing that 
cell surface DPPIV is recycled to Golgi fucosyltransferases 
(Fig. 9 A, lane 6). In contrast, no incorporation of [3I-I]fu- 
cose into biotinylated TfR was detectable even after 6 mo 
of exposure of the film (Fig. 9 A, lane 6). On the other 
hand, newly synthesized TfR was labeled with [3H]fucose 
to a similar extent as was newly synthesized DPPIV (Fig. 
9, lane 2). This demonstrates that our inability to detect fu- 
cosylation of recycling TfR cannot be explained by a low 
number of fucose residues on the receptor. This conclu- 
sion is further supported by the recent analysis of the 
structure of the N-linked oligosaccharides of TfR from 
HepG2 cells showing that the receptor is clearly fucosy- 
lated (Orberger et al., 1992). It is, therefore, concluded 
that cell surface TfR does not, or does only at insignificant 
amounts recycle to Golgi fucosyltransferases in HepG2 
cells. Additional controls showed that no unspecific bind- 
ing to streptavidin agarose was noted for the proteins from 
nonbiotinylated control cells (Fig. 9 A, lane 5). Moreover, 
as expected, the newly synthesized form of DPPIV gener- 
ated during 12 h of reculture excusively had an apparent 
molecular mass of 110 kD (Fig. 9 A, lanes 3 and 4). 

Incorporation of L-[3H]fucose into surface glycoproteins 
was not restricted to DPPIV. Analysis of the whole set of 
biotinylated proteins after reculture of cells with L - [ 3 H ] f u  - 
cose for 6 h or 12 h, demonstrated that L-[3H]fucose was 
incorporated into several polypeptide bands with an ap- 
parent molecular mass in between 100 and 200 kD in a 
time-dependent manner (Fig. 9 B, lanes 6 and 7). No in- 
corporation was noted into proteins from non-biotinylated 
control cells, excluding unspecific binding of glycoproteins 
to streptavidin agarose (Fig. 9 B, lanes 5 and 8). 

As was assured by carbohydrate constituent analysis of 

the glycoproteins, L-[3H]fucose was not metabolized to 
other radiolabeled monosaccharides during the experi- 
ment (not shown). 

Surface DPPIV, but Not Surface TfR Is Resialylated in 
HepG2 Cells 

In experiments designed to study return of surface TfR 
and DPPIV to trans-elements of the Golgi apparatus and 
to the TGN, proteins of HepG2 cells labeled with L-[35S]me - 
thionine were biotinylated at the cell surface and thereaf- 
ter desialylated with neuraminidase at 4°C to generate bi- 
otinylated asialo-TfR and asialo-DPPIV. The cells were 
then rewarmed to 37°C and were recultured for different 
periods of time. Resialylation of biotinylated asialo-TfR 
and asialo-DPPIV should report return of both glycopro- 
teins from the cell surface to sites of sialyltransferases. 

Beforehand, conditions for desialylation of the two gly- 
coproteins on the surface of HepG2 cells with neuramini- 
dase were established. As shown by IEF surface TfR could 
not be desialylated at 4°C even with high activities of 
neuraminidase (200 mU/3 x 106 cells) (Fig. 10, lanes I and 
2). On the other hand, desialylation of TfR was achieved 
when digestion with neuraminidase was performed with 
intact cells at 37°C (Fig. 10, lane 3) or with detergent ex- 
tracts of the cell homogenate at 4°C (Fig. 10, lanes 4 and 
5). This indicated that at 4°C sialic acids residues of mem- 
brane-bound TfR on the cellular surface are not accessible 
to neuraminidase. Since TfR on HepG2 cells is almost 
completely saturated with Tf (Neefjes et al., 1990), we 
tried to increase accessibility of the TfR glycans for 
neuraminidase by removing receptor-bound Tf according 
to Dautry-Varsat et al. (1983). As shown in Fig. 10 (lanes 6 
and 7), surface TfR could indeed be desialylated at 4°C af- 
ter removal of Tf. Likewise, surface DPPIV was desialy- 
lated by digestion of cells with neuraminidase, as indicated 
by the shift of the polypeptide bands from the acidic to the 
more basic part of the IEF gel (Fig. 11 A, lanes 2 and 3). 

When cells were recultured for increasing periods of 
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Figure 10. Desialylation of surface TfR with neuraminidase. 
HepG2 cells were labeled for 4 h with L-[35S]methionine (5.5 
MBq/3 X 106 cells) followed by a 2-h chase and biotinylation of 
surface proteins at 4°C. Intact cells were then incubated with 
neuraminidase (200 mU/3 x 106 cells) for 2 h at 4°C (lane 2), or 
37°C (lane 3), or were incubated without neuraminidase for 2 h at 
4°C (lane 1). Alternatively, 6 x 106 cells were homogenized. Ho- 
mogenates were split into two portions that were either incubated 
with neuraminidase (50 mU) for 2 h at 4°C (lane 4), or were mock- 
digested (lane 5). Tf was removed from TfR by incubating the 
cells with deferoxamine mesylate as described in Material and 
Methods. Cells were then incubated with neuraminidase (200 
mU/3 x 10  6 cells) for 2 h at 4°C (lane 7) or were mock-digested 
(lane 6). TfR was immunoadsorbed from detergent extracts and 
the biotinylated form of TfR was isolated by affinity chromatog- 
raphy on streptavidin agarose as detailed in Material and Meth- 
ods. Samples were separated by IEF (basic side of the gel at the 
top) and were fluorographed. 

time for up to 20 h after surface biotinylation, analysis of  
biotinylated D P P I V  by IEF  showed that the isoelectric 
point of a small portion of the initially desialylated D P P I V  
was shifted back to the more  acidic part of the gel, there 
comigrating with the sialylated form of the enzyme. This 
resialylated portion increased within the first hour  of re- 
culture and then reached a plateau (Fig. 11, A and B). As 
estimated by densitometry of the fluorographs, the resialy- 
lated form of D P P I V  made up , -6% of total biotinylated 
cell surface DPPIV.  No complete shift of  the asialoform of 
D P P I V  to the fully sialylated form was observed, indicat- 
ing that D P P I V  is only partly resialylated. 

For  TfR no resialylation could be detected. As shown in 
Fig. 11 C digestion of cells with neuraminidase after re- 
moval of Tf caused a shift of the receptor polypeptide 
bands to a more basic isoelectric point. This pattern of the 
asialoform of the receptor did not change during reculture 
for 11 h. Resialylated forms of TfR could not be detected 
even on overexposed gels. The same result was obtained, 
when 125I-asialo-Tf was monitored for resialylation during 
reculture for up to 20 h. Compared to native Tf, asialo-Tf 
exhibited a clear shift in the IEF  gel that did not change 
during reculture (Fig. 12). Hence, both TfR and Tf are not 
resialylated and do not return to the trans-Golgi or the 
T G N  in detectable amounts in HepG2 cells. 

Discussion 

In the present paper the different sites where recycling 
surface glycoproteins may reenter the secretory pathway 
were examined in HepG2 cells. Employing a novel experi- 

Figure 11. Return of surface DPPIV (A and B) and TfR (C) to 
sites of sialyltransferases. HepG2 cells were labeled for 4 h with 
L-[35S]methionine (5.5 MBq/3 x 106 cells), chased for 1 h, and 
were surface labeled with NHS-SS-biotin at 4°C. Cells were then 
treated with deferoxamine mesylate as described in Material and 
Methods, and were incubated for 2 h at 4°C with neuraminidase 
(200 mU/3 x 106 cells). After extensive washing and rewarming 
to 37°C cells were recultured for the times indicated. DPPIV and 
TfR were immunoadsorbed from detergent extracts, and the bi- 
otinylated forms of DPPIV and TfR were obtained by affinity 
chromatography on streptavidin agarose. Samples were sepa- 
rated by IEF (basic side at the top) and fluorographed. (A) DPPIV: 
Lane 1: Nonbiotinylated cells as control for unspecific binding to 
streptavidin agarose. Lanes 3-6 and 9: Biotin-labeled cells treated 
with neuraminidase. Lanes 2, 7, and 8: Biotinylated cells treated 
likewise, but without neuraminidase treatment. (B) Kinetics of 
resialylation of surface DPPIV. The fraction of desialylated and 
of resialylated DPPIV was determined by densitometry of the 
fiuorographs of (A). The fraction of resialylated DPPIV was cal- 
culated as the percentage of total cell surface DPPIV (desialy- 
lated plus resialylated) and was plotted versus time of reculture. 
(C) TfR: Lanes 2-5: Biotin-labeled cells treated with neuramini- 
dase. Lanes 1 and 6: Biotin-labeled cells treated likewise, but 
without digestion with neuraminidase. 

mental approach that combines covalent labeling of sur- 
face proteins with biotin (Busch et al., 1989; Loch et al., 
1993) with modifications generated in the glycan moiety of 
the glycoproteins under study, membrane  glycoproteins 
recycling from the cell surface to the Golgi apparatus and 
the T G N  could be clearly distinguished from newly syn- 
thesized glycoproteins trafficking through these subcellu- 
lar compartments en route to the surface. This allowed us 
to trace trafficking of membrane glycoproteins from the 
cell surface back to the Golgi apparatus and the T G N  un- 
der utmost reliable conditions. Three major results were 
obtained. First, the data demonstrate that cell surface pro- 
teins may return not only to the TGN, but also to the 
trans-Golgi. Second, in contrast no detectable recycling to 
the cis-Golgi was noted indicating that earlier parts of the 
biosynthetic route are not accessible or are accessible at 
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Figure 12. Resialylation of asialo-Tf. Cells (3 x 106) were incu- 
bated in 4 ml DME containing 100 ~M asialofetuin and 650 txM 
2,3-dehydro-2-deoxy-N-acetylneuraminic acid for 30 min. After 
addition of Fe3+-loaded 125I-asialo-Tf (1.5 p,g, 4 kBq/ixg) cells 
were further cultured for up to 20 h. At the times indicated 125I-Tf 
in the culture medium was analyzed by isoelectric focusing as de- 
scribed in Material and Methods. 

insignificant rates to recycling surface proteins. Third, sur- 
face TfR did not return to either one site of the biosyn- 
thetic route in detectable amounts despite its high rate of 
internalization. Accordingly, internalized TfR does not 
routinely enter pathways connecting endocytic to secre- 
tory routes in HepG2 cells pointing to the existence of an 
efficient sorting mechanism presumably in endosomes. 

First, return to the trans-Golgi and to the TGN was ex- 
amined monitoring resialylation of desialylated surface 
glycoproteins. Sialyltransferases transferring sialic acid 
residues to N-linked glycans have been shown to be local- 
ized in the TGN and the trans-Golgi, and are generally 
used as marker enzymes for the trans-Golgi/TGN (for re- 
views see Roth, 1987; Paulson and Colley, 1989; Broquet 
et al., 1991). Hence, resialylation of surface glycoproteins 
reports that these proteins reenter the biosynthetic route 
either at the trans-Golgi or at the TGN. 

Resialylation could be clearly demonstrated for cell sur- 
face DPPIV. Examination of the time course showed that 
resialylation of DPPIV increased during the first hour of 
reculture and then reached a plateau phase. The most 
likely explanation for this plateau is that it represents the 
steady state between resialylation and simultaneous desia- 
lylation of cell surface DPPIV. Desialylation of cell sur- 
face DPPIV occurring during internalization/recycling has 
been shown recently (Kreisel et al., 1988). Using a differ- 
ent experimental approach Duncan and Kornfeld (1988) 
observed that resialylation of the cation-dependent and 
-independent mannose 6-phosphate receptor in CHO 
clone 13 cells reaches a similar plateau, and came to the 
same conclusion. The time-course of resialylation of DP- 
PIV indicates that ~ 6 %  of total cell surface DPPIV are 
routed through the trans-Golgi or the TGN (Fig. 11, A and 
B). Since ~10% of surface DPPIV is internalized during 
this period, roughly estimated half of internalized DPPIV 
molecules may return to the biosynthetic route. It is note- 
worthy that resialylation of DPPIV was incomplete as sug- 
gested by the observation that the resialylated DPPIV 
polypeptides had a slightly more basic isoelectric point 
compared to the native sialylated DPPIV molecules. This 
could be explained by the assumption that the recycling 
asialo-forms of DPPIV encounter only a subset of sialyl- 
transferases in that they preferentially recycle to the TGN, 
and not to the trans-Golgi. On the other hand sialyltrans- 
ferases might act upon the asialoform of a recycling sur- 

face glycoprotein in a different way as compared to newly 
synthesized glycoproteins. Our results demonstrating re- 
sialylation of DPPIV are in accordance with recent results 
obtained for the cation-dependent and -independent man- 
nose 6-phosphate receptor, synaptophysin and the low 
density lipoprotein receptor and for several other surface 
proteins not yet characterized (Duncan and Kornfeld, 
1988; Br~indli and Simons, 1989; Green and Kelly, 1990, 
1992; Huang and Snider, 1993). The results of these studies 
and of the present paper that were obtained in different 
cell lines using different experimental approaches clearly 
show that a restricted set of surface proteins return at least 
to the TGN. 

Since resialylation of surface proteins can not discrimi- 
nate between return to the TGN and the trans-Golgi, re- 
turn to sites of fucosyltransferases was examined. Fucosyl- 
transferases have been localized to the medial and to the 
trans-Golgi (for review see Roth, 1987). Hence, transfer of 
fucose residues to recycling surface glycoproteins reports 
return of these proteins at least to the trans-Golgi. Trans- 
fer of fucose residues to recycling surface glycoproteins 
could indeed be demonstrated for DPPIV, although to a 
low extent, showing that DPPIV does return not only to 
the TGN, but also to the trans-Golgi. Transfer of fucose 
residues could also be shown for a restricted set of surface 
glycoproteins, whereas most surface glycoproteins did not 
acquire fucose residues during recycling. Both, transfer of 
fucose and sialic acid residues by fucosyl- and sialyltrans- 
ferases requires the presence of nucleotide sugar sub- 
strates GDP-fucose and CMP-sialic acid in addition to the 
glycosyltransferases. Intraluminal pools of nucleotide sug- 
ars were found in the Golgi where they are taken up from 
the cytoplasm by specific transport systems (Hirschberg 
and Snider, 1987; Milla et al., 1992). On the cell surface nu- 
cleotide sugars are not present in sufficient concentrations. 
In endosomes as a second potential extra Golgi site for 
reglycosylation, nucleotide sugars and nucleotide sugar 
carriers.have so far not been described. Therefore, reglyco- 
sylation of recycling surface glycoproteins outside the 
Golgi apparatus or the TGN is highly unlikely. 

Surprisingly, no resialylation and no transfer of fucose 
residues could be detected for the TfR during an experi- 
mental period of 11 h, i.e., during a period exceeding the 
half-life of the receptor in HepG2 cells (Figs. 9 A and 11 
C). In addition, no resialylation could be detected for 
asialo-Tf even during 20 h of reculture when blocking AS- 
GPR with asialofetuin (Fig. 12). According to these results 
TfR and the TfR/Tf complex do not return to the TGN at 
significant rates, but directly recycle from endosomes to 
the cell surface in HepG2 cells. Although a minimal de- 
gree of resialylation of TfR and of the TfR/Tf complex 
cannot be excluded within the inherent limitations of the 
methodology used, the fraction of surface TfR that recy- 
cles to resialylation sites would be extremely low, if not 
negligible in view of the high frequency of TfR internaliza- 
tion. It has been reported (Regoeczi et al., 1982, 1984) that 
asialo-Tf can be resialylated when injected into rats. This 
resialylation of asialo-Tf, however, is due to binding of 
asialo-Tf to the ASGPR and does not involve the TfR 
(Regoeczi and Koj, 1985). TfR of HepG2 cells seems to 
share commom features with lysosomal acid phosphatase 
in BHK cells that recycles 15-50 times in between the 
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plasma membrane and endosomes before being routed to 
lysosomes, but does not return to the trans-Golgi/TGN 
(Braun et al., 1989). Both TfR and lysosomal acid phos- 
phatase are internalized via coated pits and coated vesi- 
cles. In addition, several other surface proteins (Br~indli 
and Simons, 1989), including the GPI-anchored 5'-nucle- 
otidase (van den Bosch et al., 1988), and the H2-K antigen 
(Reichner et al., 1988) were shown not to return to the 
TGN. On the other hand, TfR has been shown to be resial- 
ylated in K562 erythroleukemia cells and EL-4 murine 
T-cell lymphoma cells (Snider and Rogers, 1985; Reichner 
et al., 1988) pointing to cell type-related differences. The 
finding that TfR is neither refucosylated nor resialylated 
in HepG2 cells although this glycoprotein routinely enters 
the endosomal compartment during endocytosis/recycling 
further supports the conclusion that reglycosylation of re- 
cycling surface glycoproteins does not take place in endo- 
somes. 

The question arises why some proteins from the cell sur- 
face are recycled to the trans-Golgi and to the TGN, but 
most of them are not. Stoorvogel et al. (1988) developed a 
model in that early endosomes communicate predomi- 
nantly with the plasma membrane, while late endosomes 
interact preferentially with the TGN. They described TfR 
as a protein that exits very early from the endocytic path- 
way in HepG2 cells, being separated from the mannose 
6-phosphate receptor even when both receptors were in- 
ternalized together (Stoorvogel et al., 1989). This model 
was further supported by Dunn et al. (1989) showing that 
low density lipoprotein receptor accumulates in early en- 
dosomes while TfR is permanently extracted from this 
compartment to recycling endosomes. Those receptors 
that are incompletely retrieved in the early endosomes are 
further transported to the late endosomes, from where 
they may be routed to the TGN. Vesicular transport be- 
tween endosomes and the TGN has been shown in vitro 
(Goda and Pfeffer, 1988), and is supported by the observa- 
tion that brefeldin A induces the fusion of these two com- 
partments (Lippincott-Schwartz et al., 1991; Wood et al., 
1991). Moreover, it has been shown that transport be- 
tween late endosomes and the TGN is stimulated by rab9, 
a member of the rab family serving as key regulators of ve- 
sicular transport (Lombardi et al., 1993; for review see 
Rothman and Orci, 1992). On the other hand, rab4 and 
rab5 are localized in early endosomes and in the plasma 
membrane and mediate fusion between endosomes and 
the cell surface membrane (Bucci et al., 1992; van der 
Sluijs et al., 1992). The fact that DPPIV, but not TfR may 
return from the cell surface to the trans-Golgi and the 
TGN in HepG2 cells is likely due to a different sorting ef- 
ficiency of both proteins in early endosomes. Whereas TfR 
is almost completely extracted from early endosomes and 
directly routed to the cell surface, DPPIV at least partly 
reaches late endosomes in HepG2 cells. In K562 erythro- 
leukemia cells and EL-4 murine T-cell lymphoma cells 
where TfR may be resialylated, sorting of TfR in early en- 
dosomes is obviously not as efficient as in HepG2 cells 
(Snider and Rogers, 1985; Reichner et al., 1988), indicating 
that modes of membrane trafficking at least quantitatively 
differ between cell types. Based on the observation that 
cell types specialized for protein secretion exhibit more 
endocytic traffic directed to the TGN than do nonsecre- 

tory cell types, it has been suggested that these differences 
between cells may reflect the variant requirement to trans- 
port secretory vesicle membranes from the cell surface to 
the Golgi apparatus (Green and Kelly, 1990). 

No recycling of surface DPPIV and TfR to the sites of 
mannosidase I could be detected in HepG2 cells over a pe- 
riod of 12 h (Fig. 6). Control experiments clearly showed 
that biotinylated cell surface DPPIV can be trimmed by 
Golgi mannosidases in principle and that, hence, the in- 
ability to demonstrate return to Golgi mannosidases is not 
due to a resistance of cell surface DPPIV to these en- 
zymes. Moreover, it was proven that after inhibition of 
mannosidase I by dMM enzyme activity was fully restored 
after washout of the inhibitor, as has also been demon- 
strated by other groups (Snider and Rogers, 1985; Duncan 
and Kornfeld, 1988; Neefjes et al., 1988), ruling out that 
our negative results reflect a persisting inactivation of this 
enzyme. Since Mannosidase I has been localized to the c/s- 
Golgi in a variety of cell types (for review see Roth, 1987), 
it is concluded that DPPIV and TfR do not significantly 
return to early Golgi compartments. Although repro- 
cessed forms of DPPIV and TfR could not be detected 
even after overexposure of the gels shown in Fig. 6, it can- 
not be excluded that minute fractions of these glycopro- 
teins recycling to the cis-Golgi might escape detection. 
However, with respect of the sensitivity of the method em- 
ployed and having in mind that recycling was monitored 
for as long as 12 h, such a fraction would not represent a 
significant recycling pathway. Very recently, mannosidase 
I has also been detected in middle and even partly in trans- 
Golgi elements of rat kidney cells, pancreatic acinar cells, 
enterocytes, goblet cells and hepatocytes (Velasco et al., 
1993). The results of the present paper demonstrating 
transfer of fucose residues to recycling surface proteins, 
but no reprocessing by mannosidase I, suggest that fuco- 
syltransferases and mannosidase I are not colocalized in 
Golgi elements encountered by surface proteins during re- 
cycling. Our results are in contrast to those of Snider and 
Rogers (1986) obtained by example of TfR in K562 cells 
that surface proteins may routinely return to the cis-Golgi 
and that most of the glycoprotein traffic through the Golgi 
complex is composed of recycling surface proteins. Our re- 
suits are in agreement with that of Neefjes et al. (1988) and 
Duncan and Kornfeld (1988), who could not detect signifi- 
cant transport of TfR and of the cation-dependent and -in- 
dependent mannose 6-phosphate receptor, respectively, 
from the cell surface to the site of mannosidase I. In none 
of these three studies, however, recycling of surface glyco- 
proteins to the cis-Golgi was examined by example of 
membrane glycoproteins that were covalently labeled on 
the cell surface beforehand. Hence, contamination of recy- 
cling surface glycoproteins by newly synthesized glycopro- 
teins could not be excluded unequivocally. In comparison, 
the experimental system used in the present study clearly 
allows to conclude that recycling of surface TfR and DPPIV 
through the cis-Golgi is insignificant. 

As compared to other methods employed in studies on 
recycling pathways such as immunolocalization and sub- 
cellular fractionation, the approach used in this study mea- 
sures oligosaccharide modifications effected on surface 
glycoproteins by oligosaccharide processing enzymes dur- 
ing recycling through the various Golgi compartments. 
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Recycling of those surface glycoproteins that are pro- 
cessed by these enzymes to a low extent might, therefore, 
be underestimated. Within the limits of resolution of this 
experimental system, the results of the present paper com- 
paring return of surface proteins to three different sites of 
the biosynthetic route suggest that the compartments of 
the biosynthetic pathway in HepG2 cells are divided into 
those that are accessible to surface proteins (TGN, trans- 
Golgi) and those that are not accessible at significant rates 
to recycling proteins (medial/cis-Golgi). Return to the 
TGN/trans-Golgi is restricted to distinct surface proteins, 
whereas others directly recycle from early endosomes to 
the cell surface. Most likely, proteins like TfR that do not 
return significantly to the secretory pathway are efficiently 
extracted from early endosomes and recycled back to the 
plasma membrane, whereas proteins like DPPIV that may 
reenter the secretory route are transported to late endo- 
somes, from where they may be routed to the TGN. Ex- 
cept the intracellular recycling of the mannose 6-phos- 
phate receptor from late endosomes to the TGN (for 
review see Kornfeld and Mellman, 1989), the function of 
membrane protein traffic connecting the endocytic to the 
biosynthetic pathway remains to be characterized. It has 
been postulated that recycling via the Golgi apparatus or 
the TGN may serve to remove internalized membrane 
proteins from the lysosomal pathway (Green and Kelly, 
1992). Taking into account that cell surface glycoproteins 
continuously lose terminal sugar residues (Tauber et al., 
1983, 1989; Kreisel et al., 1988), resialylation and refucosy- 
lation during recycling via the trans-Golgi and the TGN 
might also serve as a repair mechanism for truncated oli- 
gosaccharides on surface glycoproteins. Moreover, the 
mechanisms that cause the different intracellular routing 
of recycling TfR and DPPIV are still not clear. Different 
routing during recycling might be regulated by sorting sig- 
nals in the cytoplasmic domain of the proteins. On the 
other hand, the observation that modes of membrane traf- 
ficking may differ considerably between cell types indi- 
cates that the routes of recycling are not only defined by 
specific signals on intrinsic membrane proteins, but are 
also subject to other regulatory mechanisms. 
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