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Abstract: Currently, the demand for low-calorie sweeteners has grown dramatically because con-
sumers are more mindful of their health than they used to be. Therefore, bioproduction of low-calorie
sweeteners from low-cost raw materials becomes a hot spot. In this study, a two-stage strategy was
established to efficiently utilize D-fructose from fruit and vegetable wastes. Firstly, ketose 3-epimerase
was used to produce D-allulose from D-fructose of pear peels. Secondly, the residual D-fructose was
converted to D-mannitol by the engineered strain co-expression of D-mannitol 2-dehydrogenase and
formate dehydrogenase. Approximately 29.4% D-fructose of pear peels was converted to D-allulose.
Subsequently, under optimal conditions (35 ◦C, pH 6.5, 1 mM Mn2+, 2 g/L dry cells), almost all
the residual D-fructose was transformed into D-mannitol with a 93.5% conversion rate. Eventually,
from 1 kg fresh pear peel, it could produce 10.8 g of D-allulose and 24.6 g of D-mannitol. This
bioprocess strategy provides a vital method to biosynthesize high-value functional sugars from
low-cost biomass.
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1. Introduction

With the improvement of economic life, the demand and consumption of sugars have
increased globally over the past decades. In the World Health Organization’s (WHO) World
Health Statistics Report 2021, the age-standardized mortality rate for diabetes increased
by 3%, and the rate of increase in diabetes deaths was closely related to the increase in
obesity rates. Meanwhile, more than 1.9 billion adults worldwide were overweight, and
more than 650 millions of them were obese, accounting for 13% of the world’s total adult
population [1]. The WHO highly advised keeping free sugar intake to less than 10% of total
caloric intake due to the public health problems associated with high sugar consumption.
In terms of sugar control, more and more countries have implemented sugar taxes in
recent years, and sugar reduction has become an important trend in food production
and consumption. It is an effective strategy to use alternative sweeteners to substitute
for sugars, particularly in foods, drinks and medicines, which are likely to be consumed
between meals [2].

D-Allulose is one of the most promising low-calorie rare sugars, and it is the epimer
of D-fructose at the C-3 position. There are several distinct physiological properties of
D-allulose, including modest improvements in postprandial glucose and insulin regula-
tion, [3], anti-obesity and prevention of type 2 diabetes [4,5], anti-hyperlipidemia, anti-
hyperglycemic effects [6], anti-inflammatory [7], and anti-atherosclerosis effects [8]. It also
prevents diabetic nephropathy [9], enhances endurance ability, reduces fatigue [10,11], and
inhibits hyperphagia with excessive appetite [12]. Moreover, it contains a sweetness of
70% sucrose but only 0.4 kcal/g of calories. In addition to being utilized as a low-calorie
sweetener, D-allulose can also improve texture and antioxidant activity, increase the protein
emulsification and foaming abilities of bakery [13], and enhance the viscosity, elasticity
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and water holding capacity of frozen foods to increase storage stability [14]. Through
C-3 epimerization, D-allulose can be synthesized from D-fructose [15]. In this process,
ketose 3-epimerase (KEase) plays a vital role [16]. Almost 30 types of KEase have been
identified and described from various microorganisms so far [17]. It is known that about
30% of D-fructose gets converted into D-allulose, however, which is the major restriction
of industrial production of D-allulose. In comparison, the theoretical conversion rate of
D-mannitol enzymatic production from D-fructose could reach 100%. This provides a
solution to sufficiently utilize D-fructose for the bioproduction of value-added saccharides.

D-Mannitol is a naturally occurring, low-calorie alditol with various applications in the
food and pharmaceutical industries. In the food industry, D-mannitol usually has utility as
a functional food due to its low metabolic rate and no glycemic index [18], and it is widely
used as a sugar-free coating because of its non-hygroscopic properties [19]. Furthermore, in
the pharmaceutical industry, by activating superoxide dismutase and reducing the accumu-
lation of lipid peroxides in the body, D-mannitol has a prospective utility for removing free
radicals [20]. Due to its potent dehydrating and osmotic diuretic properties, D-mannitol
can also be used for medical treatment [21]. Usually, D-mannitol can be biosynthesized by
enzymatic methods from D-fructose catalyzed by mannitol dehydrogenase (MDH) [18]. In
D-allulose production, the reaction equilibrium between D-allulose and D-fructose is 30:70.
The residual 70% D-allulose could be used for D-mannitol production.

The aim of this study is to sufficiently utilize D-fructose from fruit residues, and a
two-stage biosynthesis strategy of valuable saccharides production was established. Firstly,
KEase was used to produce D-allulose from fruit residues. Secondly, we produced D-
mannitol from residual components using the whole-cells which co-express the formate
dehydrogenase (FDH) and MDH. In order to reduce production cost and increase the
efficiency of fruit waste disposal, fruit peels including pear peel, watermelon peel, Hami
melon peel, orange peel, and mango peel were prepared to determine the production
capacity of D-allulose and D-mannitol. After reaction, D-mannitol could be separated
by cooling crystallization from the mixture of D-allulose and D-mannitol. This strategy
provides a vital opportunity to advance the methodology of using D-fructose or low-cost
biomass to biosynthesize high-value functional sugars.

2. Materials and Methods
2.1. Strains, Plasmid, Reagents, and Materials

The ketose 3-epimerase (KEase) gene from Dorea sp. CAG317 (Dosp) (GenBank
accession number: No. WP_ 022318236.1) was obtained from our previous study [22].
E. coli BL21(DE3) and E. coli DH5α strains and D-allulose and D-mannitol standards were
purchased from Sangon Biotech Co., Ltd. (Shanghai, China). Sinopharm Chemicals Reagent
(Shanghai, China) supplied the chemicals and reagents used in the purification of proteins
and in the reaction process. The fruits including pear, orange, mango, watermelon, and
Hami melon were purchased from the local market.

2.2. Heterogeneous Expression of KEase in E. coli

The plasmid pET-22b(+)-Dosp-KEase was transformed into E. coli BL21(DE3) for
heterogeneous expression, and was grown in Luria-Bertani medium [23] supplemented
with ampicillin (100 µg/mL), and the incubation condition was at 37 ◦C, 200 rpm. Isopropyl
β-D-1-thiogalactopyranoside (IPTG), 1 mM was applied as an inducer when the culture
indicator reached an OD600 of 0.6–0.8. After ITPG induction at 28 ◦C and 200 rpm for 6 h,
the recombinant protein was overexpressed, and centrifugation was used to separate the
cells at low temperature and 8000 rpm for 15–20 min. The cells were then washed with
distilled water.

2.3. Purification of KEase

The cells were resuspended with 15 mL of lysis solution and sonicated for 15 min at
4 ◦C to disrupt them. After centrifuging the crude extracts at 8000 rpm at 4 ◦C for 15 min,
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the supernatant was filtered using a 0.22 µm aqueous phase Millipore filter. The enzyme
was purified using a Ni2+ chelated Sepharose Fast Flow resin column after centrifugation
and filtering. The column was first pre-equilibrated with the binding buffer, and then the
supernatant went through the column. Afterward, the binding buffer was passed through
the resin column to completely bind the protein with the resin column. The resin column
was then washed with the washing buffer containing low concentration imidazole to elute
undesired proteins. Ultimately, the elution buffer containing high concentration imidazole
went through the resin column to collect the desired target enzyme. All of the formulations
of the buffers referred to Zhang’s previous research [22]. To remove metal ions, the purified
enzyme solution was dialyzed at 4 ◦C for 12 h in sodium phosphate buffer (PB, 50 mM,
pH 6.0) containing 10 mM ethylenediaminetetraacetic acid (EDTA). It was then dialyzed
against PB without EDTA (50 mM, pH 6.0) for 12 h at 4 ◦C twice. The protein concentration
of the enzyme was determined by using the Bicinchoninic Acid (BCA) assay, and the bovine
serum albumin (BSA) was used as a standard protein.

2.4. Construction of the MDH-FDH Co-Expression System

The D-mannitol 2-dehydrogenase (MDH) gene from Caldicellulosiruptor morganii Rt8.B8
(GenBank accession number: WP_045170409.1) and the formate dehydrogenase (FDH)
gene from Ogataea parapolymorpha (GenBank accession number: EFW95288) were synthe-
sized by Genewiz (Suzhou, China), and subcloned into the pETDuet-1 vector, between
the NcoI and EcoRI restrict sites and NdeI and XhoI restrict sites, respectively. The expres-
sion method referred to 2.2 in this study. After inducing them with IPTG, the recombi-
nant cells harboring pETDuet-1-MDH-FDH were centrifugated at low temperature and
8000 rpm for 15–20 min, followed by washing with distilled water. After discarding the
supernatant, the bacteria cells are collected in the centrifuge tube. Whole-cell concentra-
tions were measured spectrophotometrically (Shanghai Mapada Instruments Co., Ltd.,
Shanghai, China), and then the calculation was used to convert them to dry cell weight
(DCW):DCW (g/L) = (0.4442 × OD600) − 0.021 [24].

2.5. Optimization of Whole-Cell Transformation Conditions

The effect of pH was examined at 35 ◦C with a pH range of 5.0–9.0. To investigate
the maximum conversion yield of D-mannitol, three buffer systems were used: 50 mM
NaHAc-HAc buffer (pH 5.0 to 6.0), 50 mM PBS buffer (pH 6.0 to 7.5), and 50 mM Tris-HCl
buffer (pH 7.5 to 9.0). The effect of temperature was set at 50 mM PBS 6.5 and temperatures
ranged from 30 to 50 ◦C. The impact of metal ions on the transformation efficiency was
examined using eight metal ions (Co2+, Ni2+, Mg2+, Ca2+, Mn2+, Al3+, Zn2+ and Cu2+). The
cell mass effects on conversion rate were investigated at four dry cell weight values of 0.4,
2, 4, 10 g/L using the PBS 6.5 buffer at 35 ◦C. Respectively, all the reaction solution was
containing 40 g/L D-fructose, 40 g/L sodium formate and 0.2 mM NAD+, and all reaction
was performed for 12 h then boiled for 10 min and centrifugated at 12,000 rpm for 5 min to
stop the reaction. The D-mannitol formation was determined using high performance liquid
chromatography (HPLC), and the conditions of the column and detector referred to Chen’s
previous study [25]. Analysis conditions were as follows: mobile phase: ultrapure water
consisting of 50 mg/L EDTA-Ca; running flow rate: 0.4 mL/min; column temperature:
85 ◦C; detector temperature: 30 ◦C. All samples were pretreated using Li’s method for
HPLC analysis [26].

2.6. Preparation and Sugar Content Analysis of Fruit Residues

Fruit residues were washed and boiled for 20 min and then crushed with a juicer. The
juice was obtained by filtration with muslin and centrifuged at 8000 rpm for 15 min, after
which the supernatant was passed through a 0.22 µm aqueous phase Millipore filter. The
sugar content of fruit residues was analyzed by HPLC.
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2.7. Production of D-Allulose and D-Mannitol from Fruit Residues

The pear peel juice was first adjusted to a pH of 6.5 with 1 mol/L NaOH, and then
0.1 µM Dosp-KEase purified enzyme and 1 mM MnCl2 were added into the pear peel juice.
The reaction was performed at 60 ◦C for 3 h, and boiled for 10 min to terminate the reaction.
The D-allulose formation was determined using HPLC. After D-allulose production, 2 g/L
dry cell weight (DCW) whole-cell, 10 g/L sodium formate, 0.5 mM NAD+ were added into
the system. The reaction was performed at 35 ◦C for 20 h. The reaction was stopped by
boiling for 20 min and centrifugation at 12,000 rpm for 5 min. The D-mannitol formation
was determined using HPLC.

3. Results
3.1. Construction of Two-Stage Strategy Biosynthesis of D-Allulose and D-Mannitol

In this study, we aim to utilize the D-fructose in fruit residue biomass to synthesize
more valuable saccharides, D-allulose and D-mannitol (Figure 1). Usually, D-allulose and
D-mannitol can be directly synthesized from D-fructose catalyzed by ketose 3-epimerase
(KEase) and D-mannitol 2-dehydrogenase (MDH), respectively. It is known that around
30% D-fructose could convert into D-allulose, which is the major restriction of scale-up
production of D-allulose. In comparison, D-mannitol enzymatic synthesis from D-fructose
might theoretically approach a 100% conversion rate. This provides a solution to the issue
that 70% D-fructose remained after D-allulose production. Meanwhile, MDH has strong
specificity to D-fructose and could not react with D-allulose. Therefore, we constructed a
novel approach for D-allulose and D-mannitol production in a two-stage system. In the
first step, D-allulose was produced from D-fructose catalyzed by KEase, with a conversion
yield of 30%. In the second step, the 70% residual D-fructose was catalyzed by MDH to
synthesize D-mannitol. It should be mentioned that the substrate D-fructose was obtained
from the fruit residues.
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Figure 1. Schematic representation of bioproduction of D-allulose and D-mannitol from D-fructose
via multi-enzyme and whole-cell catalysis system developed in this study.

In the production of D-mannitol, the dependency on cofactors (nicotinamide adenine
dinucleotide (NADH) or nicotinamide adenine dinucleotide phosphate (NADPH)) for each
MDH greatly reduces the yield of D-mannitol, and direct addition increases expenses. To
address this issue economically, a technique for the reproduction of NADH or NADPH is
required. Under this circumstance, a two-enzyme co-expression system can be employed
for cofactor regeneration by converting two substrates into two products simultaneously,
such as formate dehydrogenase (FDH) and glucose dehydrogenase (GDH), with formate
and glucose as co-substrates, CO2 and gluconic acid as products. Therefore, FDH from
Ogataea parapolymorpha was chosen to ligate to the MDH from Caldicellulosiruptor morganii
Rt8.B8 to create a recombinant plasmid (pETDuet-1-MDH-FDH) and then to co-express
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in E. coli BL21(DE3), and the whole-cell was used in the reaction to catalyze D-fructose. A
major advantage of FDH is that the byproduct CO2 can be easily separated from D-mannitol
and is more applicable to our system. We successfully constructed the recombinant plasmid
(pETDuet-1-MDH-FDH) and expressed these two proteins into E. coli BL21(DE3). The
results of sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) indicated
that the two proteins were fully expressed. As shown in Figure 2, the whole-cell protein
band of approximately 36.0 kDa was consistent with the previous study of MDH, and
another band of approximately 40.0 kDa was consistent with FDH.
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marker; lane 1, the purified enzyme of E.coli BL21(DE3)-pETDuet-1-MDH, lane 2, the purified enzyme
of E.coli BL21(DE3)-pET22(b)-FDH, lane 3, the whole-cell of E.coli BL21(DE3)-pETDuet-1-MDH-FDH.

3.2. Optimization of Whole-Cell Transformation Conditions

Although the optimal catalytic conditions of C. morganii MDH and O. parapolymor-
pha FDH were reported before, the optimal transformation conditions of whole-cell co-
expressed these two enzymes had not been researched. In order to improve the D-mannitol
yield, the whole-cell transformation conditions including pH, temperature, metal ions, and
cell mass were optimized. It has been identified that pH 6.5 and 65 ◦C are the optimal
conditions for the O. parapolymorpha FDH [27], while the C. morganii MDH had an optimal
temperature of 75 ◦C and pH of 8.0 with D-fructose as substrate [28].

It can be seen from Figure 3 that the optimal temperature, pH, cell mass and metal ions
were 35 ◦C, pH 6.5, 2 g/L DCW, and Mn2+. As shown in Figure 3a, in PBS buffer 6.0–7.5,
the conversion rate was over 80%, and the optimum pH is 6.5, in which the conversion rate
could reach 94.0%. From Figure 3b we can see that 35 ◦C brought the highest conversion
yield, which is in the temperature range for the survival of E. coli. Although these two
enzymes have higher activity at high temperature, for a lengthy reaction, cells would more
stable and the conversion rate could reach a maximum value of 92% at 35 ◦C. It can be
seen from Figure 3c that most metal ions had little effect on the conversion rate, which was
similar to the control group without metal ions. In addition, Cu2+ significantly inhibited
the transformation, and the conversion rate only reached 3.6%. The optimum metal ion
was Mn2+, which was consistent with MDH. In the presence of Mn2+, the conversion rate
reached 93.3% and was 24% higher than the control group that without metal ions.
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3.3. Sugar Content of Fruit Residues

The sugar content of the peel residue is an important indicator that determines how
much value-added product we can produce, especially the content of D-fructose, which
is the fundamental substrate for the bioproduction of D-allulose and D-mannitol in this
strategy. After boiling, crushing, filtration and centrifugation, the water-soluble sugars in
peel residues contain sucrose, D-glucose, and D-fructose. Figure 4 shows the sugar contents
of fruit residues. For most fruit residues, D-fructose accounted for a high proportion,
reaching 35–66%. And the content of D-fructose reached 16–40 g/kg of fresh residues, the
lowest of which is orange peel and the highest of which is pear peel. The content of glucose
was 7-25 g/kg, and the content of sucrose was 1–19 g/kg. It is noticeable that both contents
of watermelon peel are the lowest. Among these fruit residues, pear peels showed the
highest content of D-fructose, by approximately 40 g/kg, which indicated that pear peel
residues represent a good prospect for the production of D-allulose and D-mannitol. In this
study, pear peel was selected as the fruit residue to produce D-allulose and D-mannitol
due to its high content of D-fructose.

3.4. Bioconversion of D-Allulose and D-Mannitol from Pear Peels

In this study, KEase from Dorea sp. CAG317 (Dosp-KEase) was used as a catalyst to
produce D-allulose from the D-fructose of pear peels. The optimal pH and temperature for
the Dosp-KEase have previously been determined to be pH 6.0 and 70 ◦C. Furthermore, it
has the greatest enzyme activity of all known KEases (803 U/mg), and it also shows strong
catalytic activity throughout a broad pH range of 5 to 8 [22]. As shown in Figure 5, 3.7 g/L
D-allulose could be produced in 2 h at 60 ◦C and pH 6.5 when Mn2+ was present, with a
conversion yield of 29.4%, and 9.41 g/L D-fructose remaining in the system, although the
optimal metal ions for Dosp-KEase is Co2+, Mn2+ can also improve the conversion yield and
the effect is similar to Co2+. Moreover, Mn2+ is the optimum metal ion in the transformation
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of D-mannitol, which avoided the addition of extra metal ions in the subsequent reaction.
The conversion rate of D-allulose was 29%, which is very nearly the same as the maximum
conversion rate of Dosp-KEase in D-fructose of 30%. By comparison, Song et al. reported
that when using KEase from A. tumefaciens to convert D-fructose from Jerusalem artichoke
into D-allulose, the conversion rate was 13.2%. Compared to conversion rates shown
in the D-fructose reaction, the conversion rate was reduced by more than half, which
might be caused by the high content of Fe2+ in Jerusalem artichoke [29]. Patel et al. also
used fruit residues to biosynthesize D-allulose from pomace of apple and kinnow fruit
by using covalently immobilized KEase that was environmental-friendly and recyclable,
and the conversion rate was approximately 20% [30]. It is efficient to use Dosp-KEase to
biosynthesize D-allulose from pear peel, and the conversion yield could reach 29.4%.
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D-mannitol was typically produced by MDH reducing D-fructose at the C-2 position.
In order to regenerate the cofactor NADH, we constructed a co-expression system to
simultaneously express the FDH from O. parapolymorpha and MDH from C. morganii Rt8.B8
in E. coli BL21(DE3). The co-expressed whole-cell was used as a catalyst to biosynthesize
D-mannitol from the residual D-fructose of pear peel juice. After D-allulose production,
2 g/L DCW whole-cell catalyst and 10 g/L co-substrate sodium formate were added into
the reaction system. As shown in Figure 5, at pH 6.5 and 35 ◦C, D-fructose could convert
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into D-mannitol with a conversion yield of 93.5%. After 22 h, 8.79 g/L D-mannitol was
eventually obtained from 9.41 g/L D-fructose. Kaup et al. reported using whole-cell co-
expressed L. pseudomesenteroides ATCC 12,291 MDH with M. vaccae N10 FDH to bioproduce
D-mannitol from D-fructose, and the conversion yield reached 73.0% [31]. However,
most of the research on the bioproduction of D-mannitol from biomass has focused on
the fermentation of lactic acid bacteria or yeast that usually requires additional nitrogen
sources [32]. D-mannitol bioproduction by co-expressed whole-cells is easily operated and
efficient, with a high conversion yield.

3.5. Overall Mass Balance

According to the component analysis of each step, the mass balance diagram of each
link is obtained, including epimerization, whole-cell catalysis, and separation steps. As
shown in Figure 6, 1 kg fresh pear peel contains 39.0 g D-fructose, and after epimerization
10.8 g D-allulose was produced with a conversion rate of 29.4%. From the remaining 27.2 g
D-fructose, 24.6 g D-mannitol was obtained through whole-cell catalysis with a conversion
rate of 93.5%. It was an efficient strategy to take advantage of fruit and vegetable (FV)
waste biomass that almost all D-fructose were converted to D-allulose and D-mannitol.
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A considerable amount of literature has been published on using low-cost biomass
as raw material and KEases as catalysts for D-allulose production. As shown in Table 1,
various FV residues and biomass were used to biosynthesize D-allulose, such as cane
molasses, Jerusalem artichoke, inulin, jujube and FV residues. In order to produce D-
allulose from FV wastes, Patel et al. employed the SUMO fusion of A. tumefaciens KEase as
the catalyst, and the conversion yield reached 25–35% [31]. Yang et al. expressed 3 KEases
in C. glutamicum and immobilized the cells to catalyze cane molasses to obtain D-allulose,
finally obtaining 61.2 g/L D-allulose [32]. Li et al. constructed a two-enzyme system with
KEase and exoinulinase, and obtained 21.4 g/L D-allulose from 100 g/L inulin in one
pot [33]. Currently, the utilization of biomass for creating more value-added chemicals
in addition to D-allulose has attracted increasing attention. Song et al. used S. cerevisiae
to ferment residual D-fructose and biomass to produce bioethanol after the enzymatic
production of D-allulose from biomass, finally obtaining 137.8 g D-allulose and 148.3 g
bioethanol from 1 kg Jerusalem artichoke tubers dry mass, and 42.6 g D-allulose and 163.8 g
bioethanol were produced from 1 kg cruciferous vegetable residues [29,34]. Sharma et al.
used dextransucrase and SUMO fusion of KEase to catalyze 1 kg cane molasses, and
finally produced 124 g prebiotic oligosaccharides and 37 g D-allulose [35]. Men et al.
used D-glucose isomerase and KEase to produce D-allulose from jujube juice, and used
Pediococcus pentosaceus PC-5 and Lactobacillus plantarum M to increase bioactivities and
flavor volatiles; they obtained gamma-aminobutyric, branched-chain amino acids and
other beneficial functional components besides D-allulose [36]. These studies are very
practical in providing ideas for the production of D-allulose from biomass, and offer the
potential for higher utilization efficiency, higher selectivity, lower energy costs, and the
generation of fewer inhibitory byproducts. By comparison, in this study we realize the
co-production of D-allulose and D-mannitol from D-fructose for the first time, offering a
new idea for the full utilization of D-fructose. Furthermore, we applied this strategy to
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fruit residues. It is known that a growing number of fruit and vegetable wastes have led
to a considerable burden on the environment in recent years. Using fruit and vegetable
residues as a substrate for the bioproduction of D-allulose and D-mannitol provides a
novel idea for the disposal of fruit and vegetable wastes from industrial processes, which
produces great economic and social benefits, while also reducing negative environmental
effects. Compared to other strategies that used cane molasses and Jerusalem artichoke
as the raw materials, fruit residues are more convenient to handle without complicated
processing. Furthermore, D-mannitol has a lower solubility of 18% (w/v) among most
sugar alcohols [37], which has the potential to separate D-allulose and D-mannitol in
industrial production.

Table 1. Bioproduction of D-allulose from biomass.

Raw Material Method Production Reference

Fruit and vegetable residues
N-terminal SUMO fusion of
A. tumefaciens KEase as
the biocatalyst.

The conversion yield of D-allulose
reached 25–35% in fruit and
vegetable residues.

[33]

Cane molasses

Dextransucrase from L. mesenteroides
MTCC 10,508 to produce prebiotic
oligosaccharides, SUMO fusion of
A. tumefaciens KEase to
synthesize D-allulose.

124 g oligosaccharides (DP3-DP6)
and 37 g D-allulose were obtained
from 1 kg cane molasses.

[35]

Cruciferous vegetable residues

Residues was hydrolyzed into
D-glucose and D-fructose by
cellulase at first; then, D-glucose was
fermented to bioethanol by yeast,
while D-fructose was converted to
D-allulose by KEase.

49.4 g D-allulose and 166.7 g
bioethanol were obtained from 1 kg
dry weight cabbage (320.0 g glucose,
142.0 g fructose), 42.6 g D-allulose
and 163.8 g bioethanol were
obtained after separation.

[34]

Jerusalem artichoke tubers

Jerusalem artichoke was first
hydrolyzed into D-glucose and
D-fructose by exoinulinase; then,
D-glucose was fermented to
bioethanol by yeast, while
D-fructose was converted to
D-allulose by KEase.

173.9 g D-allulose and 180.3 g
bioethanol were obtained from 1 kg
dry weight jerusalem artichoke
(151.4 g glucose, 564.7 g fructose),
137.8 g D-allulose and 148.3 g
bioethanol were obtained
after separation.

[29]

Fruit residues
Using covalently immobilized KEase
onto functionalized iron oxide
magnetic nanoparticles as catalyst.

Immobilized enzyme is stable and
still has 80% activity after 60 days of
storage at 4 ◦C; and still has 90%
activity after catalyzing ten cycles,
and the conversion rate in kinnow
and apple pomace is about 20%.

[30]

Inulin
A one-pot two-enzyme reaction
system with Dorea sp. KEase and
Aspergillus piperis exoinulinase.

21.4 g/L D-allulose was obtained
from 100 g/L inulin. [26]

Jerusalem artichoke
A one-pot two-enzyme reaction
system with Ruminococcus sp. KEase
and Bacillus velezensis exoinulinase.

The final high-fructose syrup
contained 10.4, 29.2, and 10.3 g/L
D-glucose, D-fructose,
and D-allulose.

[38]

Cane molasses

Integrated expression of 3 KEases in
C. glutamicum and immobilized the
cells of KEases and invertase to
catalyze cane molasses for two-step
reaction.

61.2 g/L D-allulose was obtained
from cane molasses (300.0 g/L
sucrose, 16.5 g/L glucose, 69.0 g/L
fructose).

[35]
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Table 1. Cont.

Raw Material Method Production Reference

Jujube

D-glucose isomerase and KEases
converted D-glucose and D-fructose
into D-allulose, Pediococcus
pentosaceus PC-5 and Lactobacillus
plantarum M were employed to
increase bioactivities and flavor
volatiles components.

110 g/L D-allulose was obtained
from jujube juice (352 g/L glucose,
360 g/L fructose), 100 mg/L
gamma-aminobutyric acid was
obtained after fermentation.

[39]

4. Conclusions

In this study, a novel strategy was established to efficiently utilize D-fructose from a
low-cost biomass for value-added saccharides bioproduction. The first stage involved using
ketose 3-epimerase (KEase) to stimulate the production of D-allulose from the D-fructose
of fruit peels. In the second step, an engineered strain E. coli BL21(DE3) simultaneously
expressing D-mannitol 2-dehydrogenase (MDH) and formate dehydrogenase (FDH) was
constructed and used as the whole-cell catalyst for the bioproduction of D-mannitol from
the residual D-fructose. After optimization, about 29.4% of D-fructose pear peels could
be converted to D-allulose, and almost all of the residual D-fructose was transformed
into D-mannitol with a conversion yield of 93.5%. Finally, 10.8 g D-allulose and 24.6 g
D-mannitol could be produced by 1 kg fresh pear peel. Furthermore, D-mannitol could
easily be separated from D-allulose by cooling crystallization, which offers the potential
for D-allulose and D-mannitol production. In summary, this strategy provided a vital
alternative to use D-fructose or low-cost biomass to biosynthesize high-value functional
sugars and a novel approach to separate D-allulose from the reaction system. Moreover,
this strategy provides significant economic and social benefits, while also reducing negative
environmental effects.
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