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A B S T R A C T   

Covariate constrained randomization (CCR) is a method of controlling imbalance in important baseline cova
riates in cluster-randomized trials (CRT). We use simulated CRTs to investigate the performance (control of 
imbalance) of CCR relative to simple randomization (SR) under conditions of misspecification of the cluster-level 
variable used in the CCR algorithm. 

We use data from a Patient-Centered Outcomes Research Institute (PCORI)-funded CRT evaluating the 
Mothers and Babies (MB) intervention (AD-1507-31,473). CCR methodology was used in the MB study to control 
imbalance in, among other baseline variables, the percent minority (i.e., non-White) participants at each study 
site. Simulation schemes explored variation in degree of misspecification in the baseline covariate of interest, and 
include correct report, observed misspecification, and a range of simulated misspecification for intervals within 
and beyond that observed in the MB study. We also consider three within-site sample size scenarios: that 
observed in the MB study, small (mean 10) and large (mean 50). Simulations at every level of baseline covariate 
misspecification suggest that use of the CCR strategy provides between-arm imbalance that is simultaneously 
lower and less variable, on average, than that produced from the SR strategy. We find that the gains to using CCR 
over SR are nearly twice as high with accurate reporting (Δ = − 5.33) compared to the observed study-level 
misspecification (Δ = − 3.03). Although CCR still outperforms SR as the level of misspecification increases, 
the gains to using CCR over SR decrease; thus, every effort should still be made to obtain high-quality baseline 
data.   

1. Introduction 

In cluster-randomized trials (CRTs), covariate-constrained random
ization (CCR) tends to increase efficiency over simple randomization 
(SR) in controlling imbalance in baseline characteristics across arms [1]. 
CCR methods require baseline data collection on important cluster-level 
variables to control imbalance at the cluster level, which acts as a sur
rogate for the ultimate goal of achieving adequate control of imbalance 
at the participant level. Thus, if a site inaccurately reports baseline 
covariates used to control imbalance in the CCR algorithm, one would 
expect poor control over participant-level imbalance, with performance 

potentially reverting back to that of SR. This simulation study evaluates 
the methods of randomization for a Patient-Centered Outcomes 
Research Institute (PCORI)-funded study involving the Mothers and 
Babies (MB) intervention (AD-1507-31,473), which targets prevention 
and reduction of postpartum depression among low-income women [2, 
3]. 

Complex randomization schemes like CCR aim to reduce imbalance 
in important covariates between treatment arms. Imbalance makes it 
difficult to determine whether observed differences between arms is 
attributable to intervention, thereby limiting the ability to draw thereby 
causal inference and negating one of the strengths of randomized trials 
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[4–6]. In addition to the capabilities of other complex forms of 
randomization for CRTs (restricted randomization, stratified/block 
randomization, or matching, for example), CCR contributes feasibility 
when the number of constraining variables is large or the constraining 
variables are continuous [5]. Previous literature suggests that CCR 
methods are effective in avoiding serious between-arm imbalance and 
provide the largest gains over simple randomization when the number of 
clusters is small [7]. However, to our knowledge, there is no literature 
examining the performance of CCR relative to other randomization 
methods when the baseline, cluster-level covariates used in the algo
rithm do not accurately represent individual-level data obtained in the 
study. 

The motivating study is a covariate-constrained CRT in which home 
visiting program sites were randomized to one of three study arms 
varying the delivery of the MB program [3]. For details on the motiva
tion, study design, and analysis plan, see Jensen et al. [3]. Briefly, the 
group-based MB program has demonstrated efficacy in both prevention 
and reduction of postpartum depression and its symptoms among 
low-income women; the motivating study aims to evaluate the efficacy 
of the MB program when delivered by professionals versus para
professionals [2,8–12]. 

Among other cluster-level baseline variables, the motivating study 
used the CCR algorithm to control imbalance in percent minority (i.e., 
non-White) clients at each site. As shown in Fig. 1, the extent to which 
the site-reported percent minority matched that of the observed study 
participants varied; we hereafter refer to this discrepancy as “mis
specification.” As described in Table 1, 74% of sites under-reported their 
percent of minority clients; of these, sites reported an average of nearly 
18 percentage points less than the observed, participant-level percent 
minority. This large misspecification motivated this simulation study, 
which aims to evaluate the performance of CCR relative to SR under 
similar misspecification scenarios. We explore variation in (1) the 
severity of misspecification, and (2) the number of participants from 

each site to determine the extent to which CCR controlled between-arm 
imbalance more efficiently than SR. 

Notes: Fig. 1 shows the extent of site-level misreporting of percent 
minority participants at baseline. Underreporting the percent of mi
nority participants was much more common than overreporting, and is 
seen in 26 (74%) sites; among these, the average level of mis
specification was 16.9 percentage points, but among the 8 sites (31% of 
underreporting sites) with extreme misspecification (>15 percentage 
points misspecification) it was 38.3 percentage points. By contrast, 6 
(17%) sites overreported the percent of minority participants by an 
average misspecification of 14.5 percentage points; the 3 sites with 
extreme misspecification averaged a 25.3 percentage point deviation 
from their baseline reported value. 

2. Methods 

To evaluate general performance of CCR in comparison to SR 
methods, we considered a simplified trial design involving equal allo
cation into only two treatment arms. We used data from the 35 active 
sites in the MB study, but we allocated 17 to each arm in these simu
lations to ensure equal numbers of sites across arms in the simulated 
CRTs. The general simulation procedure is as follows and uses conven
tions in the CRT literature [1,4,6]: 

1. Enumerate a large subset (N = 100,000) of possible allocation 
schemes ensuring equal (17:17) allocation. 

2. Evaluate the (im)balance for the variable of interest, site-level re
ported percent minority, of each allocation scheme, and save a 
smaller subset (n = 0.1*N) of potential allocations representing the 
CCR and SR scenarios.  

a. CCR: Save the set of potential allocations if the imbalance is 
acceptable according to a pre-specified criterion, defined here as the 
lower 10th percentile of the measure of between-arm imbalance 
(D = |mean1 − mean2|) for all possible allocation schemes [4,6]. 
Here, meani represents the mean percent minority for all sites in 
group i, i ∈ 1, 2.  

b. SR: Save a randomly selected set of possible allocations.  
3. Simulate participant-level percent minority by sampling from a 

binomial distribution, using variations of N and p, where p varies as 
described below; Table 2 summarizes all simulation scenarios 
explored. 

a. Accurate site-reported percent minority. The expected value of the 
percent minority of participants enrolled in the trial is equal to that 
reported for each site at study baseline. 

b. Study-level misspecified site-reported percent minority. The ex
pected value of the percent minority of participants enrolled in the trial 
is equal to that which we observed in the MB study; most sites mis
specified the percent minority. 

c. Simulated misspecification in increasing increments. Site-reported 
p perturbed by a simulated misspecification amount, where mis
specification increases across simulations by small increments. 

d. Simulated misspecification over an accumulated range. Site- 
reported p perturbed by a simulated misspecification amount, where 
misspecification is accumulated over a wide range (that includes zero). 

Although we observe that most sites underreport the site-level 
percent minority, for this more general simulation study, we allowed 
for equal probability of over and underreported values. Boundaries of 
0 and 1 (=0% and 100% percent minority, respectively) were enforced if 
the perturbation resulted in a simulated percent minority that exceeded 
the plausible range. 

The magnitude of simulated misspecification levels is informed by 
the degree observed in the MB study, which represents a plausible de
gree of error in clinical trials, but also includes higher levels of mis
specification designed to identify potential limits of the CCR algorithm. 
Analysis of these simulations primarily involve descriptive statistics 

Fig. 1. Misspecification of site-level percent minority, MB study.  

Table 1 
Misspecification of site-level percent minority, MB study.   

All Sites Extreme Δ Sites 

Reporting Category N (%) Average Δ N (%) Average Δ 
Under Reported 26 (74%) − 16.93 8 (31%) − 38.31 
Over Reported 6 (17%) 14.77 3 (50%) 25.36 
Correctly Reported 3 (9%) 0.00    
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comparing the distribution of simulated participant level imbalance 
(Dsim = |PercentofSimulatedMinorityParticipants,Arm1 

− PercentofSimulatedMinorityParticipants,Arm2|)

for the CCR and SR randomization schemes. Let DCCRsim = the 
Dsimcomputed for CCR allocations and DSRsimrepresent the 
Dsimcomputed for SR allocations; we compute the mean Dsim for each 
randomization type (i.e., DCCRsimand DCCRsim)and the difference be
tween them (Δ) to measure the improvement (i.e., reduction in imbal
ance) of the average CCR allocation compared to the average SR 
allocation. 

We use the worst-performing (highest imbalance) value of D in the 
correctly specified CCR scenarios as a benchmark for comparing, for a 
given site-level sample size construction, simulations with varying levels 
of misspecification. That is, we calculate the proportion of allocations 
with worse performance than this reference point (max DCCRsim ) for 
(a) CCR allocations with misspecification, (b) SR allocations with no 
misspecification, and (c) SR allocations with misspecification in order to 
assess the gains to using CCR with accurate reporting. 

3. Results 

Fig. 2 illustrates the difference (Δ, 95% CI) in simulated imbalance 
(Dsim) between randomization types under each simulation scenario; 
Table 3 also summarizes these results. The dashed reference line in
dicates the point estimate for Δ under the assumption of accurately re
ported data; the difference (i.e., improvement) in average imbalance (Δ) 
between CCR and SR is larger in magnitude than those observed in 
simulations involving misspecification (as Δ is computed as 
DCCRsim − DSRsim, negative values indicate that CCR outperforms SR). 
By comparison, the gains to using CCR are reduced in simulations using 

study-level misspecification (refer to Table 3 for Δ observed in Simula
tion 1 and Simulation 2; − 5.33 and − 3.03, respectively). As the simu
lated misspecification increases incrementally in simulations 3–7, the 
difference in average performance between CCR and SR shrinks but 
stays above 1.5% points in 

magnitude, even in the case of highly misspecified (simulation 7, 
percent minority data misspecified by 20–30%). 

Notes: In column 3, Δis computed as Δ = DCCR− DSR , and represents 

Table 2 
Simulation schemes: binomial distribution parameters.  

Scheme Description N p 

Accurate Reporting 1 Accurate Reporting, Site-Level N Site-level N Site-reported Percent Minority 
1a Accurate Reporting, Small N ÑN(10,5) Site-reported Percent Minority 
1b Accurate Reporting, Large N ÑN(50,25) Site-reported Percent Minority 

Study-Level Misspecification 2 Misspecified Reporting, Site-Level N Site-level N Observed Participant Percent Minority 
2a Misspecified Reporting, Small N ÑN(10,5) Observed Participant Percent Minority 
2b Misspecified Reporting, Large N ÑN(50,25) Observed Participant Percent Minority 

Simulated Misspecification, increasing in increments 3 0–5% Misspecification, Site-Level N Site-level N p̃UNIF(0, 5)
3a 0–5% Misspecification, Small N ÑN(10,5) p̃UNIF(0, 5)
3b 0–5% Misspecification, Large N ÑN(50,25) p̃UNIF(0, 5)
4 5–10% Misspecification, Site-Level N Site-level N p̃UNIF(5, 10)
4a 5–10% Misspecification, Small N ÑN(10,5) p̃UNIF(5, 10)
4b 5–10% Misspecification, Large N ÑN(50,25) p̃UNIF(5, 10)
5 10–15% Misspecification, Site-Level N Site-level N p̃UNIF(10, 15)
5a 10–15% Misspecification, Small N ÑN(10,5) p̃UNIF(10, 15)
5b 10–15% Misspecification, Large N ÑN(50,25) p̃UNIF(10, 15)
6 15–20% Misspecification, Site-Level N Site-level N p̃UNIF(15, 20)
6a 15–20% Misspecification, Small N ÑN(10,5) p̃UNIF(15, 20)
6b 15–20% Misspecification, Large N ÑN(50,25) p̃UNIF(15, 20)
7 20–30% Misspecification, Site-Level N Site-level N p̃UNIF(20, 30)
7a 20–30% Misspecification, Small N ÑN(10,5) p̃UNIF(20, 30)
7b 20–30% Misspecification, Large N ÑN(50,25) p̃UNIF(20, 30)

Simulated Misspecification, accumulated range 8 0–20% Misspecification, Site-Level N Site-level N p̃UNIF(0, 20)
8a 0–20% Misspecification, Small N ÑN(10,5) p̃UNIF(0, 20)
8b 0–20% Misspecification, Large N ÑN(50,25) p̃UNIF(0, 20)
9 0–30% Misspecification, Site-Level N Site-level N p̃UNIF(0, 30)
9a 0–30% Misspecification, Small N ÑN(10,5) p̃UNIF(0, 30)
9b 0–30% Misspecification, Large N ÑN(50,25) p̃UNIF(0, 30)

Fig. 2. Simulation results: mean difference (Δ, 95% CI) in simulated participant 
between-arm imbalance (Dsim), relative to simulation with no misspecification. 
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Table 3 
Simulation results summary: simulated individual proportion minority.  

Scheme Description DCCRsim(se) DSRsim(se) Δ  95% CI 
for Δ 

max(DCCRsimi) DCCR > max(DCCRsimi) DSR > max(DCCRsimi)

(1) (2) (3) (4) (5) (6) (7) 

Accurate Reporting 1 Accurate 
Reporting, Site-Level 
N 

6.54 (0.05) 11.87 
(0.09) 

− 5.33 [-5.52, 
− 5.13] 

29.41 0% 4.58% 

1a Accurate 
Reporting, Small N 

4.78 (0.04) 10.88 
(0.08) 

− 6.10 [-6.28, 
− 5.92] 

22.11 0% 10.65% 

1b Accurate 
Reporting, Large N 

3.42 (0.02) 11.04 
(0.08) 

− 7.61 [-7.78, 
− 7.44] 

14.58 0% 29.69% 

Study-Level 
Misspecification 

2 Misspecified 
Reporting, Site-Level 
N 

8.22 (0.06) 11.25 
(0.08) 

− 3.03 [-3.23, 
− 2.83] 

29.41 0.10% 3.35% 

2a Misspecified 
Reporting, Small N 

5.80 (0.04) 10.27 
(0.08) 

− 4.46 [-4.63, 
− 4.29] 

22.11 0.19% 8.38% 

2b Misspecified 
Reporting, Large N 

6.40 (0.05) 10.61 
(0.08) 

− 4.21 [-4.40, 
− 4.03] 

14.58 6.44% 27.35% 

Simulated 
Misspecification, 
increasing in 
increments 

3 0–5% 
Misspecification, 
Site-Level N 

8.05 (0.06) 11.03 
(0.08) 

− 2.98 [-3.17, 
− 2.78] 

29.41 0.07% 2.93% 

3a 0–5% 
Misspecification, 
Small N 

5.60 (0.04) 9.98 (0.07) − 4.38 [-4.55, 
− 4.22] 

22.11 0.04% 7.88% 

3b 0–5% 
Misspecification, 
Large N 

6.11 (0.05) 10.34 
(0.08) 

− 4.23 [-4.40, 
− 4.05] 

14.58 5.37% 26.20% 

4 5–10% 
Misspecification, 
Site-Level N 

7.40 (0.05) 10.44 
(0.08) 

− 3.04 [-3.23, 
− 2.86] 

29.41 0.04% 2.06% 

4a 5–10% 
Misspecification, 
Small N 

5.86 (0.04) 10.02 
(0.07) 

− 4.16 [-4.33, 
− 3.99] 

22.11 0.22% 7.78% 

4b 5–10% 
Misspecification, 
Large N 

6.17 (0.05) 10.26 
(0.08) 

− 4.09 [-4.27, 
− 3.92] 

14.58 5.43% 25.89% 

5 10–15% 
Misspecification, 
Site-Level N 

9.29 (0.07) 11.67 
(0.09) 

− 2.38 [-2.59, 
− 2.17] 

29.41 0.37% 3.97% 

5a 10–15% 
Misspecification, 
Small N 

6.94 (0.05) 10.78 
(0.08) 

− 3.84 [-4.03, 
− 3.66] 

22.11 0.84% 10.07% 

5b 10–15% 
Misspecification, 
Large N 

7.57 (0.06) 11.02 
(0.08) 

− 3.45 [-3.65, 
− 3.25] 

14.58 12.55% 29.65% 

6 15–20% 
Misspecification, 
Site-Level N 

7.55 (0.06) 10.23 
(0.08) 

− 2.69 [-2.87, 
− 2.50] 

29.41 0.04% 1.81% 

6a 15–20% 
Misspecification, 
Small N 

6.88 (0.05) 9.96 (0.07) − 3.08 [-3.25, 
− 2.90] 

22.11 0.78% 7.58% 

6b 15–20% 
Misspecification, 
Large N 

7.28 (0.05) 10.48 
(0.08) 

− 3.20 [-3.39, 
− 3.02] 

14.58 10.94% 26.81% 

7 20–30% 
Misspecification, 
Site-Level N 

10.31 (0.07) 11.80 
(0.09) 

− 1.50 [-1.72, 
− 1.28] 

29.41 1.06% 4.20% 

7a 20–30% 
Misspecification, 
Small N 

8.00 (0.06) 10.40 
(0.08) 

− 2.40 [-2.59, 
− 2.20] 

22.11 2.47% 8.99% 

7b 20–30% 
Misspecification, 
Large N 

8.34 (0.06) 10.57 
(0.08) 

− 2.23 [-2.42, 
− 2.03] 

14.58 15.97% 27.61% 

Simulated 
Misspecification, 
accumulated range 

8 0–20% 
Misspecification, 
Site-Level N 

9.78 (0.07) 12.15 
(0.09) 

− 2.38 [-2.60, 
− 2.16] 

29.41 0.77% 4.85% 

8a 0–20% 
Misspecification, 
Small N 

6.15 (0.05) 9.85 (0.07) − 3.70 [-3.87, 
− 3.53] 

22.11 0.25% 6.99% 

8b 0–20% 
Misspecification, 
Large N 

7.11 (0.05) 10.72 
(0.08) 

− 3.61 [-3.80, 
− 3.43] 

14.58 10.15% 27.76% 

9 0–30% 
Misspecification, 
Site-Level N 

8.13 (0.06) 10.25 
(0.08) 

− 2.13 [-2.31, 
− 1.94] 

29.41 0.04% 1.85% 

8.71 (0.06) − 2.66 22.11 3.84% 12.00% 

(continued on next page) 
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the average benefit of CCR allocations over SR allocations; increased 
magnitude represents increased benefit. In column 5, max(DCCRsimi) is 
the maximum D for all CCR allocations under simulation scheme 1 (i.e, 
with no misspecification) with the corresponding sample size configu
ration; it represents the performance of the worst (greatest imbalance) 
CCR allocation when no misspecification is present, for each sample size. 
Columns 6 and 7 give the percent of allocations that perform worse than 
this upper bound of CCR performance when there is misspecified CCR 
(column 6), SR with no misspecification (column 7, rows 1–3), and SR 
with misspecification (remainder of column 7) Thus, the first three rows 
in column (6) are 0% by construction. 

Notes: Fig. 2 presents the 95% confidence intervals for the difference 
in simulated participant between-arm imbalance (Δ) between CCR and 
SR randomization by misspecification level. The blue dashed line is 
given as a reference for the point estimate for Δ when there is no mis
specification (i.e., Simulation 1). Negative estimates for Δ indicate that 
CCR performs better than SR. The Δ measures generally increase as 
misspecification increases, but still remain negative (i.e., CCR continues 
to outperform SR, even as misspecification increases). 

Simulations 8 and 9, which use accumulated misspecification (i.e., a 
range from zero to the upper bound, rather than a narrow window 5 or 
10 percentage points less than the upper bound) perform similarly to the 
simulations with the corresponding upper bound (simulations 6 and 7, 
respectively). The improvement of CCR over SR is similar for the Small N 
and Large N simulations. The Δ values for simulations with site-level N 
are smaller than the corresponding Δ for both small N and large N 
simulations, with the small N Δ values generally nominally larger than 
those of the large N simulations. The results for the accumulated mis

specification simulations (simulations 8 and 9) are similar to the in
cremental simulations with the corresponding upper bound (simulations 
6 and 7, respectively) with respect to the difference (Δ) in Dsim values, 
although there is some difference in the magnitude of the Dsim values 
themselves for the site-level N simulation. Additionally, there is a small 
but consistent reduction in standard error of the mean Dsim estimates in 
the CCR simulations compared to the SR simulations, suggesting that an 
advantage of CCR beyond lower between-arm imbalance is reduced 
variation in the range of Dsim values for possible allocations. 

The Q-Q plots in Fig. 3 show the relationship between CCR and SR 
allocations under conditions of accurate reporting (pink) study-level 
misspecification (black), and the simulations with accumulated mis
specification (green, 0–20%, and blue, 0–30%). A line with a slope of 1 is 
given as a reference. Simulations for which points fall on this line would 
suggest no difference in the performance of CCR relative to SR (as the 
distribution of DCCRsim would be the same as that of DSRsim). Notably, 
with any level of misspecification in the baseline parameters, the dis
tribution of DCCRsim becomes more similar to that of DSRsim; however, 
even with levels of misspecification equal to or exceeding those seen in 
this study, the deviation of the Q-Q line from the reference line indicates 
that CCR is still an improvement over SR with respect to controlling 
imbalance (D) across arms. For the simulations involving within-site 
sample sizes similar to those observed in the study data, the perfor
mance of the CCR algorithm relative to SR is similar, as evidenced by the 
overlap of the Q-Q points, even as simulated misspecification increases. 
However, for both the small N simulation and the large (and highly 
variable) N simulations, the figure suggests that performance of the CCR 
algorithm deteriorates relative to SR as misspecification increases. 

Table 3 (continued ) 

Scheme Description DCCRsim(se) DSRsim(se) Δ  95% CI 
for Δ 

max(DCCRsimi) DCCR > max(DCCRsimi) DSR > max(DCCRsimi)

(1) (2) (3) (4) (5) (6) (7) 

9a 0–30% 
Misspecification, 
Small N 

11.37 
(0.08) 

[-2.87, 
− 2.45] 

9b 0–30% 
Misspecification, 
Large N 

8.24 (0.06) 10.82 
(0.08) 

− 2.58 [-2.78, 
− 2.38] 

14.58 16.33% 28.95%  

Fig. 3. Q-Q Plots for comparing CCR and SR performance: imbalance in simulated participant percent minority by randomization type.  
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Notes: Fig. 3 plots the distribution of the Dsim values from CCR 
against those of SR allocations for study-level and large-range simulated 
misspecification. A reference line with slope equal to one is provided 
and represents equivalent performance of CCR and SR; slopes greater 
than one, as seen here, represent improved performance in CCR relative 
to SR. Particularly for the Small N and Large N simulations, there is 
visual evidence that performance of CCR approaches – though does not 
reach – that of SR as misspecification increases. 

The results of the benchmark comparison for an upper bound of 
worst performance in correctly specified analysis are presented in col
umns 5–7 of Table 3; column 5 gives the benchmark values, column 6 
gives the percent of CCR allocations with worse performance for each 
misspecification level, and column 7 gives the percent of SR allocations 
with worse performance (rows 1–3 provide the comparison for SR al
locations with no misspecification, and all remaining rows provide the 
comparison for SR allocations with increasing misspecification). An 
immediate finding of this analysis is that the proportion of allocations 
that performed worse than our benchmark is much higher for the large N 
simulation than either the small N or site-level N simulations. This 
finding could be partially explained by the remarkably good perfor
mance of the large-N, accurately reported CCR simulation (1b), which 
has a maximum simulated imbalance measure of 14.58, roughly half the 
size of the imbalance for the worst-performing CCR allocation with 
study-level within-site sample size (simulation 1, max(DCCRsim) =

29.41). For site-level and small N simulations, we find that the propor
tion of CCR allocations under conditions of misspecification performing 
worse than the benchmark is less than 1% for most levels of simulated 
misspecification. For large-N simulations, the proportion of lower- 
performing CCR allocations is modest when misspecification is fairly 
small but increases for misspecification levels above 10%. 

We find that the percentage of SR allocations with Dsim greater than 
the benchmark at the respective sample size is much greater (4.58% 
with site-level N and no misspecification) than the corresponding per
centage of CCR allocations, and that there is similarly an increase in this 
measure for large N simulations (29.69% under the assumption of no 
misspecification). Because the SR algorithm does not rely on any pre- 
specified cluster-level data, we expect no difference in this measure of 
performance for the SR allocations under accurate reporting (column 7, 
rows 1–3) vs. misspecified reporting (all other rows). Interestingly, we 
find a larger percent of SR allocations under no misspecifications sur
passing our benchmark than SR allocations under conditions of 
misspecification. 

4. Discussion 

This simulation study contributes to the CCR literature by evaluating 
CCR performance under practical, rather than ideal, conditions: in real- 
world clinical trials, there may be a discrepancy between the reported 
baseline site-level covariates used to control imbalance in study arms 
and the site’s observed data at the participant level. The various simu
lation schemes used here explore a range of misspecification, including 
intervals within and beyond the range of misspecification observed in 
the MB study. We find that at every level of misspecification, CCR 
continues to outperform SR by providing between-arm imbalance that is 
both lower in magnitude and less variable. The gains to using CCR over 
SR persist, even up to a discrepancy of 30 percentage points between the 
reported and observed values. However, the gains to using CCR over SR 
decrease as the misspecification increases in severity. These findings are 
robust to changes in the within-site sample size, for both simulated large 
and small within-site samples. 

Our findings are consistent with previous literature and suggest that 
using the CCR strategy provides between-arm imbalance that is simul
taneously smaller and less variable, on average, than that produced from 
the SR strategy [1,4,6,13,14]. Point estimates for the mean imbalance 
among simulated participants (mean Dsim ) with corresponding stan
dard deviations are shown in supplemental figure A1 and indicate that 

the measures of variance of imbalance for CCR allocations are smaller 
than those for the SR allocations at every level of simulated mis
specification. Even without the higher levels of between-arm imbalance 
for SR, the increased variability for between-arm imbalance among SR 
allocation schemes may motivate use of CCR. In the applied context of 
designing a clinical trial that will implement only one randomization 
scheme, it is sensible to choose a strategy with minimal variability in 
between-arm imbalance to avoid implementing an allocation scheme 
with a high level of baseline imbalance simply due to chance. 

There are several notable limitations of this study. First, the simu
lations draw many times from the set of once-randomized sample size 
(which determines simulation parameter N) or misspecification (which, 
along with the baseline site-reported value, contributes to simulation 
parameter p) values. If the findings here are sensitive to the simulated 
parameter values, an additional layer of simulations – over a range of 
possible binomial parameter values – may better capture the relation
ship between the degree of misspecification and the performance of each 
randomization algorithm. We also only consider a fixed number of 
clusters in this study (35, as in the MB study) and equal allocation of 
clusters into each treatment arm. Previous literature has demonstrated 
the advantage of CCR when the number of clusters is small [7]; it is 
plausible that a study with fewer clusters or unequal allocation to 
treatment arms may demonstrate different sensitivity to mis
specification than that found here. Additionally, although we compare 
CCR only to SR, we acknowledge that other randomization methods, 
such as stratification, are commonly used. A disadvantage of using 
stratification in studies such as the motivating example is the require
ment to use a somewhat arbitrary threshold to categorize sites based on 
any continuously-measured covariate (here, the percent of non-White 
participants). Future research could pursue simulations with variation 
in this threshold parameter. Stratification for the motivating study had 
the potential for very small strata (including cell counts of zero), making 
it nearly impossible to restrict randomization to control imbalance using 
this method. Thus, we chose to focus simulations on the situations most 
akin and generalizable to studies such as the motivating one. 

There is great potential for follow-up analyses to continue this 
investigation of the relationship between the degree of site-level 
reporting accuracy and the performance of CCR relative to SR. Even 
simulations with deviations from the true percent minority up to 30 
percentage points suggest the improved performance of CCR over SR, 
but the upper limit of reporting inaccuracy for which CCR continues to 
outperform SR has not yet been determined. For simplicity, the CCR 
algorithm implemented here considers only one baseline covariate to 
control imbalance in the treatment arms and is subject to potential 
misspecification. However, an advantage of the CCR algorithm is its 
ability to control imbalance in many baseline covariates simultaneously; 
misspecification in multiple covariates has the potential either to 
magnify the improvement of CCR over SR, or to mitigate the difference 
between the two methods. We leave the exploration of the ways that 
varying degrees of misspecification in multiple variables impacts 
randomization performance to future research, as it likely depends on 
the magnitude and directionality of the imbalance in multiple variables, 
and the varying degrees of correlation between them. 

Despite these limitations, the findings from these simulations have 
implications for CRT design and conduct as they suggest CCR algorithms 
merit the added programming and logistical efforts they require; CCR 
continues to carry a benefit over simpler randomization methods in the 
presence of poor data quality for covariates included in the algorithm. 
These results do also highlight the importance of quality data capture 
prior to randomization for the cluster-level covariates used in the CCR 
algorithm. We find that CCR is more efficient than SR in spite of mis
specification in the cluster-level variables, but that the gains to CCR 
increase (even doubling in magnitude) with accurate specification of the 
relevant covariates. The nature of the simulations implies that there will 
be some individual-level variation about the reported site-level param
eter, even if the simulation is centered around an accurate measure. 

M. Organ et al.                                                                                                                                                                                                                                  



Contemporary Clinical Trials Communications 22 (2021) 100754

7

Additionally, we find a slight advantage (i.e., reduced between-arm 
simulated participant imbalance with CCR) for both the small N or 
large N simulations, relative to those taking study-level within-site 
sample sizes. Possibly the advantage of the large N simulation is size 
itself, while the small N simulation has the advantage of a small variance 
by construction. 

While covariate-adjustment in the design of CRTs can control the 
imbalance between study arms at baseline, adjustment in analysis of 
CRTs is often necessary. While not the focus of the present manuscript, 
we note that even seemingly trivial levels of imbalance in important 
baseline covariates may lead to unsound inferences if analyses fail to 
adjust for these covariates [15,16]. In the CRT context, Li et al. find that 
relative to SR, CCR reduces the standard error of the estimate of the 
treatment effect in an unadjusted F-test, and although adjusted analyses 
result in greater power (for the same type I error rate) than the 
correspondingly-randomized unadjusted analyses, the improvement in 
power of CCR over SR in adjusted analyses is small [6]. While this im
plies that adjustment in analyses may alleviate many of the issues that 
CCR attempts to prevent in the design, it is impossible to adjust for all 
covariates; as stated in Lin (2015), “the pursuit of balance can be viewed 
as a low-cost insurance policy against the likelihood of extreme imbal
ances, albeit the chance of such imbalances occurring might be low” 
[13]. As CCR restricts the allocation space to a smaller set of 
better-balanced allocations, it offers the advantage of an effective upper 
bound (at the 10th percentile, in this case) for imbalance, based on the 
baseline, site-level covariates. The results of the simulations of this study 
suggest that this advantage of the CCR methodology holds even when 
the baseline covariates are misspecified. 

Trial registration 

This trial is registered on ClinicalTrials.gov (Initial post: December 1, 
2016; identifier: NCT02979444). 
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