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The G-protein coupled receptor, GPR120, has ubiquitous expression and multifaceted roles in modulating
metabolic and anti-inflammatory processes. Recent implications of its role in cancer progression have
presented GPR120 as an attractive oncogenic drug target. GPR120 gene knockdown in breast cancer stud-
ies revealed a role of GPR120-induced chemoresistance in epirubicin and cisplatin-induced DNA damage
in tumour cells. Higher expression and activation levels of GPR120 is also reported to promote tumour
angiogenesis and cell migration in colorectal cancer. Some agonists targeting GPR120 have been reported,
such as TUG891 and Compound39, but to date development of small-molecule inhibitors of GPR120 is
limited.
Herein, following homology modelling of the receptor a pharmacophore hypothesis was derived from

300 ns all-atomic molecular dynamics (MD) simulations on apo, TUG891-bound and Compound39-
bound GPR120S (short isoform) receptor models embedded in a water solvated lipid bilayer system.
We performed comparative MD analysis on protein–ligand interactions between the two agonist and
apo simulations on the stability of the ‘‘ionic lock” – a Class A GPCRs characteristic of receptor activation
and inactivation. The detailed analysis predicted that ligand interactions with W277 and N313 are critical
to conserve the ‘‘ionic-lock” conformation (R136 of Helix 3) and prevent GPR120S receptor activation. The
results led to generation of a W277 and N313 focused pharmacophore hypothesis and the screening of
the ZINC15 database using ZINCPharmer through the structure-based pharmacophore.
100 ns all-atomic molecular dynamics (MD) simulations were performed on 9 small molecules identi-

fied and Cpd 9, (2-hydroxy-N-{4-[(6-hydroxy-2-methylpyrimidin-4-yl) amino] phenyl} benzamide) was
predicted to be a small-molecule GPR120S antagonist. The conformational results from the collective all-
atomic MD analysis provided structural information for further identification and optimisation of novel
druggable inhibitors of GPR120S using this rational design approach, which could have future potential
for anti-cancer drug development studies.
� 2021 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Bio-
technology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

G protein coupled receptors (GPCRs) are potential drug targets,
with more than 40% of approved drugs modulating the action of
one or more GPCRs [1]. Through their interaction with a wide num-
ber of bioactive molecules, including ions, lipids, amino acids, pep-
tides, proteins, and small organic molecules these receptors play a
crucial role in many physiological processes. These processes
include the transmission of light and of odorant signals, mediation
of neurotransmission and hormonal action, cell growth and the
immune defence [1-3]. Among GPCRs, GPR120, a member of the
rhodopsin sub-family was deorphanized in 2005 [4] as a Free fatty
acid receptor (FFAR), which has strong affinity for long-chain fatty
acids (LCFAs). GPR120 (or free fatty acid 4 receptor, FFAR4) has
recently been explored for its role in cancer cell proliferation and
tumour angiogenesis through the binding of Omega-3 polyunsatu-
rated fatty acids (x-3 PUFAs), mainly docosahexaenoic acid (DHA)
and eicosapentaenoic acid (EPA) [5,6].

In humans, GPR120 is present in two isoforms: a short isoform
at 361 amino acids – (GPR120S) and a long isoform at 377 amino
acids (GPR120L). GPR120L contains an additional 16 amino acids
in the third intracellular loop (ICL3) and is not present in other
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mammalian species [4,7-10]. In humans, GPR120S couples effec-
tively to both Gq/11 and arrestin pathways whereas GPR120L is
an arrestin-biased receptor [7,10,11]. The functional significance
of the two isoforms in humans remains unclear as there is no tissue
reported in which GPR120L is expressed selectively and both iso-
forms have identical endogenous substrate binding sites known
as orthosteric binding pockets [8]. Both the short and long isoforms
of GPR120 share the same endogenous substrates which bind at
the orthosteric pocket and activate the downstream signalling
through second messengers [8,9]. Besides the orthosteric pocket,
GPCRs also contain remote binding sites on the receptor surface
known as allosteric sites. These allosteric sites can indirectly mod-
ulate the receptor signalling by changing the conformation of
orthosteric binding pocket upon ligand binding at allosteric sites
[9]. When GPR120S is activated by x-3 PUFAs (orthosteric endoge-
nous ligands), it couples with Gq/11 and induces mobilisation of
intracellular calcium [12] while activation by LCFAs and PUFAs also
results in b-arrestin2 recruitment [13]. The basal phosphorylation
of GPR120S is two-fold higher than that of GPR120L in the absence
of endogenous ligands [4,14].

GPR120 is a potent lipid mediator in metabolic diseases such
as obesity and type-2 diabetes mellitus (T2DM) [15]. The anti-
inflammatory actions of GPR120 are induced through b-
arrestin2/TAB1 interactions, independent of G protein – Gq/G11-
coupled pathway [15]. Recent studies have developed potent
and selective GPR120 agonists such as GW9508 - a partial agonist
of GPR120 [6], TUG-891 - a selective potent agonist of GPR120
[12] and compound 39 (a benzofuran propanoic acid analogue)
from Merck & Co., Inc [16], but no orthosteric GPR120 antagonists
are available to date (Fig. S1). However, AH7614 (Fig. S1) has
been shown to act as a negative allosteric modulator of
GPR120. [17,18]. GPR120 has also been shown to regulate tumour
growth and migration of various cancer types, including mela-
noma and prostate cancers [5]. GPR120 activation results in a sig-
nalling cascade that releases lysophosphatidic acid species via
activation of cytosolic phospholipase A2 to induce resistance to
cisplatin-induced DNA damage in tumour cells. Such induced-
chemoresistance was limited in GPR120 ‘knockout’ studies [19].
A similar study in breast cancer cells reported high expression
of GPR120 in breast cancer cells upregulated the ABC transporters
expressions which induce resistance to epirubicin-induced cell
death. [20] In contrast, GPR120 knockdown in breast cancer cells
reduced the epirubicin resistance induced by GPR120 agonist
treatment.[20]

The Human Protein Atlas (HPA) analysed RNA-seq data from 64
human cell lines and 37 human tissues samples to estimate protein
expression of GPR120 [20], with the highest TPM (transcripts per
million) of GPR120 being in rectum and colon tissues [5,6,21].
Wu and co-workers screened a panel of malignant and non-
malignant human colorectal cell lines and reported higher expres-
sion of GPR120 in all studied colorectal cancer (CRC) cell lines com-
pared to non-CRC cell lines [6]. GW9508 tested in CRC cell lines
demonstrated activation of PI3K/Akt and nuclear factor kB [6].
GW9508 has been reported to be mitogenic for CRC cells [5,6],
but not for prostate cancer cells [22]. Another report by Liu et al
[22] showed that the GPR120 agonist EPA activates ribosomal pro-
tein S6 kinase b-1 (p70S6K1) in the CRC CaCo2 cell line. GW9508
(at 10 mM dose) stimulates migration of CRC cells whereas TUG-
891 (a GPR120 selective agonist) inhibits migration of prostate
cancer cells [6,22]. These studies suggested that GPR120 activation
(rather than antagonism as suggested by Wu et al 2013 [6]) might
be effective in anticancer therapy. These two results (on CRC cells
and prostate cancer cells) stand in contrast and highlight the
importance of exploring the mechanisms underlying the opposing
effects of GPR120 agonists on proliferation in different types of
cancer cells.
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The expansive expression pattern and diverse physiological
roles of GPR120 has made it a potential target of multiple thera-
peutic interventions. For effective structure-based drug design bet-
ter understanding of the role of residues in the orthosteric binding
pocket of the receptor and of agonist-induced subtle conforma-
tional changes from ligand-protein interactions is needed. In the
absence of an X-ray crystal structure of human GPR120, a 3D
homology model of human GPR120S [23] was used to perform
structure-based pharmacophore screening (SBPS) through ZINC-
Pharmer with the ZINC database [24] as summarised in Fig. 1.
All-atomistic molecular dynamics (MD) simulations of 100 ns were
performed on the GPR120S receptor models with SBPS selected
hits docked at the orthosteric pocket. The MD studies explored
the protein–ligand binding modes and their effect on receptor acti-
vation to design potential GPR120 antagonists.
2. Materials and methods

The Irish Centre for High-End Computing (ICHEC) Kay HPC clus-
ter of 336 nodes (13,440 cores) 2.4 GHz Intel Xeon Gold 6148 (Sky-
lake) processors (www.ichec.ie) was used to perform molecular
docking and MD simulations. ICHEC provided 60,000 CPU core
units for computational processing and 1000 gigabits (GB) of data
storage space. The visual analysis and homology model building
were carried out on an in-house 8 node (Intel� CoreTM i7-4790
CPU @ 3.60 GHz � 8) Linux cluster. For visualization and image
rendering PyMol Open-source version 2.1.0 [25] and Biovia DS Cli-
ent visualizer 2019 [26] were used.

2.1. Molecular docking

GPR120S homology model previously generated using template
combination of Orexin OX2 receptor (PDB: 4S0V) and Opioid delta-
like receptor (4N6H) (see supplementary appendix A) was used for
docking the reference ligands. The generated homology model of
GPR120S has previously been used to screen chemical libraries of
small molecules in combination of with in vitro screening and
structure-active relationship profiling [23]. The successful identifi-
cation of GPR120-targeting small molecules using the generated
GPR120S validated the use of GPR120S homology model in the pre-
sent computer-aided drug discovery.

TUG-891 [12] and compound 39 [16] were used as reference
molecules for predicting binding poses of ligands in the orthosteric
pocket by molecular docking. Discovery Studio Pipeline Pilot ver-
sion 9.1 [26] was used to generate 3D conformations of TUG-891
and compound 39 [12,16] with stereoisomers and tautomers,
which were then energy minimized in the Avogadro suite with
the MMFX96 force field [27]. The energy minimised homology
model of GPR120S and ligands were pre-processed in AutoDock4
tools (www.autodock.scripps.edu) [28] to assign torsion angles
and add polar hydrogens and charge. AutoDock SMINA [29] was
used for rigid-flexible docking. AutoDock4 tools’ Grid setting fea-
ture was employed to define the binding site grid box, based on
the site-specific mutation study of the orthosteric binding pocket
residues by Hudson et al 2014 [30] to include residues – R99
(TM2), W104 (ECL1), F115 (TM3), W207, F211 (TM5), W277
(TM6) and F304 (TM7), essential for ligand binding. The grid size
dimensions used were 40 � 60 � 60 units with spacing of
0.375 Å per unit, and the centre point of the binding pocket set
at the xyz coordinates of: x = 61.822, y = 59.75, z = 46.597.

2.2. Protein embedding in lipid bilayer and solvation

The coordinate files of a hydrated, equilibrated 128 molecule
POPC lipid bilayer (1-palmitoyl-2oleoyl-sn-



Fig. 1. General schematic of the methodology applied.
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glycerophosphocholine) along with lipid parameters for the GRO-
MOS 54a7 force field were obtained from the Automated Topology
Force Field Builder (ATB) repository [31].

The coordinate file was then resized using Inflategro2 [32] com-
patible with GROMACS 5.1 [33] to produce a fully hydrated, 512
molecule lipid bilayer. InflateGro2 incorporated LAMBADA [32] to
determine the protein’s longitudinal configuration using a recur-
sive optimization to test different protein orientations thus align-
ing the membrane and protein. The membrane protein was then
automatically embedded into the lipid bilayer patches and clashing
lipids removed. The model was stretched in the plane of the lipid
bilayer and energy minimized again on contraction allowing opti-
mization of the lipid/protein interface. The entire lipid bilayer was
inflated and then slowly compressed around the protein. Each
compression step was followed by a round of steepest descent
energy minimization to relax the lipid molecules, keeping the pro-
tein restrained. The entire system was then solvated with a single-
point charge (SPC) water model and neutralized with addition of
counter-ions.

2.3. Molecular dynamics simulations of GPR120S-ligand complexes in
a phospholipid membrane

MD simulations were performed using the GROMACS version
5.1 package with the GROMOS ffG54a7 force field, extended to
improve the lipid components of the force field. The topology
and other force field parameters for all ligands were obtained from
the ATB repository server [31] and were examined manually for
any discrepancies with charges. The final lipid bilayer generated
consisted of a pre-equilibrated layer of 512 molecules of POPC
molecules.

The systems were then energy minimized for 10,000 steps using
the steepest descent algorithm in the GROMACS package. A 500 ps
position-restraining simulation was carried out to restrain the pro-
tein by 1,000 kJ mol-1 harmonic restraints to relieve the close con-
tacts with POPC and water under NVT (constant Number of
particles, Volume, and Temperature) ensemble conditions, with a
Vrescale (modified Berendsen) temperature coupler [33]. This
was followed by another 5 ns equilibration run under NPT (con-
stant Number of particles, Pressure, and Temperature) ensemble
conditions, before a final production run. The MD systems were
run at 310 K, i.e., above the phase transition temperature of pure
POPC, to ensure that the lipids maintained their proper density,
and 1 bar pressure under isothermal-isobaric ensemble [32,34].
Nosé-Hoover (which is used widely for membrane NPT simulations
[32]) temperature and Parrinello-Rahman pressure couplers were
used to maintain the temperature and pressure values with the
protein, ligands, lipids and water (plus ions) molecules coupled
separately with a coupling constant of st = 0.1 ps. Semi-isotropic
pressure coupling was set with sp = 2 ps, allowing the bilayer to
deform in the x–y plane independently of the z-axis. A time-step
of 2 fs was used throughout, with periodic boundary conditions.
LINCS constraint algorithm was used to maintain the geometry of
the molecules [35]. Long-range electrostatic interactions were cal-
culated using the particle-mesh Ewald (PME) method. Van der
Waal’s interactions and Coulomb interactions were cut off at
12 Å with updates every five steps. Checkpoint files on production
runs were saved every 50 ps.

The trajectory analysis of protein systems was performed by in-
built GROMACS tools and visualized in PyMol [25] and XMGRACE
(http://plasma-gate.weizmann.ac.il/Grace/). The overall stability
of the simulated systems was also checked with respect to temper-
ature, pressure, and potential energy of the systems to check ther-
modynamic equilibrium during the production simulation runs,
confirming the convergence of individual trajectories. The WAD-
DAICA webserver was used to compute the protein–ligand binding
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free energies of protein–ligand snapshots extracted from the MD
trajectory every 5 ns using the Binding Affinity by AI module of
WADDAICA [36]. The protein–ligand interaction plots from the
MD trajectory were generated using Molecular-dynamics-Interac
tion-plot (available at https://github.com/tavolivos/Molecular-
dynamics-Interaction-plot). Multiple linear regression (MLR) was
used to correlate the physicochemical descriptors (obtained from
SwissADME [37]) with the binding affinity predictions from WAD-
DAICA [36]. The ChemMine tools webserver was used to develop a
structural similarity clustering scatterplot [38]. ChemMine cluster-
ing tool converts the Tanimoto similarity matrix into distance
matrix to cluster the molecules.
2.4. Structure-based pharmacophore screening

A six-feature pharmacophore model was generated by manual
curation of docked reference structures (TUG-891 and compound
39) using the ZINCPharmer web interface [24,39], which was then
screened against the ZINC15 database containing � 230 million
purchasable lead-like 3D molecules [24]. The physicochemical
and drug-likeness profiling of the screened hits was performed
using the online webserver SwissADME [37]. The pharmacophore
screening results from ZINCPharmer were downloaded as structure
data files (sdf format). The 3D molecules were then prepared and
docked against the GPR120S receptor model following the set pro-
tocol described in section 2.1. The selected compounds were pre-
pared for 100 ns MD simulations following the protocol
described in section 2.2 and 2.3 (see Fig. 1)
3. Results and discussion

3.1. Molecular docking of known GPR120S ligands

In silico investigation of receptor activation commenced with
docking of a known agonist to the receptor model in the inactive
state (homology model). Previous molecular docking and site-
specific mutations studies of GPR120S have revealed that a single
arginine residue in TM2 (R99) has a critical interaction between
the receptor and the –COOH (carboxylate) of its ligands [7,30].
Six other residues from the orthosteric binding pocket were
defined essential for TUG-891 binding and interaction with
GPR120S were: W104 (ECL1), F115 (TM3), W207, F211 (TM5),
W277 (TM6) and F304 (TM7) following site-specific mutation
studies performed by Hudson et al [30] (Fig. 2a, b). These seven
residues were selected as the main criterion for defining the
orthosteric binding pocket as well as protein–ligand interactions
for binding pose prediction of GPR120S agonists. Over the years,
some GPR120 agonists have been developed but to date no orthos-
teric antagonist of GPR120 is available. For chemical scaffold diver-
sification, besides TUG-891 (EC50 43 nM) [12,13,30], another
known agonist Compound39 – benzofuran propanoic acid ana-
logue (EC50 97 nM) [16] was used in the molecular docking exper-
iment (Fig. 2c, 2d).

The best docked pose for TUG-891 yielded a binding score
�9.87591 kCal/mol (free energy of binding calculated by AutoDock
SMINA). The carboxylate of TUG-891 forms a salt bridge with R99
and a strong T-type (perpendicular) pi-stacking interaction
between F115 and the cyclic aromatic core structure of TUG-891
stabilize the ligand into the pocket formed between TM3, TM6
and TM7. Other equitable hydrophobic interactions were also
observed to stabilize the docked TUG-891 in the orthosteric bind-
ing pocket (Table S1). A molecular docking study conducted by
Hudson [12,13,30] used the HM of human GPR120S (based on
beta-2 adrenoreceptor template; PDB id: 3P0G) to dock TUG-891.
An extensive overlap is observed between the binding pocket resi-
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Fig. 2. (a) Graphical representation of GPR120S energy minimized 3D model embedded in lipid bilayer; (b) Selected seven residues (shown as sticks in orange) in the
orthosteric pocket of GPR120S essential for ligand binding. 2D interaction map of TUG-891 (c) and Compound 39 (d). The 3D images were visualized and rendered in PyMol
v2.1.0 [25]. The 2D interaction maps were generated in BIOVIA DS Client visualizer 2019 [26]. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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dues interacting with the agonist in both studies. Similarly, the
best docked pose of Compound39 (binding score �9.82688 kCal/-
mol) also showed favorable hydrophobic interactions and dis-
played hydrogen bonds with (R99, W277) two out of the seven
specific residues as well as hydrogen bonds (T125, N313) with
other residues in the orthosteric binding pocket (Table S2).

The results from literature and the present methodologies pro-
vide valuable information concerning the optimal GPR120S model
generation. To design new GPR120S selective ligands whether ago-
nists or antagonists, optimal interactions with the non-conserved
residues involved in the binding pocket need to be considered.
These residues are specific to GPR120S and share proximity to
the bound ligands.

3.2. MD simulations of GPR120S-ligand complexes

GPCR activation is initiated by binding of an agonist into the
orthosteric binding pocket causing reorganization of interhelical
interactions. These structural changes propagate towards the
intracellular domain via activation switches as they relay the
changes from the inactive to the active state [40]. Here the confor-
mational investigation began with an energy minimized and pres-
sure–volume equilibrated systems of human GPR120S (inactive
state) embedded in POPC lipid bilayer and solvated SPC water
molecules (Fig. 2a). The 300 ns MD simulations of three different
systems - an apo system and two agonist-bound systems, TUG-
891 and Compound39 were performed to gain further insights on
the topology of the binding site and agonist orientations over a
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time period. The protein backbone of starting structures in all the
three systems reached stability with no significant changes in
RMSD values after 200 ns timestamp (Figure S2 a). The cysteine
bridge between TM2 and ECL2 is highly conserved in most of the
Class A GPCRs and is used as an anchor point in modelling the indi-
vidual backbone of hydrophilic loops as well as forming a ligand
trap [34,40]. The continuous disulfide linkage between the two
cysteine residues of GPR120S model (C111 and C194) in TM2 and
ECL2 was observed throughout the 300 ns MD production run of
all three protein systems (Figure S2 b) supporting the structural
stability of the generated GPR120S model.

The RMSF (Root Mean Square Fluctuation) analysis of the pro-
tein backbone (Fig. 3) illustrates stable helix domains and high rate
of fluctuations in the loop regions only, especially the ECL2 (177–
204) and ICL3 (236–252) domains of the ligand-bound protein
models compared to the apo protein system. The Compound39-
bound system recorded a marked RMSF difference in the ICL1
(65–71) domain compared to TUG-891-bound system suggesting
that both the agonists might be inducing conformational changes
by two different mechanisms. The low range of fluctuations in
the apo protein system suggest that the generated protein model
was in a stable inactive state and remained in the inactive state
as it might be in global minima due to absence of ligand induced
conformational changes during MD simulation run.

The comparative analysis of the putatively active state models
(agonist-bound) with the inactive (apo-model) state recorded con-
formational changes in the residues involved in the ionic lock -
R136 of TM3 and D259 of TM6 over the MD production run of



Fig. 3. RMSF (Å) of protein residues recorded during 300 ns MD simulation run of GPR120S in bound (Compound 39 or TUG-891) and unbound forms (apo protein). The
intracellular loop (ICL) and extracellular loop (ECL) regions are highlighted as shaded regions. The transmembrane regions in the 3D structures are - TM1: residues 36–65;
TM2: 73–101; TM3: 107–141; TM4: 152–175; TM5: 204–233; TM6: 252–289; TM7: 296–324.
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300 ns. The inactive state model retained the closed conformation
of ionic lock as both the residues stayed within the range of 2–4 Å –
an appropriate distance to form and sustain the hydrogen bond or
the salt-bridge, making the inactive state of the model stable. As
expected, the active state model of TUG-891-bound human
GPR120S recorded the two residues drifting apart over the MD tra-
jectory of 300 ns with the ionic-lock broken within the first 10 ns
of MD simulation. At the end of the production run the two resi-
dues were � 9–10 Å apart disrupting the salt-bridge. (Fig. 4a).
The Compound39-bound protein model demonstrated unexpected
behaviour of staying closer to the inactive conformation. The aver-
age distance between the two residues (R136 and D259)
remained � 4 Å throughout the production run (Fig. 4b). Although
the residues were not close enough for salt-bridge formation but
with the residues being this close, the intracellular cavity of the
receptor might not be able to accommodate the heteromeric G
protein.
Fig. 4. a) Graphical picture of ionic lock closed at simulation time T0 and open conforma
TUG-891 bound protein model; b) Distance between centre of mass of R136(TM3) and D
ligands at the structural conformation of ionic lock residues; c) Distance between centre o
Running average of distance every 1 ns is shown for clarity.
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Two possible inferences can be proposed from the Com-
pound39-bound protein simulation: 1) The protein model might
be in a local minimum of the energy landscape at that specific con-
formation [41]; 2) The interaction network pattern of Compound39
carboxylate tail with T125, W277 and N313 (Fig. 4d, 5a), not
observed in TUG-891 docking interactions, led the MD trajectory
to different conformational changes at the intracellular domain
especially at TM3 – ER136M motif (D/ERY) involved in the ‘‘ionic
lock” formation.

A 300 ns MD re-run from the same starting conformation of
Compound39-bound protein system with random initial velocities
verified that the variance was reproducible. The comparative anal-
ysis of distance between the residues (R136 and D259 – involved in
formation of ‘‘ionic lock”) from the 300 ns MD rerun reported an
increase (average � 5 Å) with a higher range of fluctuations com-
pared to the first 300 ns MD run (average � 3 Å) but were signifi-
cantly less than those of the TUG-891-bound system
tion at Tavg; representing the average conformation from the 300 ns MD run of the
259(TM6) recorded during 300 ns MD production run predicting the effect of bound
f mass of R136(TM3) and D259(TM6) recorded during 300 ns MD production re-run.
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(average � 9 Å). The average distance was recorded to be greater
than 4 Å limiting the hydrogen bond interactions for the salt bridge
/ ‘‘ionic lock” formation (Fig. 4c).

A recently published study investigated protein–ligand stability
from a 200 ns MD simulation of SR13 (a chromane propionic acid
analogue – derived from the same Merck & Co. patented series as
Compound39) docked to homology model of GPR120S receptor
(Uniprot ID: Q5NUL3-2) [42,43]. This study highlighted the confor-
mational changes the SR13 ligand adopts to enter the binding
pocket [42]. However, to the best of our knowledge, these are the
first simulations of GPR120S complexed with ligands (TUG-891
and Compound39) at a 300 ns timescale.

As the human GPR120S receptor can bind to the flexible FFAs
(PUFAs) as well as a diverse set of rigid compounds such as TUG-
891 suggested the existence of different binding conformations
in the orthosteric binding pocket of the receptor leading to a cas-
cade effect inducing protein activation. The difference in binding
pattern of TUG-891 and Compound39 highlighted important resi-
dues (T125, W277 and N313) in the orthosteric binding pocket.
Residues T125 and N313 were not analyzed in the previous site-
specific mutagenic study while the W277A mutation resulted in
loss of receptor activity [30]. The hydrogen bonding analysis of
Compound39-bound protein simulations showed an average
of � 60% H-bond occupancy between Compound39 and the
W277 sidechain during the 300 ns production run accompanied
with� 35% and� 10% occupancy for the N313 and T125 sidechains
respectively. The interaction network of W277 and / or N313 with
Compound39 might be affecting the conformational changes as
observed in TUG-891-bound protein simulations.

3.3. W277 and N313-based pharmacophore screening

Based on the inferred significance of the W277 and N313 inter-
action network with the carboxylate chain of Compound39, a sin-
gle structure-based pharmacophore model was generated by
enumerating the 3D conformation of functional features present
in the receptor binding pocket. The docked conformations of
TUG-891 and Compound39 were superimposed to generate the
pharmacophore model using the ZINCPharmer package [39] which
resulted in a six-featured hypothesis consisting of two HBA
(Hydrogen bond acceptor), two Ar (Aromatic ring systems) and
Fig. 5. a) Superimposed docked poses of TUG-891 (Cyan stick model) and Compound39 (
Developed pharmacophore model with its corresponding chemical features used for scree
figure legend, the reader is referred to the web version of this article.)
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two Hb (hydrophobic) with preferred chemical features (Fig. 5;
Table S3. The selected hypothesis was generated to focus screening
on ligands interacting with the W277 and N313 (Fig. 5b) residues
with scaffold features of TUG-891 and Compound39 being added
to attain rigidity and better anchorage in the binding pocket by
interacting with essential binding residues [13,30] such as R99,
W104, F115, W207, F211 and F304.

The pharmacophore-based virtual screening (VS) resulted in 63
unique chemical hits identified from the ZINC15 commercial data-
base. Further, selection of these 63 compounds was performed by
analysis of physicochemical descriptors computed using Swis-
sADME [37] to predict the druglike and / or lead-like nature of
the compounds. In combination with analysis of predicted physic-
ochemical descriptors, an in cerebro assessment was applied to
select compounds with diverse and synthesizable scaffolds. Such
a well-informed manual selection of ligands after virtual screen-
ings have previously been reported to refine the screening perfor-
mance [44,45].

The final screening resulted in 9 best-hits (shown in Table 1)
based on the SwissADME predictions over compounds’ physico-
chemical properties, lipophilicity, bioavailability, and drug-
likeness (see supplementary material). These hit compounds were
then prepared and docked into the receptor binding pocket follow-
ing the set protocol (section 2.1) to prepare protein–ligand com-
plexes. The protein–ligand interactions of these 9 compounds
were analyzed (Fig. 6a) to confirm W277 / N313 H-bond interac-
tion(s) before preparing the protein–ligand complexes for 100 ns
MD production runs following the set protocol (section 2.2 and
2.3).

3.3.1. MD simulations study of N313-interacting compounds.
Comparative MD simulations for the 100 ns duration of each of

the co-complexes of the 9 hit compounds from ZINC database,
TUG-891, Compound39 and Apo-model were carried out to evalu-
ate the significance of the N313 interaction in terms of conforma-
tional changes to the protein. A MD time scale of 100 ns was
chosen based on observations from other studies where100ns
MD simulations were shown to be sufficient to illustrate the
dynamics of protein–ligand fingerprinting and induced conforma-
tional changes in GPCR molecular studies [42,47,48]. The pro-
tein–ligand binding affinity of the selected 9 compounds over the
Green stick model) with GPR120S. TM5 is hidden in the image for a clearer view; b)
ning the ZINC database [25,39]. (For interpretation of the references to colour in this



Table 1
Assigned nomenclature and docked binding scores (kCal/mol) of the selected pharmacophore-based VS hits based on the SwissADME drug-
likeness profiling. Log Po/w – oil/water partition co-efficient; Leadlikeness – 250 � MW � 350; XLOGP � 3.5; Num. rotatable bonds � 7 [37].
The full SwissADME parameters are provided in the supplementary material for Cpds 1–9

N

O

HO

O

O

N

OH

 
Cpd1 (MW: 357.38 g/mol) 
Docking Score: -10.9                

Num. rotatable bonds: 7 

Num. H-bond acceptors: 6 

Num. H-bond donors: 1 

Log Po/w (iLOGP): 2.57 

Leadlikeness: No; MW>350 

N

O

O

N

OH

O

 
Cpd 2 (MW:358.43 g/mol) 
Docking Score: -10.8 

Num. rotatable bonds: 7 

Num. H-bond acceptors: 5 

Num. H-bond donors: 1 

Log Po/w (iLOGP): 3.06 

Leadlikeness: No; MW>350 

N
OH

O
N

N

N
O

HO

 
Cpd 3 (MW:354.36 g/mol) 
Docking Score: -9.8 

Num. rotatable bonds: 4 

Num. H-bond acceptors: 7 

Num. H-bond donors: 2 

Log Po/w (iLOGP): 2.16 

Leadlikeness: No; MW>350 

N

N

O
N
HN

HO

 
Cpd 4 (MW:344.376 g/mol) 
Docking Score: -9.5 

Num. rotatable bonds: 5 

Num. H-bond acceptors: 4 

Num. H-bond donors: 2 

Log Po/w (iLOGP): 2.63 

Leadlikeness: Yes 

HO O

NH

O

N

N

HO

 
Cpd 5 (MW:377.39 g/mol) 
Docking Score: -9.3 

Num. rotatable bonds: 7 

Num. H-bond acceptors: 6 

Num. H-bond donors: 3 

Log Po/w (iLOGP): 2.86 

Leadlikeness: No; MW>350 

N

OH

HO
O

NH

N

N OHO

  
 
 
Cpd 6 (MW:380.35 g/mol) 
Docking Score: -9.0 

Num. rotatable bonds: 6 

Num. H-bond acceptors: 8 

Num. H-bond donors: 4 

Log Po/w (iLOGP): 1.65 

Leadlikeness: No; MW>350 

N

N NH

O

O

N

OH

Cpd 7 (MW:364.35 g/mol) 
Docking Score: -9.0 

Num. rotatable bonds: 6 

Num. H-bond acceptors: 7 

Num. H-bond donors: 3 

Log Po/w (iLOGP): 2.36 

ON

O

N

N

OH

O

OH

 
Cpd 8 (MW:373.4 g/mol) 
Docking Score: -8.7 

Num. rotatable bonds: 6 

Num. H-bond acceptors: 7 

Num. H-bond donors: 2 

Log Po/w (iLOGP): 3.26 

N
H

O
HN

N

NHO

OH

 
Cpd 9 (MW:336.34 g/mol) 
Docking Score: -8.7 

Num. rotatable bonds: 5 

Num. H-bond acceptors:5 

Num. H-bond donors: 4 

Log Po/w (iLOGP): 2.63 

Leadlikeness: No; MW>350 Leadlikeness: No; MW>350 Leadlikeness: Yes 
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Fig. 6. a) Protein-ligand interaction fingerprint map of the 9 docked compounds with GPR120S; Green – (HB) Hydrogen bond; Yellow – (HP) Hydrophobic interactions; Grey –
No interactions; b) Heatmap of protein–ligand binding affinities of snapshots extracted from the 100 ns MD simulation trajectory and scored by webserver WADDAICA [36];
c) Protein-ligand interaction fingerprint map [46] plotting the number of interactions of the residue with the ligands, shows compounds 1, 7 and 9 with conserved W277 and
N313 H-bond interactions over the period of 100 ns MD production runs. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. 6 (continued)
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Fig. 6 (continued)
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duration of 100 ns MD simulations predicts the strength of the
binding interaction between the receptor and the compounds
(Fig. 6b). Cpd 2 and Cpd 8 were predicted to show a continuous
decreasing gradient in the binding affinity while Cpd 9 was pre-
dicted to show a continuous increase in the binding affinity over
time during the MD simulation. Other compounds did not show
a consistent pattern of decreasing or increasing binding affinity
predictions (Fig. 6b). The binding affinity predictions from the
100 ns MD studies gave insights to the binding stability of docked
hits and non-covalent interactions with residues in the binding
pocket. Amongst all the compounds, Cpd 1, 7 and 9 were predicted
to conserve W277 and N313 H-bond interactions during the 100 ns
MD simulations (Fig. 6c). As the binding affinities predicted for this
study used only the protein–ligand complex (without solvent)
snapshots extracted from the MD simulations, it should be cau-
tioned that solvent (water) molecules also play a key role in non-
covalent interactions – forming bridge interactions between ligand
and protein [49].

Most of the interactions with Cpd9 (electrostatic or hydropho-
bic) were observed to be continuous during the simulation. Simi-
larly, the protein–ligand binding affinity prediction over the
100 ns MD simulation suggested a stable binding of Cpd9 in the
orthosteric binding pocket of GPR120S (Fig. 6b). In contrast, Cpd
2 showed the lowest binding affinity in the binding pocket com-
pared to the other ligands and Cpd 2 was the only ligand which
did not form hydrophobic and /or H-bond interactions with R99
as well as N313 (Fig. 6a and 6b) at the starting conformation. Inter-
estingly, Cpd 7, which had a N313 H-bond interaction (Fig. 6a) at
the initial (0 ns) conformation was predicted to have a high bind-
ing affinity of �10.8 kCal/mol. However, the binding affinity of Cpd
7 reduced to �10.25 kCal/mol over the MD simulation as the num-
ber of N313 H-bond interactions of Cpd 7 reduced (Fig. 6c). The
binding affinity predictions (Fig. 6b) of Cpd 7 at 25 ns and 45–
6059
55 ns timeframes reported strong binding affinities (-11.48 kCal/-
mol and �10.85 to �10.91 kCal/mol respectively) compared to
the rest of the MD production run. The protein–ligand interaction
fingerprinting of the 100 ns MD production run showed that re-
formation of H-bonds between Cpd7 and N313 was accompanied
by several hydrophobic interactions with other residues in the
binding pocket such as F88, F115, W207, I280, I284 and F303. Sim-
ilar interactions patterns were observed in other ligands (Cpd 1, 4,
5) where an improvement in binding affinities was predicted due
to reformation of the N313 H-bond with ligands along with
increased hydrophobic interactions. While in-depth analysis of
extended MD simulations would further help to understand these
changes the present correlative binding affinity predictions and
N313 interactions could infer the key role of N313 residue in the
ligand binding stability.

As GPR120S was modelled from templates in the inactive form,
the binding of ligands with antagonistic activity should keep the
receptor in inactive state without causing major conformational
changes at the intracellular domain of the receptor. The protein’s
structural stability evaluation by RMSF analysis of 100 ns trajec-
tory showed (Fig. 7a) that Cpd 9 and Cpd 1 stabilized the protein
backbone as well as reducing the fluctuations of ECL2 (177–203)
and ICL3 (236–252) regions observed in Apo, TUG-891 and Com-
pound39 bound protein systems while Cpd 7 bound protein sys-
tem has recorded the highest range of fluctuations (�12 Å) in the
ICL3 region. Binding of other ligand molecules have an overall sim-
ilar effect on the protein backbone fluctuations, but higher than
that of Cpd 9.

Focusing on the ligands themselves Cpd 9 and Cpd 7 they were
also found to be the most stable in the GPR120S orthosteric bind-
ing pocket with RMSD values below � 1.5 Å and 2 Å respectively
throughout the 100 ns MD trajectory (Fig. 7b, S3-S7). Such low
ligand RMSD values suggest that these two ligands are tightly



Fig. 7. Comparative MD simulation analysis of best hits, compound 1, 7 and 9 with respect to Apo, TUG-891 and Compound39 bound proteins over 100 ns timescale; a) RMSF
plot of the protein backbone. The intracellular loop (ICL) and extracellular loop (ECL) regions are highlighted as shaded regions. The transmembrane regions in the 3D
structure are - TM1: 36–65; TM2: 73–101; TM3: 107–141; TM4: 152–175; TM5: 204–233; TM6: 252–289; TM7: 296–324; b) RMSD plot of the ligand atoms; c) Distance plot
between the center of mass of residues R136(TM3) and D259(TM6) involved in ‘‘ionic-lock” conformation.

Fig. 7 (continued)
Fig. 7 (continued)
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bound to the orthosteric binding pocket without major changes in
their initial docked orientations. It is important to mention that
both ligands lead to contrasting effects on the protein-backbone
RMSD values – Cpd 9 stabilized the protein-backbone in its initial
inactive form whereas Cpd 7 deviated the protein-backbone away
from its initial conformation. Cpd 9 stabilized the protein within
the timespan of the first 20 ns, keeping the average RMSD of pro-
tein model below 4 Å. While the binding of Cpd 7 to GPR120S leads
to the highest RMSD values (�8 Å). Ligand RMSD analysis of Cpd 1
also presented a range of fluctuations with protein backbone RMSD
reaching above � 5 Å (Fig. 7b).

Compared with other ligands, the Cpd 9 bound protein model
predicted the least movement of the distance between R136 and
D259 (involved in the ‘‘Ionic lock”) at the intracellular domain of
GPR120S (Fig. 7c) that is the site specific for G-protein coupling.
The study published by Provasi et al. [50] used inactive and active
crystal structures of GPCRs with ligands eliciting different pharma-
Fig. 8. Scatter plot of a multiple linear regression model of the contribution of
physicochemical descriptors –molecular weight, number of H-bond acceptors and
H-bond donors, TPSA and logP from SwissADME [37] over the WADDAICA [36]
binding affinity for the 9 compounds. The full SwissADME parameters are provided
in the supplementary material for Cpds 1–9.

Fig. 9. Clustering of template ligands (PDBs: 4S0V-SUV and 4N6H-EJ4); agonists (TUG-89
with a similarity cutoff of 0.4 [38]. V1 and V2 denotes the variable 1 and 2 for the dista
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cological actions performing 20 ns MD simulations. The study
reported that depending on their pharmacological activity, the
ligand bound to the receptor can shift the conformational equilib-
rium towards active or inactive state of the receptor. A similar con-
formational shift (Cpd7 – from inactive to active state) as well as
stability (Cpd9 – stabilized inactive state) in receptor state was
observed in our study. Here, during the 100 ns MD production
run of Cpd9 the ‘‘ionic lock” remained closed (Fig. 7c, S6), inhibiting
the coupling between receptor and G-protein, and hence keeping
the receptor in the inactive state.

3.3.2. Multiple linear regression model and structural diversity
analysis of the selected compounds

For further analysis, MLR was applied to predict the contribu-
tion of physicochemical descriptors (independent variable) such
as molecular weight, H-bond donors, H-bond acceptors, logP and
topological polar surface area (TPSA) on binding affinity (depen-
dent variable) [51,52] (Fig. 8). The average binding affinity (ob-
tained from WADDAICA webserver) of the last 20 ns of MD
snapshots (from 80 to 100 ns) was used for the MLR model. The
performance of the MLR model is expressed in terms of R2, which
was found to be 0.799 signifying that � 80% of the data fit the
regression model. Cpd 9 with the highest binding affinity value
from the WADDAICA server [36], was also predicted to have the
highest binding affinity by the MLR model. Indeed, the MLR model
agreed with the binding affinity predictions of the WADDAICA
webserver but it should be noted that many of the variables used
in the MLR model were obtained from other prediction algorithms
– such as binding affinity, logP and TPSA.

The selected compounds Cpd 1–9 were also clustered with the
co-crystalized ligands of templates (4N6H-EJ4 and 4S0V-SUV) used
for homology model generation and reference ligands used for gen-
eration of pharmacophore (TUG-891 and Compound39) to verify
the unbiased nature of the screened compounds. The two-
dimensional scaling cluster (Fig. 9; Table S4) confirms that screen-
ing of Cpd9 and Cpd7 was not biased towards the templates or ref-
erence ligands used in the study.

Finally, with the design and discovery of novel scaffolds by in
silico methods, the pharmacokinetic profile and synthesizability
of these compounds can be a limiting factor. The proposed antag-
onist Cpd9 has a promising predicted ADME profile indicating lead-
likeness but with a moderate predicted solubility (see
supplementary material). Furthermore, a feasible retrosynthesis
scheme obtained from CAS SciFinder (https://scifinder.cas.org)
confirms the ease to synthesis of this compound (Figure S8).
1 and Compound 39) and selected compounds 1–9 by Two Dimensional similarities
nce matrix obtained from the Tanimoto similarity matrix.

https://scifinder.cas.org
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4. Conclusion

In this study, the MD analysis of 300 ns production runs of ago-
nist bound GPR120S models led to the generation of a pharma-
cophore hypothesis targeting W277 and N313 residues of
GPR120S receptor to discover potential candidates as GPR120S
antagonists. The structure-based pharmacophore hypothesis was
validated by running MD simulations of pharmacophore identified
synthesizable hits over a period of 100 ns suggesting that H-bond
interactions of Cpd 9 (2-hydroxy-N-{4-[(6-hydroxy-2-methylpyri
midin-4-yl)amino]phenyl}benzamide) with W277 and N313 stabi-
lize the occupancy of the ligand in the orthosteric pocket and keeps
the protein in the inactive form. While the interactions of a
phenylimino-phenol analogue - Cpd 7 phases the protein from
inactive to active form due to breakage of the ionic lock which
can lead to G-protein coupling at the intracellular domain. Further
site-specific mutation studies targeting the N313 residue can con-
firm the importance of N313 interactions in GPR120S antagonist
design. Therefore, the insights from the present study can poten-
tially be employed to enhance the selectivity of GPR120S ligands
and target interactions with key residues (W277 and N313) to
develop novel agonists and antagonists. Further development of a
selective and potent GPR120S antagonist could be useful in man-
agement of various cancers where GPR120S has been implicated
as a tumour-promoting receptor.
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