
Multifractal Spatial Patterns and Diversity in an
Ecological Succession
Leonardo Ariel Saravia1*, Adonis Giorgi2, Fernando Momo1

1 Instituto de Ciencias, Universidad Nacional de General Sarmiento, Los Polvorines, Buenos Aires, Argentina, 2 CONICET, Departamento de Ciencias Básicas, Universidad

Nacional de Luján, Luján, Buenos Aires, Argentina

Abstract

We analyzed the relationship between biodiversity and spatial biomass heterogeneity along an ecological succession
developed in the laboratory. Periphyton (attached microalgae) biomass spatial patterns at several successional stages were
obtained using digital image analysis and at the same time we estimated the species composition and abundance. We show
that the spatial pattern was self-similar and as the community developed in an homogeneous environment the pattern is
self-organized. To characterize it we estimated the multifractal spectrum of generalized dimensions Dq. Using Dq we analyze
the existence of cycles of heterogeneity during succession and the use of the information dimension D1 as an index of
successional stage. We did not find cycles but the values of D1 showed an increasing trend as the succession developed and
the biomass was higher. D1 was also negatively correlated with Shannon’s diversity. Several studies have found this
relationship in different ecosystems but here we prove that the community self-organizes and generates its own spatial
heterogeneity influencing diversity. If this is confirmed with more experimental and theoretical evidence D1 could be used
as an index, easily calculated from remote sensing data, to detect high or low diversity areas.
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Introduction

We know that space can be an essential factor controlling

species’ coexistence and biodiversity in many communities [1].

Spatial pattern can be the result of environmental heterogeneity or

can be produced by species’ internal dynamics and interactions

[2]. The latter are called self-organized and could be an important

determinant of the structure and functioning of ecosystems [3].

Understanding the self-organization of ecological communities

and the levels of biological diversity that emerge represents a

fundamental theoretical challenge for ecologists [4].

Most studies focus on the effects of spatial patterns or spatial

structure on diversity [5,6] but can we know something about

biodiversity by studying spatial pattern?

Biodiversity is usually related to environmental spatial hetero-

geneity or habitat complexity [7,8] but self-organizing ecosystems

generate its own spatial patchiness. This can be seen in the

distribution of canopy height in tropical forests [9]. These

distributions are fractals and are suspected to be produced by

self-organization [10]. The auto-generated spatial heterogeneity

could in principle have a strong influence on diversity, but this was

never investigated. If the self-organizing process acts over an

ecological succession it may influence both diversity and spatial

pattern.

Early studies suggested that a measure of spatial pattern could

be used as an index of persistence of populations and successional

stage [11,12]. This measure was the fractal dimension of patches:

early successional stages should have a higher fractal dimension

because they have more intricate shapes and they are less

persistent; late successional stages should have a lower fractal

dimension because they have more regular shape and they are

more persistent. This relationship between shape and persistence is

derived from modified Brownian diffusion models, but it could be

applied without committing to any particular Brownian model.

Though its application was promising [13] no further studies of

fractal dimension followed this line (but see [14]).

Spatial pattern and succession has been linked by a conceptual

model called nucleation [15], where some species act as a nucleus

to facilitate the establishment of other species; patches of the

colonizing species first grow and then start to decrease as they are

replaced by other, late successional, species. Eventually patches of

some species coalesce and the spatial pattern is relatively fixed

unless some disturbance occurs. This was later developed as a

‘‘model of heterogeneity cycles’’ [16] where cycles of heterogeneity

alternate through succession: high heterogeneity represents

periods of species invasion and establishment, and low heteroge-

neity represents periods of exclusion. One problem with this

approach is that the measurement of heterogeneity is scale

dependent so different sampling units will give different results

[17].

Fractals methods can provide indices that measure the spatial

heterogeneity of the community independent of the scale of

observation over a range of scales [18,19], and have been

extensively used in ecology [20,21]. A natural extension of these is

multifractal analysis [22] that has not been applied so widely to

date. Fractal analysis usually looks at the geometry of sets, that is,
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patterns arising from presence/absence data, whereas multifractal

analysis looks at the arrangement of quantities, like densities or

proportions.

In ecology, multifractals have been used in the analysis of

temporal variability in plankton biomass [23,24], as a model of

extinction and the origin of species [25], in the analysis of the

spatial distribution of gaps caused by falling trees in the rainforest

[26,27], and more recently in the analysis of species-area

relationships [28,29]. The biomass spatial distribution of intertidal

microphytobenthos has been analyzed using a modified multi-

fractal technique [30]. These communities can be used as a model

to study the relationship between species diversity, succession and

spatial pattern. In a broader sense these communities are called

periphyton.

Periphyton grows attached to submerged surfaces and is a

complex community composed of microorganisms and other

components including algae, bacteria, fungi, animals, and

inorganic and organic detritus [31]. It can be responsible for

most primary production in shallow aquatic environments such as

streams, lakes, coastal waters and wetlands [32,33].

One of the descriptive characteristics of periphyton communi-

ties is biomass, which is defined as the amount of organic matter

(or carbon) that has accrued from the production per unit area

[34]. Biomass is a measure that integrates the interactions of

individual characteristics of species, abiotic environmental controls

and effects of herbivory [35].

In turn, the spatial distribution of biomass is the result of

colonization processes, growth, competition and herbivory, to

mention only the most important ones. Colonization occurs in

random places that act as nuclei for development of algal biomass.

As growth progresses algal communities develop a complex

architecture similar to that of tropical forests, where competition

for light and nutrients plays an important role [36].

Thus we use experimental microcosms with attached micro-

algae communities (periphyton) to explore the relationship

between spatial pattern and diversity throughout succession. Our

hypothesis is that spatial self-organizing processes, characterized

by multifractals, influence diversity over ecological succession. We

also discuss the application of the conceptual model of cycles of

heterogeneity during succession.

Methods

Experimental procedures
The periphyton colonization was carried out on squares of

56560.1 cm high impact polystyrene. Initially we added 20

squares at the bottom of one 60660 cm glass aquarium and then

10 squares were added every week for six weeks. The

experimental device was located in a controlled environment

with a light period of 12 hours and a temperature of 20uC. The

aquarium was filled with water filtered through a 30 mM pore

mesh. After that we added 50 cm3 of water with high density of

algae obtained by scraping Egeria densa plants to remove the

natural periphyton community. Twice a week we added water

with periphytic algae to compensate for evaporation, to

accelerate colonization and to simulate natural conditions. In

the seventh week, sixty artificial substrata were removed and

photographed to estimate species’ composition and abundance.

In one square for each week a Nikon Optiphot microscope with

an underwater lens and phase contrast was used to identify algae.

A minimum of ten random fields were observed, and observation

continued on subsequent fields until no new species was found.

Algal density was then calculated, together with species richness

and Shannon diversity index [37].

To obtain the biomass spatial pattern, the photographs were

digitized and the brightness values of each pixel were converted to

biomass following the method of Saravia et al. [38]. Thus we

obtained the spatial distribution of the periphyton biomass, once a

week, along the succession. Additionally ten squares were left in

the tanks for 3 additional weeks but only the biomass pattern was

determined.

Multifractal analysis
To characterize the scaling behavior of the system we estimated

the Fourier power spectrum of the biomass spatial pattern [39].

Power laws characteristics of scale invariance were observed. The

exponents obtained from these can be used to determine

stationarity of the dataset [40], here we refer to the broad sense

definition of stationarity that means stationarity of spatial

autocorrelation function.

Although fractal analysis can be used with nonstationary data

[41], stationarity was a desirable property to obtain stable and

accurate estimates [42,43].

The estimated exponents were in all cases greater than one so

we used a gradient to transform the biomass data and obtain a

stationary data set (Figure S1) [40].

Thus, we used the following transformation :

+b(i,j)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b(iz1,j){b(i{1,j)ð Þ2z b(i,jz1){b(i,j{1)ð Þ2

q

were b(i,j) is the original biomass data, i and j have a range

determined by the resolution of the image. We normalized the

data using:

X (i,j)~
+b(i,j)XX

+b(i,j)

After that we divide the spatial dataset with boxes of size e, and

compute:

Xq(e)~
XN(e)

i

X
q
i

being N(e) the number of boxes needed to cover the image and q a

real number called moment order.

We then estimated the exponents K(q):

Xq(e)!e{K(q)

as the slope of log(Xq) versus log(e) using standard least squares.

A nonincreasing hierarchy known as generalized or Renyi

dimensions [44,45] can be defined D(q) = K(q)/(q-1). The most

important exponent in this approach is quite possibly D(1), the

information dimension. When q = 1 D(q) is undefined, so it is

estimated replacing log(Xq) by the following:

Y~
XN eð Þ

i

Xilog Xið Þ

thus D(1) is the slope of Y versus log(e).

D(1) provides us with a straightforward measure of the degree of

intermittency or heterogeneity in the system [46]. Also the

exponent D(1) characterize the distribution and intensity of
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singularities, i.e. of high values of biomass with respect to the

mean. If D(1) is smaller the distribution of singularities will be

more sparse and data will be more spiky, if D(1) is greater

(approaching two in our case) the singularities will have lower

values of biomass and a more uniform distribution.

Other important values of D(q) are for q = 0, D(0) is the

dimension of the support of the distribution known as the standard

fractal dimension. In our case, it is always two because the

periphyton fills all the plate. For q = 2, D(2) is a measure of scaling

of spatial correlation: the correlation dimension. But the complete

spectrum provides us with an enormous amount of additional

information about the geometric structure of the underlying fractal

distribution [27]. For a general interpretation positive q preferen-

tially weight the denser regions of the distribution while negative q

quantify the sparse regions of it [47].

A statistical permutation test was used to compare pairs of D(q)

curves over the course of succession. The test statistic was the two-

sample t-statistic to compare D(q) values between weeks, averaged

over q. A P-value was obtained for the test statistic by simulation.

Plates were randomly allocated to each of two groups (different

weeks) and the mean t was recalculated for 10000 data sets

permuted in this way [48]. Pairwise comparisons were performed

between the weeks. The P-values were adjusted for multiple testing

using a step-down Bonferroni procedure [49]. The statmod R

package was used to perform these tests [50].

To determine if D(q) spectra are different from one produced by

a random spatial distribution of biomass we performed a

randomization test. We shuffle the pixel position and recalculate

D(q) and obtained a confidence interval for a random pattern

performing 1000 repetitions [48]. If the actual values of D(q) falls

outside the interval the spatial pattern is not random.

Kendall’s rank correlation and quantile regression were used to

relate D(1) with Shannon’s diversity across the weeks. Quantile

regression allows the examination of the maximum response,

rather than the mean response, of one variable to a predictor.

It can be used for analyzing data with non-constant variance,

which is often meaningful for ecological processes in which many

unmeasured variables may affect the response The ecological

concept of limiting factors as constraints on organisms often

focuses on rates of change in quantiles near the maximum

response, when only a subset of limiting factors are measured [51].

Results

A data set can be called multifractal if the plots of log Xq(e) vs

log(e) are straight lines for wide range of log(e) and several values of

q. The biomass data from the photographs satisfy this assumption

over the range of scales considered (Figure 1 and figures S2, S3,

S4, S5, S6, S7, S8). The data used to calculate Xq at each scale was

not independent because the squares used for smaller e values are

nested in the greater ones. This violates the assumptions implicit

when performing statistical tests but does not invalidate the least

square method to determine the exponents K(q). The coefficient of

determination R2 can be used as a descriptive measure of goodness

of fit [28]. The vast majority of R2 were greater than 0.99, and

never were less than 0.94.

The D(q) vs. q plot, show that the ‘‘singularities’’ in the spatial

distribution of biomass decrease with time, i.e. the curves become

flatter (Figure 2). This pattern can be observed looking at the

biomass images of the community development (Figure 3). All

weeks have significant differences (P,0.01) except weeks one and

two. Looking at the images of biomass, weeks 1 and 2 appear to be

different, but analysing the standard deviation of D(1) (Table 1) we

realize that in these weeks the s.d. is much greater than in the rest

of the weeks. This means that the succession development is more

variable in its first stages, in fact, the s.d. tends to dimish as the

succession advance suggesting a convergence of spatial pattern by

the end of succession.

Each week, the values of D(q) are closer to two than the values

of the previous week. This monotonic relationship is maintained

Figure 1. A typical graph in logarithmic scale corresponding to
3 weeks of development of the biomass spatial distributions of
Xq versus e for q varying from -5 to 5, showing a very good
linear fit for all q considered, the R2 values were always greater
than 0.99. All other biomass distributions showed similar fits with R2

values between 0.94 and 0.99.
doi:10.1371/journal.pone.0034096.g001

Figure 2. Spectrum of generalized dimensions D(q) for different
times of the periphyton succession. The graphs are averages for all
the plates with the same weeks of development.
doi:10.1371/journal.pone.0034096.g002
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Figure 3. Images of periphyton biomass for different weeks of development. D(1) is the information dimension, and sd the
standard deviation.
doi:10.1371/journal.pone.0034096.g003
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for all D(q) but the negative values of the second and third week,

which are inverted. Regions of lower biomass of the third week

have more irregularities than ones from the second week.

At the 9th week D(q) varies very little with q and is very close to

two. A uniform surface with equal values of biomass will give a

straight line at two, so we could say that the biomass is close to not

being a multifractal anymore. There is very little structure on the

image of 9 weeks, the dominant feature seems to be random noise

produced by the method of biomass estimation. Indeed there is

some structure because the test for random spatial distribution was

rejected for all q, for all plates and weeks (Figure 4). This stage is

rarely reached in natural scenarios because spates in streams and

other natural disturbances remove most of the attached biomass

and reset succession to its first phases.

In the passage from the third to fourth week there is a big

separation between curves, and this coincides with a change in

species dominance from Oocystis sp. to Chlorella sp. (Figure 5). This is

the the only place where this kind of change occurs and can be

related to a structural change in the community.

Chlorella sp is the only species occurring at high densities along

the whole succession. This species has a cyclical pattern of

dominance. In the second week it co-dominates with Oocystis sp,

and in the third week the community is dominated by Scenedesmus

sp, replacing Chlorella sp (Figure 5). The number of species is

around 20 and has a cyclic behavior with peaks at one, three and

six weeks and the Shannon diversity index H decreases as the

succession advances, except for the 4th week where H is higher

than the previous week (Table 1). The information dimension

D(1), used to characterize spatial heterogeneity, increases along

the succession. This means that spatial heterogeneity decreases

since a D(1) approaching two implies a flatter surface (Table 1).

The D(1) seems to be related to the Shannon diversity index H,

Kendall’s rank correlation is highly significant (tau = 20.52,

P,0.05) (Figure 6). All quantiles are different from zero

(P,0.05) and all of them show a decreasing tendency, which

means that the higher H is, the lower D(1), and the more

heterogeneous is the biomass spatial distribution. The 90%

quantile can be used as a guide of the minimum diversity of a

site given its D(1) (Figure 6).

In fact H and D(1) are both expressions of Shannon entropy,

one estimated from the biomass distribution and another from

species abundances [52]. Thus we found a way to relate the

Table 1. Information dimension D(1) plus standard deviation, number of species and Shannon diversity (H) calculated for each
week of the periphyton succession.

Weeks

1 2 3 4 5 6 9

D(1) 1.78060.038 1.88160.039 1.89760.013 1.94360.017 1.95760.006 1.98560.002 1.99660.001

No.Species 20 11 19 12 16 23 –

H 3.57 2.69 2.26 2.11 2.77 1.62 –

doi:10.1371/journal.pone.0034096.t001

Figure 4. Example of confidence intervals (P = 0.01) for
generalized dimensions D(q) for one plate of 9 weeks. These
were calculated using a randomization of biomass spatial distribution
and indicates that the spatial distribution is not random. All other plates
give similar results.
doi:10.1371/journal.pone.0034096.g004

Figure 5. Proportion of the most abundant species for each
week. The species that provide more than 5% of the total abundance
for each week are included. The legend abbreviations are: Chlo:
Chlorella sp, Scen: Scenedesmus sp, Oocy: Oocystis sp, Nita: Nitzschia
amphibia, Nitd: Nitzschia dissipata, Lynl: Lyngbia limnetica, Lynn:
Lyngbia nordgardii.
doi:10.1371/journal.pone.0034096.g005
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information contained in the spatial pattern to the information

contained in the abundance and the number of species in this

ecosystem.

Discussion

Abiotic systems maintained far from equilibrium can produce

macroscopic ordered patterns in space emerging from what looks

like microscopic chaos. This is especially evident when dealing

with biotic ecosystems where similar patterns appear replicated at

different scales [27,53].

Starting from homogeneous substrata the colonizing microalgae

produces a self-similar spatial pattern. Thus the spatial pattern is

not imposed by external conditions but is generated endogenously

by the interactions and growth of algae and other components of

the periphyton, therefore the conditions for self-organization are

met [54]. This is the first part of our hypothesis: the spatial pattern

of periphyton communities is self-organized.

The system produces a self-similar spatial pattern resembling

those occurring in critical states, a description of the kind of

criticality and the possible underlying mechanisms is outside of the

scope of this paper and is reviewed elsewhere [55].

The model of cycles of heterogeneity assumes that when one

species replaces another a high heterogeneity should be observed.

We noted that in the third week of development, the two

codominant species (Chlorella sp and Oocystis sp) were replaced by

Scenedesmus sp, but we did not observe an increase in

heterogeneity as measured by the information dimension D(1).

In fact we see that D(1) always decreases over time, but this could

occur because the sampling interval is one week and the

replacement of species has already been completed. A greater

heterogeneity was only detected for negative q, that means that

the lower biomass regions the plates are more heterogeneous.

This evidence, which can only be observed using the multifractal

approach, could lend partial support to the model of cycles of

heterogeneity.

The link between persistence and fractal dimension has been

studied in the context of patch dynamics. Both theory and

experimentation have shown that when patch limits are more

intricate and complex, these correspond to early succession stages,

with less persistent patches and higher fractal dimension [13,56].

On the other hand when patches are more uniform, fractal

dimension is lower corresponding to late successional stages. In

our case D(1) has a different meaning: when it is lower it

corresponds to more complex and heterogeneous spatial biomass

distributions. When it is higher, closer to two, it corresponds to

more uniform distributions. In fact when D(1) is equal to two the

distribution is a completely flat surface. Our observations confirm

previous studies, in that early successional stages correspond to

more complex distributions and late successional to more uniform

ones. This could be useful for applications in landscape

management and classification of different areas by remote sensing

[12]. The D(q) spectra can be used to characterize different

successional stages, but more studies are needed to see if it can be

used in systems with habitat heterogeneity.

The patch distribution of vegetation was extensively studied in

arid regions [57]. It has been hypothesized that the loss of a self-

organized spatial pattern in the vegetation patchiness can be used

as signature of imminent catastrophic shifts between alternative

states [54]. Evidence that patch distributions are self-similar

(fractal) was found in Mediterranean ecosystems and it was also

found that with increasing grazing pressure, vegetation patterns

deviated from self-similarity [58]. Thus the loss of self-similar

behavior can be used as a warning signal for the onset of

desertification. In our case the loss of self-similiarity can be related

to the loss of biodiversity. Which is not a catastrophic change but a

gradual change produced by succession.

We observed a relationship between the information dimension

estimated from the spatial pattern, that is from a snapshot of the

community, and the Shannon’s diversity estimated from the

species abundances. To put it in another way, we could infer a

minimum diversity of a site without either species identification

nor estimation of abundances. As the spatial distribution of

periphyton’s biomass tends to lose the fractal behavior, diversity

also tends to decrease. This is observed when the information

dimension approaches an integer value of two.

The negative relationship between biodiversity and D(1) was

also found in semi-arid shrubland and grasslands ecosystems

[59,60]. In that case the relationship can be produced by an

increased habitat heterogeneity that permits the coexistence of a

greater number of species, or by the self-organization process, but

is difficult to separate the two possible sources of heterogeneity. In

our case we are confident that the spatial heterogeneity is

produced by self-organization, i. e. by the interaction of species

in the succession process.

This relationship may be due to different algal growth forms

and thus estimating functional diversity could provide a more

exact picture. Other studies have found a positive relationship

between functional diversity and spatial biomass stability [6],

which means less heterogeneity. This is opposite to our results, but

the heterogeneity was measured at only one scale and the spatial

extent used in that study was very limited compared to ours, so

their results may not be comparable to ours.

Our approach could be applied to other ecosystems where the

biomass distribution can be estimated, such as tropical forest [61],

and used to identify zones with high and low diversity as a warning

signal for conservation planning and management.

We are in the process of building a model that can reproduce

the self-similar patterns and the link between Shannon’s diversity

and the information dimension. More detailed studies and the

Figure 6. Information dimension D(1) by Shannon’s diversity
index H. The lines are estimated using quantile regression, all slopes
are statistically different from zero ( P,0.05), and all slopes are less than
zero indicating a negative relationship with diversity which means a
positive relationship with heterogeneity.
doi:10.1371/journal.pone.0034096.g006
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extension to other ecosystems are essential to evaluate the

relevance and applicability of the results presented here.
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Figure S1 Bidimentional power spectrum for the periphyton’s
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of community development
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of community development
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Figure S5 Graph in logarithmic scale of Xq versus e for 4 weeks

of community development
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Figure S6 Graph in logarithmic scale of Xq versus e for 5 weeks
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Figure S7 Graph in logarithmic scale of Xq versus e for 6 weeks

of community development
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Figure S8 Graph in logarithmic scale of Xq versus e for 9 weeks

of community development
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