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Detection of cellular changes in tissue biopsies has been the basis for cancer
diagnostics. However, tissue biopsies are invasive and limited by inaccuracies due to
sampling locations, restricted sampling frequency, and poor representation of tissue
heterogeneity. Liquid biopsies are emerging as a complementary approach to traditional
tissue biopsies to detect dynamic changes in specific cell populations. Cell-free DNA
(cfDNA) fragments released into the circulation from dying cells can be traced back to
the tissues and cell types they originated from using DNA methylation, an epigenetic
regulatory mechanism that is highly cell-type specific. Decoding changes in the cellular
origins of cfDNA over time can reveal altered host tissue homeostasis due to local cancer
invasion and metastatic spread to distant organs as well as treatment responses. In
addition to host-derived cfDNA, changes in cancer cells can be detected from cell-
free, circulating tumor DNA (ctDNA) by monitoring DNA mutations carried by cancer
cells. Here, we will discuss computational approaches to identify and validate robust
biomarkers of changed tissue homeostasis using cell-free, methylated DNA in the
circulation. We highlight studies performing genome-wide profiling of cfDNA methylation
and those that combine genetic and epigenetic markers to further identify cell-type
specific signatures. Finally, we discuss opportunities and current limitations of these
approaches for implementation in clinical oncology.

Keywords: Cell-free DNA (cfDNA), cellular damage, circulating tumor DNA (ctDNA), deconvolution, liquid biopsy,
tissue-of-origin, tumor microenvironment

LIQUID BIOPSIES AND CELL-FREE DNA (CFDNA) IN
ONCOLOGY

Liquid biopsies are emerging as a minimally invasive approach to complement and potentially
advance the traditional standards of care in oncology (Bronkhorst et al., 2019). Tissue biopsies
are taken as part of routine clinical care for most solid cancers and used to identify the molecular
determinants of disease that can inform both diagnosis and prognosis. However, tissue biopsies are
invasive and limited by inaccuracies due to sampling locations, restricted sampling frequency, and
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poor representation of local tumor heterogeneity as well as
dispersed cancerous lesions. To address these limitations, liquid
biopsy technologies are rapidly advancing to provide analysis
of tumors using circulating biomarkers in fluids such as the
blood. One of the main advantages of liquid biopsies is its
capacity for serial sampling by simple blood draws. The increased
sampling frequency is helpful to monitor clonal evolution
of tumor subpopulations as well as to assess evolutionary
dynamics influencing treatment response and resistance as well
as disease recurrence (Corcoran and Chabner, 2018). Also, liquid
biopsies are capable of capturing systemic changes to provide
an organism-wide picture of disease progression including the
local primary tumor as well as distant metastatic sites and
treatment responses across different sites. Finally, liquid biopsies
are uniquely able to capture tumor heterogeneity over time, and
thus complement traditional tissue biopsies that can only sample
locally and at accessible sites (Figure 1).

Similar to tissue biopsies, the major purpose of liquid biopsies
in oncology is to identify circulating analytes that provide
molecular information about the cancer. In this context, there
are a multitude of molecules that may be isolated from biological
fluids and targeted for analysis. Until recently, the main focus
has been on circulating molecules that can be directly tied back
to the primary tumor, including circulating tumor cells (CTCs),
cell-free tumor DNA (ctDNA), tumor-educated platelets (TEPs),
and tumor secreted vesicles (exosomes, oncosomes, apoptotic
bodies) (Best et al., 2015; Rapisuwon et al., 2016). However,
as comprehensive approaches gain traction, there has been an
expansion to include molecules reflective of dynamic changes
to the host, tumor microenvironment and distant metastatic
sites as well. Both tumor cells and normal host-derived cells
release cell-free DNA (cfDNA) into the circulation as a result
of physiological processes. cfDNA is thought to originate from
the genomes of dying cells, including cells within tumors, and is
reflective of cell turnover rates at steady state as well as altered
homeostasis throughout the body with disease (Kustanovich
et al., 2019; Heitzer et al., 2020; Rostami et al., 2020). Thus,
circulating tumor DNA (ctDNA) is a subset of cfDNA that has
different biological characteristics (Table 1). There is still much
to be learned about the biology of cfDNA release, distribution,
and elimination mechanisms leading to differential stability and
circulation half-life in healthy compared to diseased states (Jiang
and Lo, 2016; Heitzer and Speicher, 2018; Sanchez et al., 2018;
Serpas et al., 2018; Han et al., 2020; Barefoot et al., 2021). The
focus of this review will be on methylated cell-free DNA and its
utility and applications in cancer diagnosis and management.

INCREASED SIGNAL ABUNDANCE
FROM LEVERAGING EPIGENETIC
CHANGES IN BOTH TUMOR AND
NON-TUMOR CELLS

There are still many challenges to overcome before liquid biopsies
may be routinely implemented in the clinic. Signal abundance
(fraction of target cfDNA relative to total cfDNA), sequencing

depth, and breadth of genomic regions assayed by sequencing
are factors that must be considered to detect signals in the
circulation of cancer patients relevant to inform care (Figure 2B;
Im et al., 2020). Strategies aimed at increasing any of these
factors will improve the odds that informative signals can be
detected. Signal abundance is largely a byproduct of the biology
of the disease in question and therefore little can be done to
modify this variable (Heitzer et al., 2019). For instance, ctDNA
is highly correlated with tumor burden, with larger amounts
of ctDNA found in the circulation of individuals at advanced
stages of tumor progression. For this reason, mutation analysis
of ctDNA is limited in its capacity to detect cancer-related
signals, especially with low-volume tumors at early stage and
relapse (Im et al., 2020). However, signal abundance can be
increased by leveraging signals from all cfDNA molecules rather
than the smaller subset of fragments containing specific tumor-
related mutations (Figures 2A,C). This can be accomplished by
targeting tumor-specific epigenetic changes that occur early on
during carcinogenesis and thus are found at higher abundance
in early stage cancers than tumor-related mutations (Snyder
et al., 2016; Ulz et al., 2016; Wong et al., 2016; Leygo et al.,
2017; Jiang et al., 2018, 2019; Cristiano et al., 2019; Gai and
Sun, 2019; Ivanov et al., 2019; Panagopoulou et al., 2019; Sun
et al., 2019; Van der pol and Mouliere, 2019; Sadeh et al.,
2021). Further, combining tumor-cell derived signals with those
from the surrounding host microenvironment can increase signal
abundance (Hoadley et al., 2018; Liu et al., 2018; Haigis et al.,
2019; Lam et al., 2019). Tumor DNA identified by genetic or
epigenetic markers circulates admixed with non-tumor DNA.
The same DNA sequence is found in all non-tumor cells and
simple sequence analysis cannot be used to distinguish its cell-
type origin. However, covalent and non-covalent epigenetic
marks are pivotal to cell-type identity and can be used to
distinguish tumor as well as non-tumor DNA, expanding the
reach of molecules targeted to reflect disease-pertinent changes
(Barefoot et al., 2021).

TOWARD “THIRD-GENERATION” LIQUID
BIOPSIES: FROM TARGETED TO
COMPREHENSIVE APPROACHES

Despite its highly fragmented nature, advances in sequencing
technologies have made comprehensive profiling of low integrity
cfDNA possible. At a fixed target abundance and coverage,
detection probabilities can be increased by broader sequencing,
increasing the number of potential markers assayed (Im et al.,
2020). Genomic analysis of ctDNA has decreased sensitivity
relative to epigenetic approaches because of lower abundance
at any one given marker (Leygo et al., 2017). Increasing the
number of potential mutations assayed with whole-genome Next-
Generation-Sequencing (NGS) applications has been shown to
increase sensitivity, but there can still be a lack of sufficient
markers when limited to tumor-specific mutations alone (Im
et al., 2020). Comprehensive epigenetic profiling of tumor
and non-tumor cfDNA has led to advances in detection of
brain cancers, including gliomas, which “hide” behind the
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FIGURE 1 | Complementary role of tissue and liquid biopsies in oncology. Localized solid tissue biopsies are invasive and provide a snapshot of limited
representational heterogeneity based on the small piece of tissue that is excised. In comparison, liquid biopsies are minimally invasive and allow for serial sampling to
provide systemic information about the primary tumor as well as distant metastatic sites indicated in different colors. Thus, liquid biopsies complement tissue
biopsies and increase representation of heterogeneity supporting the tracking of clonal evolution over time.

TABLE 1 | Analytes in solid vs. liquid biopsies.

A. Solid tissue biopsy Liquid biopsy

Invasive Minimally invasive

Localized Systemic

Limited sampling frequency Serial sampling

Limited representation of heterogeneity Representation of heterogeneity

B. Cell-free DNA (cf-DNA) Circuating tumor DNA (ct-DNA)

Higher abundance Lower abundance-subset of cfDNA (often < 1%)

Tumor-derived and signals derived from the surrounding
microenvironment (normal cell-types)

Tumor-derived (tumor-specific genetic mutations and
epigenetic abnormalities)

Majority hematopoietic origin Host tissue somatic mutations are major confounder

Relevant to physiology and pathology Relevant to pathology

(A) Comparison of solid and liquid biopsy samples. (B) Comparison of cell-free DNA (cfDNA) and circulating tumor DNA (ctDNA), two circulating analytes found in liquid
biopsies.

blood-brain barrier and have restricted access to release ctDNA
into the circulation (Li et al., 2020; Nassiri et al., 2020). In
these cases, integration across multiple markers allows for
unparalleled sensitivity that cannot be achieved from low
numbers of select targeted loci, despite high specificity and
deep sequencing. Detection methods trending toward broader
sequencing have been termed “third-generation” liquid biopsies
and are emerging to allow for more comprehensive assessment of
a multitude of signals.

Comprehensive sequencing approaches have unleashed the
potential of liquid biopsies to achieve optimal sensitivity;
however, there is still a need to improve the specificity
and biological relevance of these assays. With the transition
from targeted to comprehensive approaches come decreasing
signal-to-noise ratios and new challenges to separate true

biological signals from background sources of error (Ko
et al., 2018). Physiological flux due to clonal hematopoiesis,
inflammation, exercise, and other biological factors may dilute
out relevant signals and calls for an increased understanding
of the mechanisms of cell-free DNA release into the circulation
and the distinct processing (Kustanovich et al., 2019; Barefoot
et al., 2021). The predominating hematopoietic origins of cfDNA
in healthy individuals makes it essential to identify markers
separating cell-types of interest from peripheral immune cells
(Barefoot et al., 2021). Machine-learning algorithms and data-
science-driven approaches are being developed in tandem to
reduce dimensionality and make sense of the data available to
identify applicable information that may better inform clinical
courses of action (Ko et al., 2018). As these approaches become
increasingly complex, prior knowledge about the relevance of
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FIGURE 2 | Factors contributing to probability of signal detection. (A) Tumors release mutant genomic and epigenomic cfDNA into the circulation. Normal cell types
from the surrounding microenvironment and other somatic cells also release cfDNA into the circulation that can be identified through cell-type specific epigenetic
markers. Combining tumor cell- and normal host cell-derived signals can increase target abundance in the circulation to increase sensitivity, while maintaining
specificity. (B) Target abundance, sequencing depth, and breadth of genomic regions assayed are factors that determine signal detection probability in the
circulation of cancer patients. (C) Relative abundance of cfDNA populations and associated specificity.

the features selected will be imperative to maintain biological
interpretability.

BIOLOGICAL RELEVANCE OF
CELL-FREE DNA METHYLATION
PATTERNS

DNA methylation functions as an epigenetic regulatory
mechanism and involves covalent addition of a methyl-group
to the 5-carbon of cytosine (5mc). DNA methylation occurs
most commonly in the context of CpG dinucleotides (Greenberg
and Bourc’his, 2019). One of the main benefits to harnessing
cell-free methylated DNA for liquid biopsy applications in cancer
is the potential to exploit prior knowledge about the biological
relevance of these marks. DNA methylation is an intrinsic mark
of cell identity and pathologic alterations of DNA methylation
are hallmarks of cancer (Greenberg and Bourc’his, 2019). The
DNA methylation landscape changes in a highly regulated
manner throughout development. Before embryo implantation,
there is a global erasure of DNA methylation that is reset in
multiple stages leading to the creation of cell-type specific

methylation patterns, paralleling ongoing cell differentiation and
organogenesis (Dor and Cedar, 2018). Once established, this
pattern of DNA methylation is highly stable and conserved across
DNA replication, making DNA methylation the predominant
mechanism for inherited cellular memory during cell growth
(Daniūnaitė et al., 2019). DNA methylation patterns may be
selected as features that are relatively hyper- or hypo-methylated
in specific cell types or in the context of specific cancers.
Therefore, while there has been extensive characterization
of DNA methylation changes that occur with disease and
physiological aging, these changes occur only at specific locations
throughout the epigenome allowing methylation states at
regions critical to cell-type identity to remain constant over time
(Michalak et al., 2019). This stability allows methylated cfDNA to
serve as a robust biomarker in the face of patient heterogeneity,
capable of being generalized across diverse patient populations
(Dor and Cedar, 2018). There are many areas where liquid
biopsies can be applied in clinical oncology. These include, but
are not limited to, efforts aimed at early detection, assessment
of prognosis, detection of minimal residual disease, metastasis,
targeted-therapy selection, and treatment response monitoring
(Sina et al., 2019; Luo et al., 2021). Both cancer and cell-type

Frontiers in Genetics | www.frontiersin.org 4 July 2021 | Volume 12 | Article 671057

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-671057 July 24, 2021 Time: 18:39 # 5

Barefoot et al. Cell-Type Detection by cmeDNA

FIGURE 3 | Applications for detection and localization of metastasis and Cancer of Unknown Primary (CUP). (A) CfDNA in healthy individuals is mostly of
hematopoietic origin. (B) The composition of cell-free DNA changes with disease. In this example, primary lung cancer results in increased levels of ctDNA identified
by tumor-specific genomic and epigenomic markers, as well as increased levels of cfDNA from the surrounding lung microenvironment identified by normal
cell-specific epigenetic markers. (C) Genomic mutations occur independently in primary and metastatic tumor sites. Liquid biopsies are capable of capturing this
heterogeneity; however, mutations alone cannot localize these clonal populations to their tissue origins at the primary tumor site and distant metastatic site. As a
complementary approach, normal tissue- and cell-type epigenetic markers can be used for detection and localization of metastasis and Cancers of Unknown
Primary (CUP).

specific cell-free DNA methylation markers have been employed
in each of these applications; however, there are important
distinctions based on using disease-specific or normal cell-type
specific markers that are worth noting. Specifically, cell-type
specific DNA methylation markers have unique applications
to localize cancers of unknown primary (CUP) as well as to
detect metastases (Figure 3; Gai et al., 2018; Moss et al., 2018).
In addition, systemic therapy-related adverse event monitoring
remains one of the most promising applications.

CELL-FREE DNA METHYLATION
TECHNOLOGIES

There are many techniques that can be used to study DNA
methylation as well as different strategies that can be applied
to classify and quantify methylation status (Olkhov-Mitsel
and Bapat, 2012; Kurdyukov and Bullock, 2016; Galardi et al.,
2020; Zhao et al., 2020). These methodologies must be able to
distinguish between methylated and unmethylated cytosines.
This review mainly focuses on 5mc as it is the most commonly
characterized epigenetic mark in cancer. However, other DNA
modifications, including 5-hydroxymethylcytosine (5hmc), are
thought to be more dynamic, reflecting active demethylation

events, and may be complementary to characterize as well
(Song et al., 2017). The different DNA methylation detection
technologies and platforms are categorized in Figure 4. The main
methods are restriction enzyme digestion, affinity enrichment,
bisulfite-conversion, and enzymatic modification approaches.
To date, several of these approaches have been successfully
implemented to study genome-wide cfDNA methylation,
highlighted in Table 2. Restriction enzyme-based methods
cleave DNA at enzyme specific CpG sites. However, the highly
fragmented nature of cfDNA and limited frequency of CpG-
containing recognition sites make this approach challenging for
comprehensive profiling of cfDNA (Huang and Wang, 2019).
cfMeDIP-seq is an affinity-based approach that enriches for
methylated DNA using 5mc-specific antibodies (Shen et al.,
2018). As such, it is capable of characterizing overall methylation
levels across a region, but not at single CpG sites. In addition, the
majority of cell-type specific methylation markers in the human
body are hypomethylated as a result of methylation resetting that
takes place throughout tissue differentiation and development.
These methods that specifically enrich for hypermethylated DNA
may have limited detection potential at these regions of interest.

Bisulfite conversion chemically modifies DNA so that
unmethylated cytosines (C) are deaminated to uracil (U) to
be later replaced by thymine (T) via PCR, while unmethylated
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FIGURE 4 | DNA methylation technologies and platforms for signal detection. (A) Scale representation of DNA methylation technologies from targeted First- and
Second-Generation toward comprehensive Third-Generation applications in liquid biopsies. (B) Methods for detection of DNA methylation. The same DNA sequence
is found in all non-tumor cells, and simple sequence analysis cannot be used to distinguish its cell-type identity. However, these methods can be used to detect DNA
methylation (5mc) and DNA hydroxymethylation (5hmc) levels in tumor and non-tumor cells. MeDIP-seq, Methylated DNA immunoprecipitation sequencing; MBD,
methyl-CpG-binding domain sequencing; WGBS, Whole Genome Bisulfite Sequencing; BSAS, Bisulfite Amplicon Sequencing; RRBS, Reduced Representation
Bisulfite Sequencing; MCTA-seq, methylated CpG tandem amplification and sequencing; MSP, Methylation Specific PCR; MRE-seq, methylation-sensitive restriction
enzyme sequencing; HELP, Hpall-tiny fragment enrichment by ligation-mediated PCR; MSCC, Methyl-sensitive Cut Counting; EM-seq, Enzymatic
Methyl-Sequencing; TAPS, TET-assisted pyridine borane sequencing; TAB-seq, TET-assisted bisulfite sequencing; ACE-seq, APOBEC-coupled epigenetic
sequencing; hmc-CATCH, chemical-assistant C-to-T conversion of 5hmC sequencing; oxBS-seq, oxidative bisulfite sequencing.

cytosines are protected and remain cytosine (C) (Olova et al.,
2018). The majority of comprehensive cfDNA methylation
profiling has been done using bisulfite conversion methods,
including Whole Genome Bisulfite Sequencing (WGBS),
Reduced Representation Bisulfite Sequencing (RRBS),

Methylated CpG Tandem Amplification and Sequencing
(MCTA-seq), and Methylation Arrays. WGBS and RRBS are
capable of detecting DNA methylation at single-base resolution.
More importantly, these methods are capable of detecting
read-specific DNA methylation patterns (Scott et al., 2020).
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WGBS is the most comprehensive approach, but it can be
costly to sequence the whole genome to an informative depth.
However, sequencing costs are decreasing, making this approach
more attractive. RRBS has been optimized in a few instances for
accommodating highly fragmented cfDNA molecules (Guo et al.,
2017; De Koker et al., 2019). Despite these modifications, the
use of restriction enzymes in this sequencing approach give rise
to the same limitations as restriction-enzyme based methods.
MCTA-seq uses primers to preferentially amplify methylated
CpG islands (CpG tandem regions) and, while being more
targeted, this approach is also biased toward hypermethylated
regions (Liu X. et al., 2019). Methylation hybridization arrays
allow for single-base resolution but do not allow for pattern
analysis of multiple CpG sites from the same molecule and have
reduced genome-wide coverage of CpG sites compared to NGS
approaches (Moss et al., 2018).

While bisulfite conversion has long been considered the gold
standard of methylation detection, there are major limitations
that recent advances in enzymatic approaches show promise
in overcoming (Schutsky et al., 2018; Liu Y. et al., 2019). For
instance, sodium bisulfite is a harsh chemical treatment that
causes unwanted DNA degradation and fragmentation, resulting
in uneven genome coverage. Enzymatic Methyl-seq (EM-seq)
uses the enzyme APOBEC to deaminate unmethylated cytosines
and protects methylated cytosines from conversion by utilizing
TET2 as an oxidative enhancer (Vaisvila et al., 2019). This results
in the same base conversions as bisulfite sequencing, but this
method has been shown to cause less DNA damage and as a
result is more sensitive, requiring smaller amounts of input DNA.
This method is used in a recent publication to profile cytosine
methylation and nucleosome occupancy at the same time, a feat
made possible from retention of the original cfDNA structure
without fragmentation or degradation (Erger et al., 2020).

The nuances of these different methodologies to detect DNA
methylation make choosing the right method and accounting
for its limitations essential toward accurate interpretation of
results. Methylation detection technologies are rapidly evolving,
leading to expanded potential applications. For instance, one
such advancement involves the direct detection of methylation
without treatment of DNA, possible with nanopore-sequencing
from Oxford Nanopore Technologies (ONT) and single molecule
real-time (SMRT) sequencing from Pacific Biosciences (PacBio)
(Flusberg et al., 2010; Liu Q. et al., 2019; Ewing et al., 2020;
Yuen et al., 2020; Tse et al., 2021). Although direct detection of
methylation is not currently possible with cfDNA inputs, these
advances point toward new possibilities in the future.

TISSUE-OF-ORIGIN (TOO)
DECONVOLUTION ANALYSIS: USING
HEALTHY CELL-TYPE SIGNALS TO
INFORM ABOUT DISEASE

Tissue-of-origin (TOO) analysis takes each individual cell-free
DNA molecule in the circulation and routes it back to its tissue
and cellular origins as a non-invasive monitoring tool for tissue

damages (Figure 5). At steady state, cfDNA is released into the
circulation reflective of cellular turnover happening throughout
the human body, resulting in a complex mixture of fragments
(Barefoot et al., 2021). On average, the plasma from healthy
individuals has 1,500 genome equivalents or roughly 10 ng/mL
cfDNA concentration (Moss et al., 2018). With cancer, cfDNA
levels are thought to increase in parallel with disease progression
as a result of increased proliferation and death rates of tumor cells
(Kustanovich et al., 2019). However, relying on concentration
of cfDNA alone to diagnose disease is too simplistic of an
approach, as concentration is not an absolute indicator of disease
and changes can result from a plethora of factors, including
exercise, inflammation, and induction of cellular senescence.
Detection of changing cell-type proportions from alterations
in cfDNA composition is a more reliable approach. Shifting
cfDNA makeup has been used for monitoring altered death rates
of cells in different tissues, applicable to a broad spectrum of
physiological and pathological conditions as well as therapeutic
interventions. These include non-invasive prenatal testing, solid
organ transplant, cancer, neurodegenerative and autoimmune
pathologies, among many others (Sun et al., 2015; Zemmour
et al., 2018; Chatterton et al., 2019; Cheng A. P. et al., 2019).
To demonstrate feasibility, DNA methylation patterns specific
to a variety of epithelial, endothelial, nervous, stromal, muscle,
fat, and immune cell-types have been discovered and successfully
applied using TOO analysis of cfDNA (Lehmann-Werman et al.,
2016, 2018; Moss et al., 2018). In addition to tumor-derived DNA,
changes to the host microenvironment can contribute to altered
cell-type proportions of cfDNA in the circulation through cancer-
related changes to normal tissue architecture. Although normal
cell-specific DNA methylation markers are used, relevance to
disease is inferred through abnormal detection in the circulation
as a result of aberrant cell death and tissue damages (Heitzer
et al., 2020). Thus, the changing proportion of normal cell types
found in the circulation can be used to inform about disease states
(Houseman et al., 2012; Teschendorff et al., 2017; Zheng et al.,
2018; Huang et al., 2019; Barefoot et al., 2021). Recent studies
demonstrating the feasibility of using cell-type specific cfDNA
methylation marks for TOO analysis in cancer are described
below (Table 2). This methodology is useful to detect damage to
specific cell types in tissues and has many applications to inform
diagnostics in the clinic as well as to reveal complexities of cancer
pathophysiology at the cellular level.

COMPUTATIONAL METHODS FOR
CELL-MIXTURE DECONVOLUTION IN
LIQUID BIOPSY

Advances in liquid biopsy technology have led to the generation
of massive amounts of methylation sequencing data that can
be difficult to analyze due to the extensive number of possible
features in the human methylome. Computational methods,
including many machine learning techniques, have been
developed to better handle such data by isolating specific signals
and discriminative features, thereby reducing the dimensions of
the data so that it is easier to interpret (Ko et al., 2018). In
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TABLE 2 | Feasibility of tissue-of-origin analysis in oncology using cell-free DNA methylation markers.

Disease Methylation data type Marker type Deconvolution method Publication

HCC, NIPT, Transplant WGBS Tissue-specific QP Sun et al., 2015

PDAC, CRC, Diabetes, Transplant, MS, TBI, IBD BSAS Tissue-specific Read-specific binary classification Lehmann-Werman et al., 2016, 2018

Transplant WGBS Tissue-specific QP Cheng et al., 2017

CRC, LCP RRBS, WGBS Both Multi-class prediction, RF, feature extraction “haplotype blocks” Guo et al., 2017

MI, sepsis BSAS Tissue-specific Read-specific binary classification Zemmour et al., 2018

CRC, BRCA, PDAC, CUP, Transplant, Sepsis 450K array Tissue-specific NNLS regression Moss et al., 2018

Transplant, infection WGBS Tissue-specific QP Cheng A. P. et al., 2019

Neurotrauma + neurodegenerative disease tNGBS (multiplex 35 amplicons) Tissue-specific Read-specific binary classification (k-mer analysis) Chatterton et al., 2019

HCT, GVHD, transplant WGBS Tissue-specific QP Cheng et al., 2020

HCC, cirrhosis, cholelithiasis, acute pancreatitis MCTA-seq Tissue-specific PSO Liu Y. et al., 2019

BRCA BSAS Tissue-specific Read-specific binary classification Moss et al., 2020

mCRPC Cpature-seq/WGBS Both PCA Wu et al., 2020

12 cancer types Cpature-seq/WGBS Both Ensemble logistic regression Liu et al., 2020

ALS, pregnancy WGBS Tissue-specific Bayesian EM algorithm (CelFiE) likelihood-based Caggiano et al., 2020

Transplant, AKI cfNOME-seq Tissue-specific LSM (QP) Erger et al., 2020

COVID-19 WGBS Tissue-specific NNLS regression Cheng et al., 2021

HCC, CRC, LCP WGBS Cancer-specific Read-specific, likelihood-based Kang et al., 2017; Li et al., 2018

LCP, HCC. PDAC, GBM, CRC, BRCA hMe-Seal (5hmc) Cancer-specific RF, Mclust Song et al., 2017

PDAC, AML, BRCA, CRC, RCC, PLC MeDIP-seq Cancer-specific Limma, binomial GLM Shen et al., 2018

Pediatric MB WGBS/CMS-IP-seq Cancer-specific Multivariate Cox regression linear model Li et al., 2020

Glioma, intracranial tumors MeDIP-seq Cancer-specific Binomial RF Nassiri et al., 2020

HCC, Hepatocellular Cancer; NIPT, Non-Invasive Prenatal Testing; PDAC, Pancreatic Cancer; CRC, Colorectal Cancer; MS, Multiple Sclerosis; TBI, Traumatic Brain Injury; IBD, Inflammatory Bowel Disease; LCP, Lung
Cancer Primary; MI, Myocardial Infarction; BRCA, Breast Cancer; CUP, Cancer Unknown Primary; GBM, Glioblastoma Multiforme; AML, Acute Myeloid Leukemia; RCC, Renal Cell Carcinoma; HBC, Hepatobiliary Cancer;
NSCLC, Non-Small Cell Lung Cancer; HCT, Hematopoietic Cell Transplant; GVHD, Graft-vs.-Host Disease; AKI, Acute Kidney Injury; ALS, Amyotrophic Lateral Sclerosis; MB, Medulloblastoma; WGBS, Whole Genome
Bisulfite Sequencing; BSAS, Bisulfite Amplicon Sequencing; RRBS, Reduced Representation Bisulfite Sequencing; ddPCR, Droplet Digital PCR; tNGBS, targeted Next Generation Bisulfite Sequencing; MeDIP-seq,
Methylated DNA immunoprecipitation Sequencing; CMS-IP-seq, Cytosine 5-methyenesulphonate-immunoprecipitation sequencing; MCTA-seq, Methylated CpG Tandems Amplification Sequencing; cfNOME-seq, cell-
free Nucleosome Occupancy and Methylation Sequencing; RF, random forest; GLM, generalized linear model; NNLS, Non-Negative Least Squares; LSM, Linear Least Squares Minimization; QP, Quadratic Programming;
PSO, Particle Swarm Optimization; EM, Expectation-Maximization. Some of the materials are based on Barefoot et al. (2021).
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FIGURE 5 | Tissue-of-origin deconvolution analysis. CfDNA is a mixture of fragments released from healthy and diseased cells in different tissue types throughout
the human body into the circulation. DNA methylation is highly cell-type specific and can be used to identify the cellular origins of cfDNA at specific markers.
Tissue-of-origin (TOO) analysis traces cfDNA molecules back to the tissues and cell types they originated from and use changing tissue proportions to reveal altered
tissue homeostasis in diseased states or during therapy.

this dimension reduction approach, the data is projected into
lower-dimensional spaces, ultimately with the aim to improve
prediction accuracy through increasing the signal-to-noise ratio.
As previously described, the total makeup of cfDNA can be
modeled as a complex mixture with TOO deconvolution analysis
aiming to trace each individual cfDNA molecule back to its
cellular origins as a non-invasive measure of tissue damage.

There are many computational methods that have been
successfully applied to facilitate TOO deconvolution of cfDNA
(Table 2). These include reference-based supervised learning
models, which utilize labeled training and test datasets for
classification tasks (Teschendorff et al., 2017). Commonly used
methods include linear or logistic regression and random
forests. In addition, one study uses Particle Swarm Optimization
as a supervised global optimization method. While global
optimization methods may be supervised, semi-supervised, or
unsupervised, in this case the method is applied as a supervised
learning model (Liu Y. et al., 2019). There are also several
unsupervised learning models, including clustering and density
estimation methods, in which the goal is to learn the inherent
structure and relations of unlabeled data (Houseman et al., 2016).
One advantage of unsupervised, reference-free algorithms is the
ability to estimate contributions from unknown cell types, or
cell types for which reference methylation data is not available.
However, the biological meaning of the features selected in these
models is often lost or difficult to interpret, making it more
challenging to explain the relevance of results. Recently, deep
learning has also been applied as a powerful modeling technique
for deconvolution of DNA methylation data as these methods
perform simultaneous feature extraction and classification (Levy
et al., 2020; Menden et al., 2020). As a high-level overview, the
computational methods for cell-mixture deconvolution can be
generalized as adhering to the following format that is consistent
across liquid biopsy applications. Initially, features are selected
or extracted that can characterize variation among cell-type
contributors in the circulation. Then, statistical models are built
to estimate the mixing proportions of each cell type based on
the reduced number of discriminative DNA methylation features

selected. Typically, these models are trained using reference data
where the mixing proportions are already known and then tested
on datasets where the mixing proportions are unknown for
evaluation (Feng et al., 2019). As a final step, predictive models
can be developed after deconvolution, using the inferred cell-
mixture proportions as predictors to estimate disease phenotypes.

Despite demonstrated success applying these computational
models to cfDNA methylation deconvolution, these algorithms
were originally designed to be learned from very large training
datasets (Ko et al., 2018). In order to maintain predictive
capabilities, modifications are necessary to optimize these models
for working with smaller and often more diverse datasets, typical
to the field of liquid biopsy. With this in mind, there are
important biological properties of cell-free DNA methylation
that can be leveraged toward this goal. First, in comparison
to DNA in tissues that is artificially sheared for introduction
to standard library preparation methods, the fragmentation
patterns of cfDNA are biologically derived (Lo et al., 2021).
The majority of cfDNA fragments are ∼167 bp, representing
the length of DNA wrapped around a nucleosome and reflective
of degradation by nucleases as a by-product of cell death. This
fragmented nature of cfDNA lends itself to methods developed
for characterizing cfDNA at the level of single molecules as
opposed to population-level averages at single CpG sites (Li
et al., 2018). Read-specific analysis allows for each read-pair to be
modeled as an independent sample reflective of each individual
cfDNA molecule. This allows the depth of sequencing to be
utilized toward increasing sample size (Scott et al., 2020). In
addition, the density of neighboring CpG sites varies across
the human genome with highly dense organization defined as
CpG islands. Methylation status at adjacent CpG sites is co-
regulated in CpG islands due to the expanse of methylating
and demethylating enzymes acting in the area (Marzese and
Hoon, 2015). This co-dependency can be leveraged to increase
specificity through modeling the methylation features selected
with pattern analysis. DNA methylation detection technologies
and computational approaches that take advantage of pattern
analysis of individual cfDNA molecules have demonstrated to
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be more robust and to increase the sensitivity and specificity of
cell-type proportion estimations (Lehmann-Werman et al., 2016;
Guo et al., 2017; Li et al., 2018; Zemmour et al., 2018; Chatterton
et al., 2019). Overall, the biological relevance of selected DNA
methylation markers and derived tissue proportions to disease
can be utilized to inform analysis and model optimization.

COMBINING GENETIC AND EPIGENETIC
MARKERS TO NON-INVASIVELY
MONITOR TREATMENT RESPONSE AND
THERAPY-RELATED ADVERSE EVENTS

There is a need to identify predictive biomarkers for real-
time monitoring of therapy-related adverse events relative to
therapeutic efficacy. Combining changes to mutant ctDNA
with altered proportions of cell-type specific cfDNA can reflect
intervention-based changes (Figure 6; Erger et al., 2020; Guo
et al., 2020; Wu et al., 2020). Therapy regimens for many
cancers involve surgery, chemotherapy, radiotherapy, targeted
therapy, and immunotherapy (Hofman et al., 2019). Each of these

interventions can have a different systemic effect, and the ability
to distinguish different cell types participating and potentially
contributing to toxicities with cfDNA in serially drawn blood
samples could significantly impact therapeutic decision making.
Although imaging modalities can be used as an indirect way
to gauge therapeutic efficacy, these results are often unreliable
and difficult to interpret. Imaging results can be clouded by
depictions of pseudoprogression, making them ineffective or
crude instruments to monitor for concurrent changes necessary
to guide therapy decisions (Maia et al., 2020). In contrast, the
half-life of cfDNA is between 15 min and 2 h (Khier and Lohan,
2018). The rapid clearance allows for serial analysis of disease
evolution over time, especially under selective pressures from
ongoing therapy (O’Leary et al., 2018; Oellerich et al., 2019; Nabet
et al., 2020; Peter et al., 2020). This technology allows for serial
sampling to include a baseline comparison from which therapy-
related relative changes may be assessed, taking into account
patient specific co-morbidities at an individualized level.

Combining genetic and epigenetic analyses of cell-free
DNA has many unique advantages when applied to precision
therapeutics in cancer (Cheng T. H. et al., 2019; Zhang et al.,
2019). Liquid biopsies have been shown to accurately characterize

FIGURE 6 | Predicting treatment response and therapy-related toxicities from combined genetic and epigenetic analyses of cfDNA. The minimally invasive nature of
liquid biopsies allows for serial sampling to monitor changes over time, especially under selective pressures from ongoing therapy. CtDNA can be used to track
clonal heterogeneity over time to assess treatment response and detect treatment-resistant clones. Normal cell-specific cfDNA methylation patterns can be used in
combination with ctDNA to assess the impact of treatment to the surrounding tumor microenvironment and to monitor for therapy-related toxicities in somatic
cell-types. Acronyms: ctDNA, (circulating tumor DNA); cme-DNA, (circulating methylated cell-free DNA).
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tumor genotypes and allow for molecular subtype classification
to provide a comprehensive view of intratumor heterogeneity
(Cohen et al., 2018; Christensen et al., 2019; Heitzer et al., 2019).
High sampling frequency allows for modeling of evolutionary
dynamics of tumor progression. Also, molecular changes
identified after initiation of therapy can provide insight into
therapy response as well as track tumor subclones that may lead
to emergence of therapy resistance (Ahronian and Corcoran,
2017; Zhou et al., 2020). The systemic view provided by serial
liquid biopsies is ideal to monitor widespread changes that may
better inform clinical decision making in the face of uncertainty.
For example, in the case of surgical removal of the tumor or
therapeutic success, liquid biopsies can be used to monitor for
minimal residual disease and recurrence. While ctDNA can be
used to track molecular changes in the circulation, there is a
benefit to monitoring the cancer-related changes to the host
microenvironment in tandem requiring a combined genetic and
epigenetic analysis. Cell-specific cfDNA methylation patterns
of normal cells can be used in combination with ctDNA to
assess the impact of treatment also on the surrounding tumor
microenvironment. This is particularly useful to surveil for
metastatic disease in distant tissue types from the primary tumor
as well as to monitor for therapy-related toxicities in somatic
cell types (Zhang et al., 2019). Further, liquid biopsies can help
delineate factors that underlie clinical outcomes, providing a basis
for recommending different treatments based on anticipated
benefit to the patient. Liquid biopsies can identify predictive
biomarkers to guide selection of treatment, recognize off-target
effects, and develop individualized treatment plans for patients
(Hofman et al., 2019). These applications provide a more
complete picture of therapeutic response as well as tissue-specific
cellular toxicity to better inform clinical care and management
throughout the treatment process.

FUTURE DIRECTIONS AND
CONCLUSION

Liquid biopsies are rapidly emerging as an alternative and
complementary approach to traditional solid tissue biopsies and
have high utility for many applications in clinical oncology.
Technology advances have made genome-wide profiling of
circulating analytes possible and allow for transition from
targeted to comprehensive approaches. With transition to “third-
generation” liquid biopsies, DNA methylation patterns can be

used to leverage signals from both tumor and non-tumor cells to
increase signal abundance and discern biological relevance (Im
et al., 2020). Despite great potential, comprehensive applications
of liquid biopsy in oncology are still in their infancy. Additional
large-scale, stratified, and randomized longitudinal studies are
needed to begin to understand the complex interactions and
biological significance of the comprehensive data identified from
NGS technologies. Future work aimed at elucidating the biology
of cell-free DNA release is needed to begin to control for
co-morbidities and other confounding variables. Efforts aimed
at assessing the effect of therapy regimens (chemo, radiation,
immunotherapy, etc.) on tumor and non-tumor signals will
become essential to determine what signals can be derived
from the circulation. Tissue-of-origin analysis can be used to
localize signals and generation of cell-type specific reference
methylomes can improve specificity of features selected for
application of TOO analysis in cancer (Moss et al., 2018;
Barefoot et al., 2021). In addition, combining genetic and
epigenetic markers may improve targeted-therapy selection and
treatment response monitoring. These approaches are potentially
synergistic, and future integration of signals across multiple
genetic and epigenetic omics levels could fine-tune these
applications for optimal use in precision oncology.
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