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BACKGROUND: Tamoxifen is commonly used for breast cancer therapy. However, tamoxifen resistance is an important clinical
problem. Continuous treatment with conventional therapy may contribute to cancer progression in recurring cancers through the
accumulation of drug-resistant cancer progenitors.
METHODS: To investigate signalling mechanisms important for the maintenance and viability of drug-resistant cancer progenitors, we
used microarray analysis, PCR array for genes involved in cancer drug resistance and metabolism, flow cytometry, soft agar colony
formation assay, in vivo tumourigenicity assay and immunohistochemical analysis using tamoxifen-sensitive and tamoxifen-resistant
breast cancer MCF7 cells.
RESULTS: Downregulation of CXCR4 signalling by small molecule antagonist AMD3100 specifically inhibits growth of progenitor cell
population in MCF7(TAM-R) cells both in vitro and in vivo. Microarray analysis revealed aryl hydrocarbon receptor (AhR) signalling as
one of the top networks that is differentially regulated in MCF7(TAM-R) and MCF7 xenograft tumours treated with AMD3100.
Further, small molecule antagonists of AhR signalling specifically inhibit the progenitor population in MCF7(TAM-R) cells and growth
of MCF7(TAM-R) xenografts in vivo.
CONCLUSION: The chemokine receptor CXCR4 maintains a cancer progenitor population in tamoxifen-resistant MCF7 cells through
AhR signalling and could be a putative target for the treatment of tamoxifen-resistant breast cancers.
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Targeting the oestrogen signalling pathway dramatically improves
long-term disease-free and overall survival for women with
hormone receptor-positive breast cancer. Tamoxifen, a triphenyl-
ethylene-selective oestrogen receptor modulator, is currently the
most widely used hormonal treatment for breast cancer. The
antiproliferative activity of tamoxifen relies primarily on its ability
to compete with oestrogen for the oestrogen receptor (ER) ligand-
binding site in breast tumour tissue (Dhingra, 1999; Lin et al,
2010). When effective, tamoxifen produces objective tumour
shrinkage in advanced breast cancer, reduces the risk of relapse
in women treated for invasive breast cancer, and prevents breast
cancer in high-risk women. However, only 40–50% of patients
with ER-positive breast cancer benefit from tamoxifen treatment,
and many acquire resistance, leading to breast tumour growth

and secondary malignancies like uterine cancers (Normanno
et al, 2005).

One possible explanation for the initial positive response to
therapy followed by drug-resistant disease is that whereas current
therapies eliminate the bulk of the tumour they fail to eliminate
cancer stem cells (CSC). In fact, it has been argued that many
cancers are maintained in a hierarchical organisation of rare CSC
and differentiated tumour cells; the CSC are not only the renewable
source of tumour cells but also of tumour resistance leading to
tumour recurrence, metastasis and tumour progression (O’Brien
et al, 2009; Rosen and Jordan, 2009). Support for this hypothesis
came with the identification of tumour-initiating cells in
leukaemia, and subsequently in a variety of cancers including
solid tumours. In addition, cancer cell lines have been shown to
harbour progenitor stem cells, and are a promising model for
cancer stem cell research because these progenitors can be readily
expanded and analysed (Charafe-Jauffret et al, 2009; Hwang-
Verslues et al, 2009).

Recently, a successful cell culture model of tamoxifen resistance
has been created by in vitro selection of a tamoxifen-resistant cell
line (TAM-R), derived from endocrine-sensitive wild-type MCF7
human breast cancer cells (Hutcheson et al, 2003; Fan et al, 2006).
The development of in vitro model of tamoxifen resistance
provides a potentially useful tool for the identification of novel
signalling mechanisms important for maintenance and viability of
drug-resistant cancer progenitors.

Our study suggests that TAM-R cells have a larger cancer
progenitor population compared with wild-type breast cancer
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cells, an intriguing observation given the aggressiveness of
tamoxifen-resistant tumours. Moreover, we have found that the
cancer progenitor population in TAM-R cells is sensitive to
CXCR4 signalling, and demonstrated that TAM-R tumour growth
is inhibited by CXCR4 inhibition in vivo. Finally, microarray
analysis of progenitor populations indicates that the transcription
factor aryl hydrocarbon receptor (AhR) also has an important role
in the CSC phenotype. Taken together, these data suggest a novel
nexus of CXCR4 and AhR signalling that regulates tumourigenicity
in the tamoxifen-resistant context.

MATERIALS AND METHODS

Cells and reagents

Tamoxifen-sensitive MCF7 cells and 4-hydroxytamoxifen-resistant
MCF7(TAM-R) cells were obtained from Dr Kenneth P. Nephew
(Indiana University) and maintained as described (Fan et al, 2006).
The cells were grown in phenol red-free DMEM medium
supplemented with 10% charcoal-stripped fetal bovine serum
(FBS). The antibodies used were: CXCR4 (ab2074, Abcam,
Cambridge, UK); b-actin (mAb, Sigma Aldrich, St Louis, MO,
USA); ABCG2 (sc-58222, Santa Cruz Biotechnology , Santa Cruz,
CA, USA), rabbit IgG, HRP-linked whole Ab, mouse IgG, and
HRP-linked whole Ab (GE Healthcare, Piscataway, NJ, USA).
The CXCR4 antagonist AMD3100, 4-hydroxytamoxifen and
3-methylcholanthrene were purchased from Sigma Aldrich.
CH223191 was purchased from Tocris Bioscience (Ellisville,
MO, USA). SR1 and SR2 compounds were prepared as described
(Bouchez et al, 2011).

Cancer drug resistance and metabolism PCR array

Before all experiments, MCF7 and MCF7(TAM-R) cells were
cultured in growth medium (minimum essential medium with
2 mmol per l L-glutamine, 0.1 mmol per l non-essential
amino acids, 50 units ml� 1 penicillin, 50 mg ml� 1 streptomycin,
6 ng ml� 1 insulin, and 10% FBS) in the absence of 4-hydro-
xytamoxifen for 7 days. Total RNA was isolated from cell pellets
using the RNeasy kit (Qiagen, Valencia, CA, USA). Reverse
transcription was performed using High Capacity cDNA Reverse
Transcription Kit (Applied Biosystems, Carlsbad, CA, USA). The
Human Cancer Drug Resistance and Metabolism PCR Array
(SuperArray, Frederick, MD, USA) was used to identify genes
involved in tamoxifen resistance in MCF7 breast cancer cells. The
data analysis was performed using the PCR Array Data Analysis
Web Portal (SuperArray).

Side population (SP) analysis and Aldefluor assay

For flow cytometry, 1� 106 cells were dissociated with Accutase
(Innovative Cell Tech Inc., San Diego, CA, USA) and incubated in
pre-warmed DMEM/5% FBS containing freshly added Hoechst
33342 (5mg ml� 1 final concentration) for 90 min at 37 1C with
intermittent mixing. In some experiments, cells were incubated
with the Hoechst dye in the presence of verapamil (50mmol l� 1).
At the end of incubation, cells were spun down at 4 1C and
resuspended in ice-cold PBS. 7-AAD (2 mg ml� 1 final concentra-
tion) was added for 5 min before flow cytometry analysis, which
allows for the discrimination of dead vs live cells. Samples were
analysed on a BD LSR II flow cytometer (Becton Dickinson
Immunocytometry Systems, San Jose, CA, USA). The Aldefluor kit
(Stem Cell Technologies, Vancouver, BC, Canada) was used to
identify cell populations with high aldehyde dehydrogenases
(ALDH) enzymatic activity. Briefly, cells were incubated in
Aldefluor assay buffer containing ALDH substrate (1 mmol l� 1

per 1� 106cells). In each experiment, a sample of cells was
stained under identical conditions with 50 mmol l� 1 of

diethylaminobenzaldehyde, a specific ALDH inhibitor, as negative
control. Following 30 min incubation at 37 1C, the cells were
centrifuged, resuspended in cold Aldefluor buffer and stained with
1 mg ml� 1 40,6-diamidino-2-phenylindole (Sigma-Aldrich) to dis-
criminate viable cells from dead cells during the following analysis
on BD LSRII (Becton Dickinson Immunocytometry Systems).

Soft agar colony formation assay

To examine anchorage-independent growth, a cell suspension (500
cells ml� 1) in 0.2% low-melting SeaPlaque CTG agarose (Cambrex
Bio Science Rockland, Inc., Rockland, ME, USA) with growth
medium was overlaid into 24-well plates containing a 0.5% agar
base. All samples were plated in octuplicates. The plates were
incubated at 37 1C in a humidified incubator for 14 days.

In vivo tumourigenicity assay

Ovariectomised 5–6-week-old nu/nu athymic nude mice were
obtained from Jackson Laboratories (Bar Harbor, ME, USA) and
maintained under standard conditions according to Institutional
Animal Care guidelines. The research protocol was approved by
the Institutional Animal Care and Use Committee of the Genomics
Institute of the Novartis Research Foundation, and meets the
standards required by UKCCCR guidelines. All surgery was
performed under sodium pentobarbital anaesthesia, and all efforts
were made to minimise suffering. MCF7(TAM-R) and MCF7
xenograft tumours were established in mice supplemented with
0.25 mg 21-day release oestrogen pellets by inoculating subcuta-
neously 106 cells in BD Matrigel Basement Membrane Matrix
(BD Biosciences, Mountain View, CA, USA). When tumours
reached the size of 150–200 mm3 (3–5 weeks), the animals were
randomly allocated to continued oestrogen and oestrogen with-
drawal plus tamoxifen citrate (500 mg per animal given subcuta-
neously in peanut oil, 5 days per week), alone or in combination
with the small molecule CXCR4 antagonist AMD3100. To ensure
consistent levels of the antagonist throughout the experimental
period, we used osmotic Alzet pumps (Alza Corporation, Palo Alto,
CA, USA) to deliver AMD3100 at a constant rate of 0.25 mg kg� 1

h� 1. The pumps loaded with AMD3100 or saline were implanted
subcutaneously.

Microarray analysis

Three pooled tumours per each treatment condition were isolated
on the fourteenth day of the treatment and snap-frozen for RNA
isolation, gene expression analysis and validation study. Micro-
array analysis was carried out as described earlier (Dubrovska
et al, 2009). Briefly, total RNA was isolated from cell pellets using
the RNeasy kit (Qiagen). Sample preparation for GeneChip
analysis was carried out according to the protocol detailed by
Affymetrix (Santa Clara, CA, USA). Briefly, first and second cDNA
strands were synthesised; double stranded cDNA was in vitro
transcribed using the Affymetrix 30 amplification kit; and the
resulting cRNA was purified, fragmented and hybridised to
oligonucleotide arrays (Human Genome U133 Plus 2.0 Array,
catalogue number 900467, http://www.Affymetrix.com) represent-
ing 447 000 transcripts. Arrays were processed using standard
Affymetrix protocols. The Affymetrix Hybridization Control
Kit and Poly-A RNA control kit were used for hybridisation.
Probe values from CEL files were condensed to probe sets using
the gcRMA package from Bioconductor (http://www.bioconductor.
org) and the R programme (R Development Core Team, 2004).
The data set was unlogged and median scaled to a target intensity
of 100. Primer sets used for microarray validation shown in
Supplementary Table 3.
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Statistical analysis

The results of soft agar colony formation assays, flow cytometry
analysis, cell proliferation assays, and in vivo tumourigenicity
assays were analysed by paired t-test. A P value ofo0.05 was
regarded as statistically significant.

RESULTS

ABCG2 is overexpressed in tamoxifen-resistant MCF7
breast cancer cells

To identify the molecular mechanisms of resistance to tamoxifen
in MCF7 breast cancer cells, we investigated the expression profiles
of genes involved in drug resistance and metabolism with a Human
Cancer Drug Resistance and Metabolism PCR Array (SuperArray).
In all, 7 of the 84 genes exhibited more than a twofold difference in
expression level in the MCF7 and MCF7(TAM-R) cell lines (Table 1).
These genes include adenosine triphosphate-binding cassette (ABC)
transporters such as ABCB1, ABCC6, and ABCG2 that modulate
intracompartmental and intracellular concentrations of chemo-
therapeutic drugs (Dean, 2009), CYP1A1, NAT2, SULT1E1 that
regulate oestrogen and xenobiotic metabolism (Rebbeck et al, 2007;
Delort et al, 2010), and NFKB1E known to be linked to the aetiology
and progression of hormone-independent breast cancers (Zhou et al,
2005). The ATP-binding cassette transporter ABCG2 is a marker for
the SP enriched in cancer progenitors (Lou and Dean, 2007). This cell
population expresses high levels of ABC transporters, providing a high
level of drug resistance. Tamoxifen-resistant MCF7(TAM-R) cells
showed an increased level of ABCG2 expression as analysed by
RT–PCR and western blot analysis (Figure 1A). Our data suggest

Table 1 List of genes involved in tamoxifen resistance in MCF7
breast cancer cells identified in The Human Cancer Drug Resistance
and Metabolism PCR Array (SuperArray) (the data analysis was
performed using the PCR Array Data Analysis Web Portal (SuperArray))

Gene symbol
Fold up- or downregulation;
MCF7 (TAM-R) /MCF7 t-test

ABCG2 2.410 0.011
ABCB1 � 8.69 0.034 � 8.690 0.034
ABCC6 � 2.03 0.027 � 2.030 0.027
CYP1A1 � 4.28 0.004 � 4.280 0.004
NAT2 � 9.08 0.045 � 9.080 0.045
NFKB1E 3.28 0.04 3.280 0.040
SULT1E1 � 146.49 0.002 � 146.490 0.002
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Figure 1 High expression level of ABCG2 in tamoxifen-resistant MCF7 cells line is associated with an increase in the cancer progenitor population.
(A) MCF7(TAM-R) cells showed an increased level of ABCG2 expression as analysed by RT–PCR and western blot analysis. (B) Side population analysis
and (C) Aldefluor assay showed a significant enrichment of the progenitor population within MCF7(TAM-R) cells compared with the tamoxifen-sensitive
MCF7 cells (*P valueo0.05).
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that tamoxifen resistance may be associated with an increase in the
population of ABCG2-positive tumour-initiating cells.

Tamoxifen-resistant cells have a higher percentage of
cancer progenitor cells that are responsive to CXCR4
inhibition

The SP technique is the most widely used strategy to identify stem-
like cell populations in vitro. The SP is a Hoechst dye-effluxing cell
subset that has been identified in many human tissues and cell
lines (Hadnagy et al, 2006; Engelmann et al, 2008; Wu and Alman,
2008; Charafe-Jauffret et al, 2009). The property of SP cells to
efflux lipophilic fluorescent dyes is based on their ability to
preferentially express drug-efflux pumps such as ABCG2 (Doyle
and Ross, 2003). Active drug efflux by ABCG2 is one of the most
common mechanisms causing multiple drug resistance in various
human cancers (Doyle and Ross, 2003; Lou and Dean, 2007). We
found that MCF7(TAM-R) cells showed a significantly higher level
of SP than tamoxifen-sensitive MCF7 cells (a 2.4-fold increase),
(Figure 1B, Supplementary Figure S1A). Alternatively, we identi-
fied progenitor population by the enzymatic Aldefluor assay.
Previous studies suggest that high ALDH activity identifies the
tumourigenic cell fraction that is capable of self-renewal and
generating xenograft tumours (Ginestier et al, 2007). We found a
significantly higher ALDH activity in MCF7(TAM-R) cells as
compared with tamoxifen-sensitive MCF7 cells (a 2.9-fold
increase) (Figure 1C).

As expected, an increase in SP and Aldefluor-positive cell
population in MCF7(TAM-R) cells correlated with a higher
clonogenic potential (Supplementary Figure S1B) and tumourigeni-
city in vivo compared with MCF7 cells (Supplementary Figure
S1C). PI3K, CXCR4 and GSK3 pathways are known to be involved
in the regulation of progenitor population and drug sensitivity in
breast cancers (Zhou et al, 2007; Hwang-Verslues et al, 2009;
Korkaya et al, 2009; Huang et al, 2010). We analysed whether the
chemical modulation of PI3K, CXCR4 and GSK pathways could
regulate tamoxifen-resistant MCF7 progenitor cells. We found that
Akt inhibitor IV (IC50¼ 1.94� 10� 7) and CXCR4 antagonist
AMD3100 (IC50¼ 2.55� 10� 7) are potent inhibitors of SP in
tamoxifen-resistant MCF7(TAM-R) cells (Figure 2A). Although
previous studies implicate an important role for Akt kinase in the
development of tamoxifen resistance and regulation of breast CSC
(Clark et al, 2002), little is known about the role of CXCR4 pathway
in the maintenance of tamoxifen-resistant cancer progenitors. Our
data suggest that MCF7(TAM-R) cells are more sensitive to
negative modulation of CXCR4 signalling than MCF7 cells
(Figure 2B and C) and tamoxifen-resistant progenitor cell
population could be specifically inhibited by CXCR4 antagonist
AMD3100 in a dose-dependent manner (up to 2.2-fold decrease)
(Figure 2D). These results suggest a role of CXCR4 in the
maintenance of tamoxifen-resistant cancer progenitors.

Inhibition of CXCR4 reduces tamoxifen-resistant tumour
cell growth and alters AhR signalling

Sensitivity of MCF7(TAM-R) and parental MCF7 cells to CXCR4
inhibition was analysed in vivo using mouse MCF7(TAM-R) and
MCF7 xenograft models. Our data suggest that the MCF7(TAM-R)
xenograft tumours treated with the CXCR4 inhibitor AMD3100
showed more than a twofold decrease in the growth rate compared
with a control group (Figure 3A). Interestingly, the tamoxifen-
sensitive xenograft tumours did not show significant growth
inhibition in response to AMD3100 treatment (Figure 3B).
Haematoxylin and eosin staining of the xenografts confirmed
regression of MCF7(TAM-R) tumours in AMD3100-treated ani-
mals (Figure 3C). ABCG2 expression is known to be preferentially
upregulated in the stem-like cell compartment, suggesting a role of
ABCG2 in protecting this population against chemotherapy (Doyle

and Ross, 2003; Lou and Dean, 2007). Histological analysis of
MCF7(TAM-R) xenograft tumours treated with AMD3100 revealed
a decrease in ABCG2 expression as compared with untreated
MCF7(TAM-R) xenografts and tumours formed by MCF7 cells
(Figure 3D).

Thus, we have shown that CXCR4-directed therapy specifically
targets cancer progenitor population in tamoxifen-resistant MCF7
cells in vitro and in vivo. To understand the molecular
mechanisms underlying selective sensitivity of tamoxifen-resistant
cancer stem-like cell population to CXCR4 inhibition, MCF7
(TAM-R) and MCF7 xenografts tumours harvested after the
treatment with CXCR4 antagonist AMD3100 were used for
microarray analysis of gene expression using Affymetrix U133
arrays (Supplementary Table S1 and S2). Gene expression analysis
revealed 2759 genes showing X3.5-fold changes in expression level
in MCF7(TAM-R) tumours treated with AMD3100 in combination
with tamoxifen as compared with tamoxifen-sensitive MCF7
xenografts exposed to the same conditions. An overlay of
canonical pathways identified p53 signalling, glucocorticoid
receptor, ERK-MAPK, oestrogen receptor, integrin signalling,
retinoid acid receptor activation, gonadotropin-releasing hor-
mone, and aryl hydrocarbon receptor (AhR) signalling as top ten
networks that are disregulated in MCF7(TAM-R) tumours as
compared with MCF7 xenograft tumours. Notably, AhR signalling
was more disturbed in tamoxifen-resistant MCF7 xenograft
tumours treated with AMD3100 in combination with both
tamoxifen and oestrogen as compared with tamoxifen-sensitive
MCF7 xenografts treated in the same manner (Supplementary
Figure S2). The RT–PCR analysis confirmed that genes TP53, FOS,
PERG, SMARCA4 and HSP90AA1 that are involved in AhR
signalling network are similarly downregulated in MCF7(TAM-R)
tumours treated with CXCR4 inhibitor AMD3100 and tamoxifen,
and upregulated in MCF7 tamoxifen-sensitive tumours under the
same treatment conditions (Figure 3E and F). Oestrogen receptor
alpha physically interacts with AhR and regulates AhR-dependent
gene transcription. The data from microarray analysis suggest that
transcription of ESR1 gene has a very similar trend to the
regulation of few other genes involved in AhR signalling pathway
(Supplementary Figure S3). Our data suggest that the chemokine
receptor CXCR4 has a role in tumourigenicity of tamoxifen-
resistant breast cancer cells via regulation of AhR transactivation.

AhR signalling differentially regulates MCF7(TAM-R) and
MCF7 cells.

Aryl hydrocarbon receptor (AhR) is a nuclear receptor mediating
biological responses to aromatic hydrocarbons. Recent experi-
mental evidences suggest that AhR has an important role in
immune system function and for regulation of other nuclear
receptors and transcription factors, including ER (36). AhR could
interact with ER machinery by different mechanisms including
competing for common cofactors, regulation of the oestrogen level
by controlling the gene expression of CYPs, increase of protea-
some-dependent ER degradation, and competing for promoter
binding (Duan et al, 1999; Finlin et al, 2001; Pocar et al, 2005;
Swedenborg and Pongratz, 2010). Recent data suggest that normal
and cancer human mammary epithelial cells with increased
aldehyde dehydrogenase activity have stem/progenitor properties
(Ginestier et al, 2007; Hwang-Verslues et al, 2009).

Analysis of tumour gene expression in 88 breast cancer patients
treated with tamoxifen demonstrated that ER b protein is predictor
of tamoxifen response in a large patient set, including both ER
a-positive and ER a-negative tumours treated with tamoxifen for 2
years (Gruvberger-Saal et al, 2007). ER a expression was
significantly associated with a better prognosis exclusively within
the ER b-negative tumours. Analysis of AHR gene expression in
this patient set was performed using publicly available microarray
data set GDS2827 from National Center for Biotechnology
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Information Gene Expression Omnibus. Interestingly, AHR gene
expression was significantly inversely correlated with ER a
expression only in the ER b-negative subgroup (Po0.001),
suggesting that AhR could be used as an additional marker
predictive of treatment failure (Supplementary Figure S4).

We showed that small molecule antagonists of AhR signalling
SR1, SR2 and CH-223191 (Figure 4A) can specifically inhibit
ALDH-positive MCF7(TAM-R) cells and induce ALDH-positive
population in MCF7 cells (Figure 4B and C). Alternatively, AhR
agonist 3-methylchloroanthrene specifically increases ALDH

population in MCF7 (TAM-R) cells, however does not affect or
even decrease ALDH population in tamoxifen-sensitive MCF7 cells
(Figure 4D). The previous studies of biological networks regulated
by AhR signalling demonstrated that as a biological target, AhR
was best predicted by lymphocyte antigen 6e (LY6E) expression
(Johnson et al, 2004). Lymphocyte antigen 6e gene is known to
promote breast cancer lung metastasis and is downregulated by
aromatase inhibitor treatment in primary breast tumours,
indicating a role of AhR signalling in these mechanisms
(Mackay, et al, 2007; Dydensborg, et al, 2009). AhR antagonists
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Figure 2 MCF7(TAM-R) cells are more sensitive to modulation of CXCR4 signalling than MCF7 cells and tamoxifen-resistant progenitor cell population,
and could be specifically inhibited by CXCR4 antagonist AMD3100. (A) AKT inhibitor IV (IC50¼ 1.94� 10� 7) and CXCR4 antagonist AMD3100
(IC50¼ 2.55� 10� 7) are potent inhibitors of SP in tamoxifen-resistant cell. MCF7(TAM-R) cells were cultured in tamoxifen-free growth medium in the
presence of inhibitors at indicated concentration for 5 days. The culture medium was replenished daily. (B) The CXCR4 knockdown in MCF7(TAM-R) cells
showed a decrease in the SP and growth inhibition compared with scrambled shRNA-transduced control MCF7(TAM-R) cells. (C) MCF7(TAM-R) cells are
more sensitive to modulation of CXCR4 signalling than MCF7 cells. The cells were cultured in tamoxifen-free growth medium in the presence of inhibitors at
indicated concentration for 5 days. The culture medium was replenished daily. (D) The CXCR4 antagonist AMD3100 specifically inhibits SP in the
tamoxifen-resistant MCF7(TAM-R) cells in a dose-dependent manner. The cells were cultured in tamoxifen-free growth medium in the presence of
inhibitors at indicated concentration for 3 days. The culture medium was replenished daily.
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SR1 and SR2 specifically increase AhR-dependent expression of
LY6E in tamoxifen-sensitive MCF7 cells but not in MCF7(TAM-R)
cells (Figure 4E). Preincubation of MCF7(TAM-R) cells with small
molecule antagonists of AhR signalling SR2 before subcutaneous
injection into nude mice significantly delayed tumour growth
(Figure 4F), compared with MCF7(TAM-R) xenografts treated with
PBS or MCF7 xenografts treated with AhR antagonist. To identify
the putative molecular targets of AhR inhibition that are
differentially regulated in MCF7(TAM-R) and MCF7 cells, we
investigated the expression of 84 genes known to be involved in
drug resistance with a Human Cancer Drug Resistance and
Metabolism PCR Array (SuperArray). Five of them exhibited more
than a twofold difference in expression level in the MCF7(TAM-R)
and MCF7 cells in response to treatment with AhR antagonist
CH-223191 (Supplementary Figure S5). Interestingly, the genes
identified in this array are functionally related to the genes
responsible for tamoxifen-resistant phenotype and include reg-
ulators of oestrogen metabolism (CYP2C19, CYP2C8), member of
NFkB family RELB, and ABC transporter ABCC2. The basic
fibroblast growth factor-2 (FGF-2) was the highest upregulated
gene in the MCF7(TAM-R) cells treated with AhR antagonist (more
than threefold). In contrast, FGF-2 was downregulated in MCF7

cells in response to CH-223191 treatment (more than twofold).
Previous studies showed that a high level of FGF-2 expression
downregulates Bcl-2, promotes apoptosis in MCF7 human breast
cancer cells, induces differentiation in T-47D breast cancer cells
and is associated with improved overall and disease-free survival
in breast cancer patients (Yiangou et al, 1997; Maloof et al, 1999).
Our results suggest that AhR signalling could be a putative target
for the treatment of tamoxifen-resistant breast cancers based on
the fact that AhR antagonists specifically inhibit the cancer
progenitor population in tamoxifen-resistant MCF7 cells, and AhR
signalling regulates genes that are involved in breast tumour
progression and drug resistance.

DISCUSSION

Development of oestrogen independence and progression to a
metastatic phenotype are hallmarks of therapeutic resistance and
poor survival of breast cancer patients (Normanno et al, 2005).
The CXCR4/CXCL12 axis is one of the key regulators of metastasis
development and drug resistance in breast cancer (Darash-Yahana
et al, 2004; Epstein, 2004; Vandercappellen et al, 2008, Zlotnik,
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Figure 3 Inhibition of CXCR4 reduces tamoxifen-resistant tumour growth in vivo and alters AhR signalling. (A) MCF7(TAM-R) xenograft tumours treated
with AMD3100 showed more than a twofold decrease in the growth rate compared with a control group. (B) The tamoxifen-sensitive xenograft tumours
did not show a significant growth inhibition in response to AMD3100 treatment. (C) Haematoxylin and eosin staining of the xenografts showed regressive
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2008; Furusato et al, 2010). Moreover, recent data suggest that
enhanced CXCR4 signalling is sufficient to drive ER-positive breast
cancers to a metastatic and endocrine therapy-resistant phenotype

(Rhodes et al, 2011). It has been argued that tumour progenitor
cells have a crucial role in tumour development and represent
a drug-resistant cell population that can survive conventional
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treatment, including hormonal therapy, and lead to tumour relapse
(O’Brien et al, 2009; Rosen and Jordan, 2009). However, little is
known about the molecular mechanisms regulating cancer
progenitor cells in a drug-resistant context. The capacity to
extrude Hoechst dye has been used to identify breast cancer stem-
like cells called SP (Doyle and Ross, 2003; Hadnagy et al, 2006;
Lou and Dean, 2007; Engelmann et al, 2008; Wu and Alman, 2008).
This property of SP cells is based on their ability to preferentially
express ABC transporter ABCG2 (Doyle and Ross, 2003). Recent
data indicate that the ability of malignant SP cells to efflux
cytostatic drugs may directly improve their survival and maintain
their clonogenic properties during treatment with anticancer drugs
(Dean, 2009).

Indeed, we found that MCF7(TAM-R) cells showed a signifi-
cantly higher level of SP than tamoxifen-sensitive MCF7 cells.
Our studies suggest that inhibition of CXCR4 with small
molecule antagonists specifically target cancer stem-like cell
populations in MCF7(TAM-R) cell line and could be beneficial
for treatment of tamoxifen-resistant breast cancers. To our
knowledge, our work is the first to characterise an increase
in the progenitor population in tamoxifen-resistant cells and
identify their distinct molecular nature by their differential
response to CXCR4 inhibitors.

The cell surface chemokine CXCL12 (SDF-1) and its receptor
CXCR4 were first identified as regulators of trafficking and
homoeostasis of lymphocytes (Burger et al, 1999). Subsequently,
CXCR4 has been proposed to regulate trafficking and invasion of
breast cancer cells to sites of metastases (Epstein, 2004). More
recently, it has been established that CXCR4 has a central role in
cancer dissemination, invasion and proliferation in 475% of
cancers, including the breast, ovarian, lung, colon, prostate,
kidney, melanoma, brain, oesophageal, pancreatic, and many
forms of leukaemia (Darash-Yahana et al, 2004; Vandercappellen
et al, 2008, Zlotnik, 2008; Furusato et al, 2010).

Blocking CXCR4 receptor function by a monoclonal antibody
inhibits cancer cell proliferation and invasion in multiple
preclinical models both in vitro and in vivo (Pan et al, 2006;
Zeng et al, 2006). According to the stem cell model of cancer
development, a distinct subpopulation of cancer stem-like cells
initiates metastasis and renders the tumour resistant to che-
motherapy. The fact that CXCR4 is present in normal and cancer
stem-like cells in various tissues suggests that this molecule could
be essential for maintenance and viability of the tumour
progenitor cell population. Moreover, activation of CXCR4 axis
is attributed to the development of drug resistance in gastric and
pancreatic cancers and leukaemia (Zeng et al, 2006; Singh et al,
2010; Xie et al, 2010).

To understand the molecular mechanisms underlying selective
sensitivity of tamoxifen-resistant cancer stem-like cell population
to CXCR4 inhibition, MCF7(TAM-R) and MCF7 xenografts
tumours treated with CXCR4 antagonist AMD3100 were used for
microarray analysis. To shed light on the signalling pathways that
are differentially regulated in tamoxifen-sensitive and tamoxifen-
resistant cell lines, all 2759 differentially expressed genes were
subjected to Ingenuity pathway analysis. An overlay of canonical
pathways identified AhR signalling as one of the top 10 networks,
which was represented by 19 genes, including FOS, RERG,
SMARCA4, HSP90AA1, and TP53.

It has been reported that AhR nuclear translocation could
induce p53-dependent transcription of the murine multidrug-
resistance gene MDR-1 (Mathieu et al, 2001). MDR-1 gene is highly
expressed in cancer progenitor cells and can determine multidrug
resistance in this cell population (Bunting, 2002; Hadnagy et al,
2006) that could explain why tamoxifen-resistant cancer progeni-
tors are highly dependent on AhR transactivation. AhR also
regulates ER-dependent transcription of FOS protooncogene
(Hennessy et al, 2005), RARG growth inhibitory gene and
HSP90AA1 gene that have been implicated in modulating steroid

receptor function (Wong and Chen, 2009). We showed that small
molecule antagonists of AhR signalling could specifically target
tamoxifen-resistant breast cancer progenitors and inhibit growth
of tamoxifen-resistant tumours.

In conclusion, we report that tamoxifen-resistant cell popula-
tions harbour a higher percentage of tumour-initiating cells and
that these cells are phenotypically altered compared with
wild-type breast cancer cells. Furthermore, inhibition of CXCR4
or AhR with small molecule antagonists specifically target cancer
stem-like cell populations in MCF7(TAM-R) cells and could be
beneficial for the treatment of tamoxifen-resistant breast
cancers (Figure 5). Further characterisation of the role of CXCR4
for AhR and ER signalling crosstalk will provide insight into
new signalling pathways, which are involved in breast cancer
progression.
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