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ABSTRACT Methicillin-resistant Staphylococcus aureus (MRSA) is a Gram-positive
bacterium that causes community-acquired and health care-acquired infections. We
previously demonstrated that clay phyllosilicates and customized aluminosilicates
display antimicrobial activity against the MRSA strain SQL1. The SQL1 annotated ge-
nome reveals a USA300 lineage and contributes critical knowledge of the MRSA viru-
lence factors associated with tissue infection.

Methicillin-resistant Staphylococcus aureus (MRSA) infections are increasingly more
difficult to treat due to broad antibiotic resistance (1–5). In continuity, our studies

have incorporated the same MRSA strain (provided as a gift from Sonora Quest Laboratories,
Tempe, AZ, USA [6]) to examine the utility of clay constituents as antimicrobials (6–9). The
MRSA strain (MRSA SQL1) was sequenced to provide genetic insights into both the biology
and infection paradigm employed by the disease agent.

MRSA SQL1 was grown in Trypticase soy broth (Becton-Dickson, Sparks, MD, USA) at
37°C for 16 to 20 h. Plasmid DNA and genomic DNA were isolated using a standard plasmid
miniprep kit and genomic DNA isolation procedure, respectively, with lysostaphin and pro-
teinase K added to the lysis buffers, and purified using silica spin columns (QIAprep miniprep
kit and genomic DNA purification kit, respectively; Qiagen, Valencia, CA, USA). The strategy
used to sequence and annotate the genome of MRSA SQL1 essentially followed that of
Medrano et al. (10). A Pacific Biosciences Sequel instrument was used to perform sequencing
with the SMRTbell Express template preparation kit v2.0 with.10-kb fragments. DNA shear-
ing with a Covaris g-TUBE assembly (Woburn, MA, USA) preceded size selection on a
BluePippin system (Sage Science, Beverly, MA, USA) following manufacturer protocols.
The library was sequenced using a 10-h movie collection time with a single-molecule
real-time (SMRT) cell 1M v8, producing 230,419 reads with a 2.1-Gb molecular yield and a
mean subread length of 8.9 kb (N50, 9.7 kb). The genome was assembled using SMRT
Link v9.0.0.92188, with the Microbial Assembly protocol standard settings, including the
read quality control, error correction, and adapter trimming functions, were employed, with
an expected genome size setting of 2 Mb. The genome completeness was based on mini-
map2 v2.17 using standard PacBio recommended coding (i.e., ax map-pb) that mapped the
reads back to the circularized genome and verified the reads that spanned the junction (11).
The Microbial Assembly application of SMRT Link performs circularization and trimming and
rotates the assembly to place the origin of replication at the beginning of the final linearized
assembly. The finalized assembly included three circular contigs with a chromosome of
2.9 Mb (GC content, 32.7%) and extrachromosomal plasmids of 27.1 kb (GC content, 30.5%)
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and 3.1 kb (GC content, 28.7%); the three contigs had approximately 520�, 864�, and 439�
coverages, respectively. The Prokaryotic Genome Annotation Pipeline program v4.11 at the
NCBI was used to computationally annotate the sequence data (12).

From a total of 2,919 computed genes, 2,837 had predicted coding DNA sequences
for the genome, with 19 rRNA operons and 59 tRNAs. The annotation data identified a
putativemecR1 fragment and the Pantón-Valentine leukocidins lukS and lukF, all evidence of
a USA300 lineage. An extrachromosomal DNA profile provided further evidence of similarity
between SQL1 and USA300 (Fig. 1), correlating with sequencing results revealing plasmids
of 27.1 kb and 3.1 kb. Additional virulence determinants included open reading frames for
the luxA/C siderophore, lysostaphin protein A, and msrA macrolide efflux pump genes.
Generally, the strain SQL1/USA300 data presented advance our ongoing development of
novel MRSA infection treatment strategies (13–16).

Data availability. The assembled whole-genome sequences were deposited at DDBJ/
EMBL/GenBank (accession numbers CP081354.1, CP081355.1, and CP081356.1). The raw data
are available in the SRA database (accession number SRX11799045) with general details avail-
able under BioProject accession number PRJNA751845.
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FIG 1 Plasmid profiles of MRSA strains SQL1, USA300, and USA400. Plasmids were isolated from the
three MRSA strains and separated on a 0.5% agarose gel. The MRSA SQL1 plasmid profile is identical
to the known MRSA strain USA300.
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