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A B S T R A C T   

Background: Uric acid nephropathy (UN) is a complication of hyperuricemia (HUA), which has a 
great impact on people’s lives. Here, we evaluated the therapeutic potential of total flavonoids of 
Phellinus igniarius (TFPI) in vivo and studied the anti UN effect of TFPI in vitro. 
Methods: Hyperuricemia was induced by intraperitoneal injection of potassium oxonate in ICR 
mice. After intervention with TFPI, we evaluated the levels of serum uric acid (UA) and creatinine 
(CR), and the contents of xanthine oxidase (XOD) and adenosine deaminase (ADA) in liver. To 
explore the effect and molecular mechanism of TFPI on UN, we treated HK-2 cells with mono-
sodium urate (MSU) to study the effect of TFPI on apoptosis and inflammation. In addition, to 
explore the mechanism of TFPI on uric acid transport we evaluated the relationship between uric 
acid transporter ABCG2 and inflammatory signaling pathway TLR4-NLRP3. 
Results: In the model mice, TFPI significantly decreased the levels of UA and Cr, which may be 
related to the inhibition of XOD enzyme activity. In HK-2 cells, the response of TFPI to MSU can 
effectively inhibit apoptosis and activation of TLR4-NLRP3 signaling pathway and promote the 
expression of ABCG2. 
Conclusions: TFPI can significantly inhibit the release of inflammatory factors and promote the 
expression of ABCG2 by targeting TLR4 receptor and NLRP3 inflammasome. And targeted inhi-
bition of XOD enzyme activity to reduce uric acid level and inhibit the development of UN.   

1. Introduction 

HUA is a metabolic disease caused by abnormal purine metabolism or reduced UA excretion, which is characterized by elevated 
serum UA [1,2]. As a product of purine nucleotide metabolism, UA is mainly synthesized by XOD, which is widely distributed in the 
liver, and then excreted by the kidney and intestine. Studies have shown that long-term hyperuricemia can cause secondary damage to 
the kidney and eventually lead to UN [3]. With the change in dietary pattern, the intake of high sugar, high purine, and alcohol in-
creases, and the incidence rate of UN are increasing. It has become one of the most important diseases threatening human health. 

The inflammasome is an inherent and natural immune response, when cells sense PAMP (pathogen associated molecular pattern) or 
DAMP (damage associated molecular pattern) from allergens, various pathogens, stress stimuli, and mutagens, they will form protein 
complexes in the cytoplasm [4]. In response to the stimulation of cells receiving antigens, such as the MSU to toll-like receptors (TLRs), 
when the expression of protein complexes of key inflammasome components is up-regulated, the immune response of inflammasome 
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starts initially. TLR4 is a receptor protein on the cell membrane, which can produce a signal to foreign stimuli, activate NF-kB, and 
produce inflammatory response [5]. Recent studies have shown that activation of NLRP3 and TLR4 contribute to the pathogenesis of 
UN [6,7]. These data indicate the potential of targeting the TLR4-NLRP3 signaling pathway as a novel therapeutic strategy. 

Phellinus igniarius is a kind of traditional Chinese medicine with a long history. Modern research shows that Phellinus igniarius 
contains a variety of compounds, including flavonoids, polysaccharides and pyranones, which have anti-tumor, immune enhancement, 
hypoglycemic, antioxidant and anti-inflammatory pharmacological effects [8,9]. TFPI is extracted from Phellinus igniarius, recently 
studies have shown that TFPI can reduce the levels of IL-18 and TNF-α, inhibit the expression of NF-κB to produce an anti-inflammatory 
effect [10]. Liu shuaiyang et al. proved that TFPI could inhibit the expression of XOD and HGPRT genes, which are key enzymes in the 
uric acid metabolism pathway. These findings support the hypouricemic and anti-inflammatory activities of TFPI, and prompt us to 
study the therapeutic potential of TFPI for the UN. 

In this study, we established a hyperuricemic mouse model by intraperitoneal injection of potassium oxonate to study the effect of 
TFPI on reducing uric acid in hyperuricemic mice. We used MSU to treat HK-2 cells to simulate a hyperuricemic environment, and 
preliminarily elucidated the protective effect and mechanism of TFPI on the HK-2 injury model induced by MSU based on the TLR4- 
NLRP3 pathway. We demonstrated for the first time that TFPI could significantly inhibit the development of UN, and further explored 
the relationship between ABCG2 and inflammatory pathway. This study identified a novel therapeutic agent and revealed the path-
ogenic mechanisms of UN. 

2. Materials and methods 

2.1. Drug sample preparation 

The fine powder of Phellinus igniarius (“Zhehuang No. 1” provided by Zhejiang Qiandao Lake Sangdu Edible Fungus Professional 
Cooperative) was accurately weighed, extracted with 70% ethanol under reflux, and purified by AB-8 type macroporous adsorption 
resin [11]. The total flavonoid content measured by the Rutin-AlCl3 method was 66.7%, and the drug was placed at − 20 ◦C for use. 

2.2. Mouse model establishment and TFPI treatment 

ICR mice (18–22 g) were purchased from Zhejiang Experimental Animal Center (scxk2019-0002). The animals were raised in the 
animal center of Zhejiang Academy of Medical Sciences and the research plan was reviewed and approved by the animal ethics 
committee of Hangzhou Medical College. All experiments, including animal reproduction, experimental operation and animal 
euthanasia, were carried out in accordance with the guidelines formulated by the Committee. Animal feeding conditions: the tem-
perature was 18–28 ◦C, the humidity was 60–80%, the light and dark were alternated for 12 h, the temperature, humidity, light, 
pressure gradient were set with automatic control and display system, the tap water was put in the drinking water bottle for free 
drinking, the sterilized rats were fed by themselves, and the feed was from Zhejiang experimental animal center. 

Male mice were randomly divided into normal group, model group, allopurinol group (10 mg/kg), TFPI [12] low, medium, and 
high dose groups (50, 150 and 450 mg/kg), with 10 mice in each group. On the 7th day, except for the normal group, the other groups 
were intraperitoneally injected with 350 mg/kg potassium oxonate 0.5 h before the last administration to establish the hyperuricemia 
model in mice. The normal group was injected with the same amount of 0.5% CMC-Na. 

2.3. Serum and liver biochemical analysis 

The levels of UA, Cr in the serum and XOD, ADA in the liver were detected by using commercial detection kits (Jiancheng 
Bioengineering Institute, China) according to the instructions of manufacturers. 

2.4. Cell culture and treatment 

The HK-2 cell line, a human proximal tubular epithelial cell line, was purchased from ATCC and maintained in DMEM/F12, as 
described in ref. To examine the effect of TFPI on the activation of inflammatory pathway, HK2 cells were treated with different 
concentrations of TFPI (37.5, 75 and 150 mg/L) and MSU (150 mg/L, sigma) for 24 h. 

2.5. MTT assay 

To examine the cell viability, HK-2 cells were seeded into 96-well plates (Corning, NY, USA) in triplicate at 5 × 105 cells/100 μL/ 
well at 37 ◦C in a humidified 5% CO2 incubator. After the indicated treatments, 20 μL of MTT agent (5 mg/mL) was added into each 
well and incubated at 37 ◦C for a further 4 h. Dimethyl sulfoxide (DMSO, 150 μL/well) was added into each well to dissolve the 
formazan crystals. The absorbance was measured using a microplate reader at 570 nm. 

2.6. Analysis of cell ROS and LDH levels 

Intracellular superoxide production was detected with dichlorodihydrofluorescein diacetate (DCF-DA) (S0033-1, Biyuntian 
Bioengineering Institute) and observed under fluorescence microscope. The levels of LDH in the cells were detected by using 
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commercial detection kits (E1020, Puli Gene Technology Co. Ltd, China) according to the instructions of manufacturers. 

2.7. Assay for pyroptosis 

After HK2 cells were treated with different concentrations of TFPI and MSU (150 mg/L, sigma) for 24 h, and then the apoptosis rate 
was detected by flow cytometry according to the instructions of the kit (C1062L, Biyuntian Bioengineering Institute). 

2.8. Enzyme-linked immunosorbent assay (ELISA) 

IL-1β and TNF-α (Sizhengbai Bioengineering Institute, China) expression an activity levels in the above cells were detected with the 
corresponding ELISA Kits, according to the manufacturers’ instructions. 

2.9. Cell immunofluorescence (IF) 

HK-2 cells were seeded on a round glass dish and grew to near confluence. After various treatments, HK-2 cells were sucked out of 
the upper liquid and washed with PBS for three times. 4% paraformaldehyde for 15 min, PBS for three times, 0.5% Triton X-100 for 60 
min, PBS for three times. Seal with 1% BSA for 60 min, and quickly clean with PBS. The first antibody (according to the instructions of 
antibody: the dilution of antibody NF-κB is 1:200) was placed in a wet box at 4 ◦C overnight and washed with PBS for three times. The 
second antibody (IgG Fab2 Alexa Fluor(R) 647; 4414S; Cell Signaling) was incubated at room temperature in dark for 120 min and 
washed with PBS for three times. The nuclei were stained with Hoechst 33,342 for 10 min, washed with PBS for three times and 
observed by direct fluorescence. 

2.10. Western blotting 

Whole cell lysate was prepared from cultured HK-2 cells in RIPA buffer (Biyuntian Bioengineering Institute, China). Soluble 
proteins from the culture medium were prepared as described previously. After measuring the protein concentration using BCA kit 
(Biyuntian Bioengineering Institute), equal amounts of total proteins were separated on SDS-PAGE gel and transferred onto a poly-
vinylidene difluoride (PVDF) membrane. The target protein was detected with one of the following primary antibodies (all from Cell 
Signaling, MA, USA, unless otherwise indicated) at 4 ◦C overnight: NLRP3 (15101S; Cell Signaling, MA, USA), TLR4 (bs-20594R; Bioss 
Bioengineering Institute, China), cleaved caspase 3 (9664S; Cell Signaling), caspase-3 (9665S; Cell Signaling), BAX (5023S; Cell 
Signaling), NF-κB (bs-0465R; Bioss Bioengineering Institute), p–NF–κB (3033T; Cell Signaling), TXNIP (14715S; Cell Signaling), and 
ABCG2 (bs-0662R; Bioss Bioengineering Institute). After the incubation with horseradish peroxidase-conjugated secondary antibodies 
at room temperature for 2 h. The signal was developed using the ECL system (Biyuntian Bioengineering Institute) according to the 
manufacturer’s instructions. The signal density was analyzed using Quantity One Software (Bio-Rad, CA, USA) and the relative protein 
level was calculated as the density ratio of the target protein to β-actin (4970T; Cell Signaling). 

2.11. Statistical analysis 

Statistical analysis of the experimental data was performed using SPSS 22.0 software, and the results are presented as the mean ±
SE. Measurement data were analyzed by one-way analysis of variance (one-way ANOVA). Multiple comparisons of the means of two 
samples were performed using independent-samples T-tests, and the correlations between two variables were assessed using Pearson 
correlation analysis. P < 0.05 indicated that the difference was statistically significant. 

Table 1 
Effect of TFPI on body weight of hyperuricemia mice (x ± s, n = 10).  

Group Dosage (mg/kg) Start (g) End (g) 

Control – 22.13 ± 1.73 29.25 ± 1.49 
Model – 21.88 ± 1.96 30.25 ± 1.58 
Allopurinol 10 22.56 ± 1.51 31.22 ± 2.28 
TFPI 50 21.75 ± 1.75 30.63 ± 1.77 
TFPI 150 22.38 ± 1.41 30.25 ± 2.31 
TFPI 450 21.11 ± 1.54 30.00 ± 1.58 

Note: TFPI - total flavonoids of Phellinus igniarius. 
*P < 0.01. 
**P < 0.05, as compared to control. 
#P < 0.01. 
##P < 0.05, as compared to model. 
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3. Results 

3.1. TFPI ameliorated UN development in a dose-dependent manner in vivo 

In the experiment, there was no significant difference in body weight between TFPI groups and normal group (Table 1), which 
indicated that TFPI was safe. It is not known whether TFPI presents any therapeutic efficacy on UN. In this study, hyperuricemic mice 
were induced by intraperitoneal injection of potassium oxonate. The results showed that the serum UA and Cr levels were significantly 
increased, and the liver XOD enzyme activities were significantly increased in the model group, when compared with control group 
(Table 2, Table 3). Following the treatment with increasing concentrations of TFPI, we found that the levels of serum UA and liver XOD 
were significantly decreased in a dose-dependent manner (Tables 2 and 3), when compared with model group. In mice treated with 
450 mg/kg TFPI, the content of serum creatinine in mice decreased significantly, which indicated that TFPI had protective effect on 
kidney. 

3.2. TFPI protected HK-2 cells from pyroptosis induced by MSU 

The precipitation of MSU crystals in renal tubules is the main reason for the development of UN. Thus, we used the proximal tubular 
epithelial cells HK-2 as the model system. Firstly, we profiled the safe concentration of TFPI on HK-2 cells by MTT assay. As shown in 
Fig. 1A, TFPI at different concentrations from 18.75 mg/L to 300 mg/L after either 24 h or 48 h presented non-significant alterations on 
cell viability when compared to cells not treated with TFPI, suggesting the relative safety of TFPI on HK-2 cells. Therefore, we chose 
37.5, 75, and 150 mg/L for subsequent experiments. Secondly, we treated HK-2 cells with TFPI + MSU, as shown in Fig. 1B, compared 
with the model group, the cell viability of HK-2 cells treated with TFPI increased significantly, the release rate of LDH decreased 
significantly (Fig. 1C), and the total apoptosis rate and late apoptosis rate decreased significantly (Fig. 1D and E), suggesting that TFPI 
potently protected HK-2 cells from pyroptosis induced by MSU stimulation. 

3.3. TFPI protects HK-2 cells from MSU induced apoptosis via mitochondrial pathway 

As shown in Fig. 2A, MSU could aggravate the oxidative stress response of HK-2 cells, while the ROS level of HK-2 cells treated with 
TFPI gradually decreased in a concentration dependent manner. Oxidative stress often mediates apoptosis through mitochondrial 
pathway. As shown in Fig. 2B, the expression of Caspase-3, cleaved-caspase-3 and Bax in HK-2 cells stimulated by MSU increased 
significantly, while the expression of Caspase-3, cleaved-caspase-3 and Bax in HK-2 cells treated by TFPI was inhibited. This suggests 
that TFPI protects HK-2 cells from MSU induced apoptosis through mitochondrial pathway. 

3.4. TFPI inhibits the activation of TLR4-NLRP3 inflammatory pathway in vitro 

Immunofluorescence showed that NF-κB nuclear shift occurred after MSU stimulation, and nuclear shift was inhibited after TFPI 
treatment, which indicated that TFPI could inhibit the inflammation induced by MSU stimulation (Fig. 3). To evaluate the status of 
TLR4-NLRP3 inflammatory pathway in response to TFPI treatment, we detected the protein expression of TLR4, NF-κB, p–NF–κB, 
TXNIP and NLRP3 in cell lysate and IL-1β, TNF-α in cell supernatant. The results showed that the expression of these proteins and the 
content of inflammatory factors increased significantly after MSU stimulation (Fig. 4). However, after TFPI treatment, the levels of IL- 
1β and TNF-α in cell supernatant were significantly decreased in a concentration dependent manner (Fig. 4B and C). Compared with 
the model group, the protein expressions of TLR4, NF-κB, p–NF–κB, TXNIP and NLRP3 were decreased in all treatment groups, sug-
gesting that TFPI may protect HK-2 cells by inhibiting the activity of TLR4-NLRP3 inflammatory pathway induced by MSU stimulation 
(Fig. 4A). 

Table 2 
Effects of TFPI on serum UA and Cr levels in hyperuricemic mice (x ± s, n = 10).  

Group Dosage (mg/kg) UA (μmol/L) Cr (μmol/L) 

Control – 39.2 ± 13.9 31.33 ± 8.60 
Model – 105.0 ± 9.9* 44.30 ± 10.00** 
Allopurinol 10 49.8 ± 9.1# 33.06 ± 7.29## 

TFPI 50 86.5 ± 21.6 45.85 ± 10.77 
TFPI 150 83.7 ± 25.3## 34.51 ± 10.46 
TFPI 450 82.3 ± 11.3## 33.37 ± 6.22## 

Note: TFPI – total flavonoids of Phellinus igniarius; UA – the levels of serum uric acid; CR – the levels of serum creatinine. 
*P < 0.01. 
**P < 0.05, as compared to control. 
#P < 0.01. 
##P < 0.05, as compared to model. 
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3.5. TFPI promotes ABCG2 expression by blocking TLR4-NLRP3 pathway activation 

As shown in Fig. 5, the expression of ABCG2 increased significantly after TFPI treatment. The relationship between the inhibition of 
TLR4-NLRP3 pathway by TFPI treatment and the expression of ABCG2 protein is unknown. According to Fig. 4C, the release rate of IL- 
1β in cells decreased significantly under the action of TFPI. Recent studies have shown that IL-1β is related to ABCG2 protein expression 
through PDZK1 [13]. As a result, the change of ABCG2 protein expression is closely related to the decrease of IL-1β. Therefore, our 
research group will further explore the relationship between IL-1β and ABCG2 in the later research and explore the mechanism be-
tween ABCG2 expression and TLR4-NLRP3 signal axis under the action of TFPI. 

4. Discussion 

In recent years, the number of patients with hyperuricemia continues to rise [14]. Chronic hyperuricemia can cause secondary 
damage to the cardiovascular endothelium, liver and kidney, and the kidney is the main organ excreting uric acid. Therefore, the renal 
injury will further aggravate hyperuricemia. Modern drugs can well control the level of uric acid in patients with hyperuricemia, but 
the strong side effects limit their clinical application [15-17]. Hence, there is no doubt that more effective anti-hyperuricemic med-
icines with fewer side effects are needed. According to the literature review and the previous research of the research group, the 70% 
alcohol extract of Phellinus igniarius has good anti-hyperuricemia characteristics. The existing research shows that the main active 
components in TFPI obtained by macroporous resin adsorption and purification are protocatechuic aldehyde, inoscavin A, hispidin, 
hypholomine B, phelligridimer A and davallialactone. The above substances isolated from TFPI have good antioxidant, 
anti-inflammatory and XOD inhibitory effects in previous studies [18-21]. In this study, we confirmed that TFPI can inhibit the 
development of HUA and protect the kidney. 

A high level of UA is the main feature of hyperuricemia [22]. Some studies have shown that HUA can damage the kidney, lead to the 
obstruction of renal excretion of UA, and aggravate hyperuricemia [23,24]. The level of Cr is an important index to evaluate renal 
function [25]. The present study found that TFPI can reduce the level of Cr in hyperuricemia model mice, suggesting that TFPI has the 
function of protecting the kidney. XOD is an important enzyme of uric acid metabolism in vivo, and the enhancement of XOD activity 
will increase the production of uric acid [26]. This study showed that TFPI could significantly reduce UA content and inhibit XOD 
enzyme activity, suggesting that the effect of TFPI on decreasing UA might be due to the inhibitory effect on XOD level. 

Apoptosis is a process of active cell death controlled by genes to maintain the stability of the internal environment and regulate the 
development of the body under certain stimulation [27]. At present, there are three pathways involved in the regulation of apoptosis, 
namely death receptor pathway, mitochondrial pathway, and endoplasmic reticulum pathway. Studies have confirmed that apoptosis 
of renal tubular epithelial cells is regulated by Bax, Bcl-2 and Caspase3 [28]. In the process of regulating apoptosis, Bax can form 
homologous or heterodimer with Bcl-2, antagonize the inhibitory effect of Bcl-2 on apoptosis, release inhibitory cytochrome c, activate 
Caspase3, and cause apoptosis [29]. In this study, treatment with TFPI (37.5, 75, and 150 mg/L) could reduce the expression of Bax, 
caspase3, and cleaved-caspase3 in a dose-dependent manner. Therefore, we speculate that the mechanism of TFPI protecting kidney 
may be through the mitochondrial pathway, antagonizing the expression of Pro apoptotic gene Bax, inhibiting the release of cyto-
chrome c [30], thus reducing the activation of apoptosis executive protein caspase, inhibiting apoptosis, and reducing MSU induced 
HK-2 cell damage. 

NLRP3 inflammasome is an immunosensor, which can participate in the immune, inflammatory, and metabolic processes of a 
variety of diseases [31]. It can respond to a variety of damage related molecular patterns and induce inflammatory response [32]. 
Modern studies have shown that three mechanisms can activate NLRP3 inflammasome [33]. The mechanism of activating inflam-
masome through ROS accumulation and release of TXNIP is an important way for stimulants to participate in inflammatory response 
through oxidative stress [34]. After the NLRP3 inflammasome is activated and assembled, procaspase1 is enzymolysis into the active 
state. Activated caspase1 can cleave and induce the precursor of IL-1β to mature and secrete out of the cell. Among them, the precursor 
of IL-1β is generally produced by activation of the NF-κB pathway [35]. Under normal conditions, NF-κB and IκBα exist in the cyto-
plasm as a complex. When the body is stimulated, IκBα is phosphorylated, which eventually leads to NF-κB phosphorylation activation 
and translocation to the nucleus, thus inducing immune and inflammatory reactions [36]. TLR4 is a recognition receptor on the cell 

Table 3 
Effects of TFPI on XOD and ADA activities in liver of hyperuricemic mice (x ± s, n = 10).  

Group Dosage (mg/kg) XOD (U/g prot) ADA (U/g prot) 

Control – 43.09 ± 4.34 30.47 ± 2.39 
Model – 48.91 ± 4.43* 29.34 ± 3.02 
Allopurinol 10 38.69 + 2.56# 25.43 ± 2.84## 

TFPI 50 42.48 + 2.69# 27.52 ± 4.48 
TFPI 150 44.11 ± 4.07## 27.77 ± 2.12 
TFPI 450 44.09 ± 2.93## 27.76 ± 4.14 

Note: TFPI – total flavonoids of Phellinus igniarius; XOD – the levels of xanthine oxidase; ADA – the levels of adenosine deaminase. 
*P < 0.01. 
**P < 0.05, as compared to control. 
#P < 0.01. 
##P < 0.05, as compared to model. 
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membrane [37,38]. It has been reported that MSU can be recognized by TLR4 and activate its downstream signaling pathway. Through 
cascade reaction, it can finally induce NF-κB activation into the nucleus and release pro-inflammatory cytokines such as TNF-α and 
IL-1β [39]. In the present study, the protein expressions of TLR4, NF-κB, NLRP3, TXNIP, and p–NF–κB were significantly decreased 
after the treatment with TFPI, indicating that TFPI may inhibit MSU-induced inflammatory response through TLR4-NLRP3 pathway. 

The excretion of UA needs the help of UA transporters. The current research shows that UA transporters mainly promote the 
reabsorption of UA and promote the excretion of UA [40]. ABCG2 is expressed in many organs of the body and in the brush border of 
proximal tubular epithelial cells in the kidney. Recently, more and more studies have proved that ABCG2 is a key urate transporter 
responsible for UA excretion, which is closely related to the occurrence of hyperuricemia [41]. In this study, the expression of ABCG2 
protein increased after TFPI treatment, indicating that TFPI may be able to promote the expression of ABCG2 to increase renal uric acid 
excretion. At present, it has been suggested that IL-1β can inhibit the expression of ABCG2 mainly by inhibiting the expression of 
PDZK1 protein [13]. PDZK1 has no ability to transport urate but can regulate the expression of UA transporter. Therefore, the 

Fig. 1. The survival rate of HK-2 cells at different times under different concentrations of TFPI (A); cell viability in each group was detected by MTT 
assay (B); the LDH release rate of each group of cells was detected by LDH kit (C); the total apoptosis rate of cells in each group (D); the late 
apoptosis rate of cells in each group (E); *P < 0.01, **P < 0.05, compared with the control; #P < 0.01, ##P < 0.05, compared with the model. 
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mechanism of TFPI regulating ABCG2 protein expression may be through reducing the release of IL-1β cytokines, thus promoting 
ABCG2 protein activation. 

To sum up, TFPI helps to reduce UA and has a certain protective effect on renal injury caused by UA. However, this study also has 
some limitations. First, animal models can reflect pharmacological effects, but models are still limited because of the differences in UA 
metabolism between humans and animals [42]. Secondly, in this study, the bioactive components were not completely separated from 

Fig. 2. Effect of TFPI on ROS level of HK-2 cells injured by MSU (A); The protein levels of indicated targets were examined by Western blot (B); *P 
< 0.01, **P < 0.05, compared with the control; #P < 0.01, ##P < 0.05, compared with the model. 

Fig. 3. Effect of TFPI on nuclear factor shift in HK-2 cells injured by MSU.  
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the raw material extracts, and only total flavonoids were used for the study. Therefore, it is necessary to conduct a comprehensive and 
in-depth study of TFPI against HUA to provide support for the clinic. 

5. Conclusions 

In conclusion, our findings demonstrated for the first time that TFPI not only inhibited the development of UN but also inhibited the 
apoptosis and inflammatory response of HK-2 cells stimulated by MSU. Furthermore, TFPI can regulate the expression of ABCG2 by 
inhibiting the activation of the TLR4-NLRP3 inflammatory pathway. This study demonstrates the potential of TFPI in the treatment of 
UN and the main therapeutic mechanisms regulating the TLR4-NLRP3 pathway. 
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