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Abstract: Xanthine oxidase (XO) is an important target for the effective treatment of hyperuricemia-
associated diseases. A series of novel 2-substituted 6-oxo-1,6-dihydropyrimidine-5-carboxylic acids
(ODCs) as XO inhibitors (XOIs) with remarkable activities have been reported recently. To better
understand the key pharmacological characteristics of these XOIs and explore more hit compounds,
in the present study, the three-dimensional quantitative structure–activity relationship (3D-QSAR),
molecular docking, pharmacophore modeling, and molecular dynamics (MD) studies were performed
on 46 ODCs. The constructed 3D-QSAR models exhibited reliable predictability with satisfactory
validation parameters, including q2 = 0.897, R2 = 0.983, rpred

2 = 0.948 in a CoMFA model, and
q2 = 0.922, R2 = 0.990, rpred

2 = 0.840 in a CoMSIA model. Docking and MD simulations further
gave insights into the binding modes of these ODCs with the XO protein. The results indicated
that key residues Glu802, Arg880, Asn768, Thr1010, Phe914, and Phe1009 could interact with ODCs
by hydrogen bonds, π-π stackings, or hydrophobic interactions, which might be significant for
the activity of these XOIs. Four potential hits were virtually screened out using the constructed
pharmacophore model in combination with molecular dockings and ADME predictions. The four
hits were also found to be relatively stable in the binding pocket by MD simulations. The results in
this study might provide effective information for the design and development of novel XOIs.

Keywords: xanthine oxidase inhibitor; 3D-QSAR; docking; pharmacophore; virtual screening

1. Introduction

Gout is a clinical syndrome accompanied by some chronic and recurrent symptoms, such
as pain, inflammation, and swelling [1–4]. Such an unhealthy condition originates from the
superabundant presence of serum uric acid (SUA), which has been defined as hyperuricemia
(HUA) and regarded as the primary cause of gout [5–7]. In the last decade, the dramatic
increase of HUA patients has driven HUA to be the second metabolic disease following by
the type II diabetes [8]. Uric acid (UA) and reactive oxygen species (ROS), as the oxidative
end-products of xanthine and hypoxanthine, are generated in the purine scavenging pathway
under the catalysis of xanthine oxidase (XO) [9,10]. The excess UA and ROS usually associate
with many pathogeneses, such as inflammation, atherosclerosis, and carcinogenesis [11–13].
Clinical evidence has indicated that XO was a promising target for effectively treating with
several diseases, especially with the HUA-associated conditions [8–14].

In the past few decades, XO inhibitors (XOIs) have been widely used in the clinical
treatment of HUA. Allopurinol, as a XOI pioneer, was discovered for HUA treatment in the
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1960s [15]. However, allopurinol and its analogues with the semblable purine backbone
have been restrained to use in some cases, owing to severe and life-threatening side effects
like fever, rashes, kidney toxicity, and Stevens–Johnsons syndrome [16–18]. Febuxostat
and topiroxostat, as novel and effective non-purine XOIs, were approved for marketing
in 2009 and 2013, respectively [19,20]. However, these drugs are not regarded as a precise
and safe therapy because of their untoward effects on patients, which has prompted
researchers to explore and develop novel XOIs with alternate scaffolds and fewer adverse
reactions [21–24]. Various chemotypes of non-purine XOIs have been reported in recent
years, such as benzoflavone derivatives [20], 2-aryl/heteroaryl-4-quinolones [11], and
1-hydroxy-2-phenyl-4-pyridyl-1H-imidazoles [18]. In addition, the replacement of the
thiazole ring of febuxostat with other heterocyclic rings (magenta, Figure 1), such as
pyrazole (e.g., Y-700) [7], imidazole [18], triazole [9], isoxazole [12], thiazole [19], and
selenazole [5], could produce more alternatives for novel XOIs.

Figure 1. Chemical structures of different XOIs. Febuxostat contains an aromatic moiety (blue) and a nitrogen heterocyclic
ring (red). Other febuxostat analogues have different nitrogen-containing heterocyclic rings (magenta).

As shown in Figure 1, febuxostat and its analogues interact with XO through two
key pharmacophores, including an aromatic moiety (blue) and a nitrogen-containing
heterocyclic ring (red) [6,14]. The linker of two pharmacophores could be modified by the
extension of carbon chain or the introduction of heteroatoms like nitrogen. The carboxylate
moiety of the nitrogen-containing heterocyclic ring (red) in febuxostat and its analogues act
as the most tightly binding part of XOIs with the protein [15,23]. It has been confirmed that
the presence of an electron-withdrawing substituent at the 3′ position of the febuxostat,
such as a cyano or a nitro, resulted in an increase of inhibition efficiency [5,7]. The tetrazole
ring could serve as a hydrogen-bond acceptor (HBA) to participate in forming privileged
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interactions with some residues in the XO binding pocket [13]. Recently, a novel series
of febuxostat analogues, 2-substituted 6-oxo-1,6-dihydropyrimidine-5-carboxylic acids
(ODCs), have been designed and synthesized based on bioisosteric replacement and ring
enlargement strategies [3,4]. Some of these analogues exhibited better inhibitory activities
than febuxostat against the XO protein in vitro.

To explore the structure–activity relationships (SARs) of these novel ODC XOIs and
find more ideal candidates, in this study, 46 ODCs were selected for the integrated modeling
studies. Three-dimensional quantitative SAR (3D-QSAR) models, including comparative
molecular field analysis (CoMFA) and comparative molecular similarity indices analysis
(CoMSIA), and pharmacophore models, were constructed using these ODCs. Meanwhile,
molecular dockings were served to obtain the possible binding conformations of these XOIs
and to explore their action mechanism. To explore novel XOI scaffolds, virtual screening
was then carried out by pharmacophore model; molecular dockings; and predictions of
absorption, distribution, metabolism, and excretion (ADME). Molecular dynamics (MD)
simulations were subsequently performed to verify the rationality of the docking method,
and to further analyze the effects and stability of hit compounds in the XO binding pocket.
This study might provide important information and more alternatives for the design and
development of novel XOIs.

2. Results and Discussion
2.1. CoMFA and CoMSIA Statistical Results

A dataset of 46 ODCs was selected for 3D-QSAR modelling, and their structures and
biological activities represented by half-maximal inhibitory concentrations (IC50s) were
given in Table 1. The internal and external validation parameters of the CoMFA and
CoMSIA models were summarized in Tables 2 and 3, respectively, using the same training
(35 molecules) and test (11 molecules) sets. The CoMFA model gave rational parameters
with a cross-validation correlation coefficient (q2) of 0.897, an optimum number of com-
ponents (ONC) of 7, a standard error of estimate (SEE) of 0.050, a non-cross-validated
correlation coefficient (R2) of 0.983, an F-statistic values (F) of 229.50, and a predictive cor-
relation coefficient (rpred

2) of 0.948 in the partial least squares (PLS) analysis. The external
validation parameters of the CoMFA model, including a root-mean-squared error (RMSE)
of 0.074, a ∆rm

2 of 0.052, and a r2
m of 0.864, were also considered to meet the requirements.

The contributions of steric and electrostatic fields were 77.3% and 22.7%, respectively.
Different combination modes of steric, electrostatic, hydrophobic, hydrogen-bond

donor (HBD), and HBA fields were used to construct different CoMSIA models, and
the q2 values of all possible combinations were summarized in Figure S1. The statistical
parameters of the six best CoMSIA models were shown in Table 2. Eventually, the CoMSIA-
SEHDA model was chosen as the optimal predictive CoMSIA model for the further analyses.
As for the CoMSIA-SEHDA model, the q2, SEE, R2, F, rpred

2, RMSE, ∆rm
2, and r2

m were
0.922, 0.041, 0.990, 212.26, 0.840, 0.130, 0.118, and 0.717, respectively. The contributions of
steric, electrostatic, hydrophobic, HBD, and HBA fields were 10.5%, 24.8%, 37.2%, 19.3%,
and 8.2%, respectively. All above statistical parameters indicated that the constructed
CoMFA and CoMSIA models could be used for the following study, and the electrostatic,
hydrophobic, and HBD fields might be significant for the improvement of ODCs activity.

The obtained CoMFA and CoMSIA models were then applied to predict the bioactivi-
ties of the training and test compounds. The actual pIC50s (−logIC50), predicted pIC50s,
and their residuals were listed in Table 1. All the residuals were smaller than 0.4, suggesting
that the CoMFA and CoMSIA models exhibited good predictivity. To further exhibit the
relationships between the actual and predicted activities of all compounds, the scatter
plots were depicted in Figure 2. As shown in Figure 2, the two outlier points were related
to compounds 41 and 42, whose predicted activities based on the CoMSIA model were
slightly lower than their actual activity. All residual values (41: 0.2199; 42: 0.3296) were
in the reasonable range. The statistic points of other compounds exhibited great linear
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correlation, indicating that the 3D-QSAR models possessed high quality for the activity
prediction of ODCs.

Table 1. Chemical structures of the used non-purine XOIs and their actual and predicted pIC50 values.

No. R1 R2 R3 IC50 (µM) pIC50

CoMFA CoMSIA

Predicted
pIC50

Residuals Predicted
pIC50

Residuals

01 * methyl H O 0.0920 7.0362 6.984 0.0522 7.075 0.0388
02 iso-propyl H O 0.0737 7.1325 7.167 0.0345 7.132 0.0005
03 iso-butyl H O 0.0644 7.1911 7.204 0.0129 7.192 0.0009
04 iso-pentyl H O 0.0541 7.2668 7.25 0.0168 7.255 0.0118

05 *,# allyl H O 0.0437 7.3595 7.407 0.0475 7.329 0.0305
06 iso-butenyl H O 0.0569 7.2449 7.246 0.0011 7.253 0.0081
07 iso-pentenyl H O 0.0692 7.1599 7.163 0.0031 7.146 0.0139
08# propinyl H O 0.0500 7.301 7.263 0.038 7.302 0.001

09# methylene
cyclopropane H O 0.0461 7.3363 7.324 0.0123 7.328 0.0083

10 cyclopentyl H O 0.0585 7.2328 7.275 0.0422 7.235 0.0022

11 methylene
cyclohexane H O 0.0683 7.1656 7.143 0.0226 7.144 0.0216

12 benzyl H O 0.0945 7.0246 7.102 0.0774 7.018 0.0066
13 p-methylbenzyl H O 0.0894 7.0487 7.074 0.0253 7.106 0.0573

14 * p-tert-butylbenzyl H O 0.1490 6.8268 6.804 0.0228 6.801 0.0258
15 p-methoxylbenzyl H O 0.0507 7.295 7.330 0.035 7.301 0.006
16 p-fluorobenzyl H O 0.0531 7.2749 7.226 0.0489 7.211 0.0639
17 p-chlorobenzyl H O 0.0691 7.1605 7.195 0.0345 7.201 0.0405
18 p-bromobenzyl H O 0.0552 7.2581 7.194 0.0641 7.233 0.0251
19 m-methoxylbenzyl H O 0.0516 7.2874 7.273 0.0144 7.301 0.0136
20 m-fluorobenzyl H O 0.0477 7.3215 7.298 0.0235 7.319 0.0025

21 *,# m-chlorobenzyl H O 0.0288 7.5406 7.593 0.0524 7.535 0.0056
22 m-bromobenzyl H O 0.0450 7.3468 7.329 0.0178 7.342 0.0048
23 o-chlorobenzyl H O 0.0917 7.0376 7.062 0.0244 7.004 0.0336
24 2,5-dichlorobenzyl H O 0.0639 7.1945 7.120 0.0745 7.215 0.0205
25 2,4-dichlorobenzyl H O 0.0838 7.0768 7.129 0.0522 7.116 0.0392
26 hydrogen H O 0.6290 6.2013 6.205 0.0313 6.201 0.0003
27 iso-propyl H O 0.0916 7.0381 7.013 0.0222 7.042 0.0039

28 * iso-butyl H O 0.0609 7.2154 7.238 0.0226 7.270 0.0546
29 *,# iso-pentyl H O 0.0250 7.6021 7.561 0.0411 7.705 0.1029
30 * allyl H O 0.0811 7.091 7.107 0.016 7.026 0.065
31 # iso-butenyl H O 0.0336 7.4737 7.505 0.0061 7.507 0.0333
32 iso-pentenyl H O 0.0388 7.4112 7.389 0.1031 7.429 0.0178

33 * benzyl H O 0.0387 7.4123 7.297 0.1153 7.405 0.0073
34 p-fluorobenzyl H O 0.0382 7.4179 7.424 0.0998 7.398 0.0199
35 p-chlorobenzyl H O 0.0499 7.3019 7.405 0.06 7.410 0.1081

36 # p-bromobenzyl H O 0.0298 7.5258 7.426 0.0116 7.462 0.0638
37 *,# p-tert-butylbenzyl H O 0.1970 6.7055 6.874 0.1685 6.787 0.0815

38 p-methylbenzyl H O 0.0354 7.451 7.391 0.06 7.380 0.071
39 iso-pentyl CH3 O 0.5400 6.2676 6.256 0.0116 6.248 0.0196
40 iso-butenyl CH3 O 0.5677 6.2459 6.253 0.0071 6.263 0.0171

41 * p-bromobenzyl CH3 O 0.1854 6.7319 6.822 0.0901 6.512 0.2199
42 * p-methylbenzyl CH3 O 0.1590 6.7986 6.807 0.0084 6.469 0.3296
43 # iso-pentyl H NH 0.0240 7.6198 7.664 0.0442 7.642 0.0222
44 # iso-butenyl H NH 0.0181 7.7423 7.684 0.0583 7.708 0.0343
45 # p-bromobenzyl H NH 0.0271 7.567 7.58 0.013 7.558 0.009
46 p-methylbenzyl H NH 0.0339 7.4698 7.528 0.0582 7.487 0.0172

Febuxostat # - - - 0.0236 7.6271 - - - -

* The test set compounds used for the 3D-QSAR models. # The compounds used for the pharmacophore models.
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Table 2. Internal statistical parameters of the CoMFA and CoMSIA models.

Model q2 ONC SEE R2 F rpred
2 Field Contribution (%)

S E H D A

CoMFA S + E 0.897 7 0.050 0.983 229.50 0.948 0.773 0.227

CoMSIA S + E + H + D
+ A 0.922 11 0.041 0.990 212.26 0.840 0.105 0.248 0.372 0.193 0.082

H + D 0.907 12 0.048 0.987 141.51 0.670 0.763 0.237
S + E + D 0.931 7 0.055 0.980 189.71 0.665 0.175 0.404 0.421
E + H + A 0.875 11 0.043 0.989 195.52 0.871 0.331 0.528 0.141

S + E + H + D 0.926 10 0.041 0.990 232.65 0.825 0.107 0.257 0.422 0.214
E + H + D + A 0.921 11 0.042 0.990 205.711 0.848 0.271 0.436 0.204 0.089

q2: cross-validated correlation coefficient; ONC: optimal number of components; SEE: standard error of estimate; R2: non-cross-validated
correlation coefficient; F: F-statistic values; rpred

2: predictive correlation coefficient; S: steric fields; E: electrostatic fields; H: hydrophobic
fields; D: hydrogen bond donor fields; A: hydrogen bond acceptor fields.

Table 3. External validation parameters of the CoMFA and CoMSIA models.

Validation Parameters RMSE r2 r0
2 r′02 (r2 − r′02)/r2 k k′ rm

2 r′m2 ∆rm
2 r2

m

CoMFA 0.074 0.950 0.946 0.936 0.0147 0.998 1.002 0.890 0.838 0.052 0.864
CoMSIA (S + E + H + D + A) 0.130 0.922 0.840 0.897 0.027 1.005 0.995 0.658 0.776 0.118 0.717

RMSE: root mean square error for the test set compounds; r2: the regression line coefficient of correlation for the test set compounds; r0
2

(predicted vs. observed activities) and r0
′2 (observed vs. predicted activities): the correlation coefficient of regression lines with a zero

intercept; k (predicted vs. observed activities) and k′ (observed vs. predicted activities): the slope of regression lines with a zero intercept;
rm

2: calculated by [r2 (1−(r2 − r0
2)0.5)]; r′m2: calculated by [r2 (1−(r2 − r0

′2)0.5)]; ∆rm
2 and r2

m: the difference and average values between
rm

2 and rm
′2.

Figure 2. Scatter plots of actual versus predicted pIC50 values for the used XOIs based on the CoMFA (a) and CoMSIA-
SEHDA (b) models.

2.2. Contour Maps of the CoMFA and CoMSIA Models

The CoMFA and CoMSIA contour maps with the most potent compound 44 as a reference
molecule were shown in Figures 3 and 4, respectively. As shown in Figure 3, the sterically
advantageous and disadvantageous contours were colored in green and yellow, respectively.
A medium green contour surrounding the R1 position of compound 44 in both CoMFA and
CoMSIA models indicated that bulky substituents at this position might be beneficial to
the activity. This was supported by the activity orders as follows: 29 (iso-pentyl) > 28 (iso-
butyl) > 27 (iso-propyl) and 4 (iso-pentyl) > 3 (iso-butyl) > 2 (iso-propyl). Another small
green contour neared the meta-position of the phenyl ring (R1) in the CoMFA and CoMSIA
models, demonstrating that big substituents for structural modification at this place might
be favorable for the increment of activity. In the steric contours of the CoMFA model, a large
green contour covering the R3 position of the pyrimidine ring highlighted the importance
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of large groups in this region. The fact that an imino substituent at the R3 position was
better for the activity than an oxygen atom could explain this result, as illustrated in the
activity orders: 43 (R3 = NH) > 32 (R3 = O) and 44 (R3 = NH) > 31 (R3 = O).

Figure 3. Contour maps of the CoMFA and CoMSIA-SEHDA models using compound 44 as a reference. (a) The steric
contours of the CoMFA model. (b) The electrostatic contours of the CoMFA model. (c) The steric contours of the CoMSIA
model. (d) The electrostatic contours of the CoMSIA model.

The electrostatic maps of the CoMFA and CoMSIA models were shown in Figure 3;
the blue contours denoted that electropositive groups were favor in these regions, whereas
the red contours were the opposite. It could be observed that a medium blue contour in
the CoMFA model and a large blue contour in the CoMSIA model lied in the R1 position,
which were congruent with the following activity order: 5 (allyl) > 8 (propinyl) and
4 (iso-pentyl) > 7 (iso-pentenyl), attributed to the existence of electropositive substituents.
A medium red contour in the CoMFA model and a small red contour in the CoMSIA
model appeared over the pata- or meta-position of the phenyl ring (R1), indicating that
the occupation of electronegative groups at this region was advantageous for increasing
the inhibitory activity. This result was in accordance with the experimental data: 20 (m-
fluorobenzyl) > 12 (benzyl) and 36 (p-bromobenzyl) > 37 (p-tert-butylbenzyl). Two small
blue contours in the CoMFA model and one small blue contour in the CoMSIA model were
located near the pyrimidine ring, which were in accordance with the actual activity orders:
45 (R3 = NH) > 36 (R3 = O) and 46 (R3 = NH) > 38 (R3 = O), as the electropositivity of the
oxygen is weaker than that of the nitrogen.

Regarding the hydrophobic contours of the CoMSIA model (Figure 4a), the yellow
and white contours represented favor and unfavored regions for the hydrophobic groups,
respectively. The existence of a big yellow contour at the R1 position revealed that the
substituents of hydrophobic groups in this position tended to increase the activity, such as
the following activity orders: 13 (p-methylbenzyl) > 12 (benzyl), 38 (p-methylbenzyl) > 33
(benzyl), and 1 (methyl) > 26 (H). There was a white contour covering the R2 position of
the pyrimidine ring, suggesting that the hydrophobic groups in this position might not
be beneficial for the activity improvement. For instance, compounds 29, 31, 36, and 38
without substituent at the R2 position exhibited higher activity than the corresponding
compounds 39, 40, 41, and 42 with a methyl group, respectively.
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Figure 4. Contour maps of the CoMSIA-SEHDA model using compound 44 as a reference. (a) The hydrophobic field.
(b) The hydrogen-bond donor field. (c) The hydrogen-bond acceptor field.

The HBD and HBA contour maps of the CoMSIA model are shown in Figure 4. For
the HBD contours, the cyan contours suggested HBD groups were advantageous for
the activity at the corresponding regions. For the HBA contours, the magenta regions
represented that the occupation of HBA substituents surrounding these regions might
facilitate the bioactivity improvement, whereas the red contours mean the contrary effect.
Two small cyan contours and a medium-sized magenta contour were observed over the
carboxyl group of the pyrimidine ring in the HBD and HBA contours, respectively. These
observations were consistent with a previous study that the carboxylate group of febuxostat
analogues was essential for the inhibitory activity since it could serve as HBDs or HBAs
to form critical hydrogen bonds with the XO protein [22]. Besides, there was another
medium cyan contour near the pyrimidine ring in the HBD contours, suggesting that the
nitrogen atoms of the pyrimidine ring might serve as HBDs to interact with the protein.
One medium magenta was observed near the benzene ring of the common skeleton in the
HBA contour map. This manifested that the HBA existence in the common scaffold, such
as a tetrazole ring or a cyano group, might be important for the inhibitory activity.

According to the analyses of the 3D-QSAR models, the appropriate substituents
for improving the inhibitory activity of these ODC XOIs at specific positions might be
concluded as follows: (1) bulky, positive charged, and/or hydrophobic groups at the R1
position; (2) negative charged groups at the para- or meta-position of the phenyl ring at the
R1 position; (3) hydrophilic groups at the R2 position; (4) bulky and/or positive charged
groups at the R3 position; (5) a tetrazole ring or a cyano group at the phenyl ring as HBAs;
(6) a carboxyl group of the pyrimidine ring as HBDs or HBAs; and (7) the nitrogen atom of
the pyrimidine ring as HBDs.

2.3. Molecular Docking

To validate the reliability of the docking method and explore the key interactions, the
co-crystallized febuxostat was extracted and then redocked into the XO protein (PDB ID:
1N5X). As shown in Figure 5a, the XO protein was a homodimer, in which one of subunit
(blue cartoon) was selected to generate binding pocket (highlighted as gray surface) by the
surflex-docking method. Febuxostat and 46 ODCs were successively docked, and their



Int. J. Mol. Sci. 2021, 22, 8122 8 of 21

docking scores were summarized in Table S1. The docking superimposition of compounds
febuxostat, 44, and 26 was highlighted in Figure 5b to compare their differences in the
binding positions. As shown in Figure 6a, the conformation of the redocked febuxostat
almost completely overlapped with that of the crystal ligand, with a root-mean-square
deviation (RMSD) value of 0.867 Å (<2 Å) and a docking score of 8.22. This indicated that
the used docking method and the related parameters were reasonable. The carboxylate
group of febuxostat formed hydrogen bonds with Arg880 (Arg880-N-H . . . O=C, 2.1 Å) and
Thr1010 (Thr1010-N-H . . . O=C, 2.0 Å), and the cyano group interacted with Asn768 by a
hydrogen bond (Asn768-N-H . . . N≡C, 1.9 Å). These hydrogen bonds might be significant
for maintaining the binding conformation of febuxostat. The phenyl ring embedded into a
hydrophobic pocket that was generated by the surrounding amino acid residues Leu648,
Phe649, Leu873, Val1011, Phe1013, Leu1014, Phe914, and Phe1009. Moreover, the π-π
stacking was also found between the thiazole ring of febuxostat and the phenyl groups of
the aromatic residues Phe914 (face-to-face) and Phe1009 (face-to-edge). These interactions
were also important for the binding of febuxostat to the XO protein, as reported in a
previous study [12,23]. The above-mentioned results indicated that the docking method
was reliable and could be used for the following experiments.

Figure 5. The binding pocket of the XO protein (PDB ID: 1N5X). (a) The binding site of the XO protein (chain A, cyan
cartoon; chain B, violet cartoon; binding pocket, gray surface). (b) The comparisons of febuxostat (orange sticks), compound
44 (cyan sticks), and compound 26 (yellow sticks) in the docking position of the binding pocket (gray surface).

Forty-six ODC XOIs (Table 1) were then docked into the binding site using the same
pattern. The docking modes of the most active compound 44 and the least active compound
26 are shown in Figure 6. The docking score of compound 44 (10.69) was much higher than
that of compound 26 (7.85), which was in agreement with their experimental activities. In
general, we found that the docking score order of these XOIs was accordant with their
inhibition potencies. Moreover, it was noted that compounds febuxostat, 44, and 26 have
similar docking orientations and binding interactions in the pocket. Similar to febuxostat,
compound 44 (Figure 6b) formed hydrogen bonds with Arg880 (Arg880-N-H . . . O=C,
2.4 Å; Arg880-N-H . . . O=C, 2.2 Å) by the carboxylate group. The additional hydrogen
bonds were formed between Glu802 and the nitrogen atom of the pyrimidine ring (Glu802-
C=O . . . H-N-C, 1.9 Å; Glu802-C=O . . . H-N-C, 2.6 Å; Glu802-C=O . . . H-N=C, 1.9 Å).
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Figure 6. The docking results of febuxostat (a), compound 44 (b), and compound 26 (c) in the binding site of protein (PDB
ID: 1N5X). The crystal ligand, redocked ligand, important residues, and hydrogen bond were shown in orange sticks, blue
sticks, green sticks, and yellow dashes, respectively.

The docking result of compound 26 (Figure 6c) showed that the carboxylate group, the
nitrogen atom of the pyrimidine ring, and the tetrazole group were generated the semblable
hydrogen bonds with Arg880 (Arg880-N-H . . . O=C, 2.3 Å; Arg880-N-H . . . O=C, 1.8 Å),
Thr1010 (Thr1010-C-O-H . . . O=C, 2.5 Å), Glu802 (Glu802-C=O . . . H-N-C, 2.1 Å), and
Asn768 (Asn768-N-H . . . N=C, 1.9 Å), respectively. Furthermore, it could be observed that
some hydrogen bonds were formed between the nitrogen atom of the pyrimidine ring and
Ser876 (Ser876-O-H . . . N=C, 2.6 Å), and the nitrogen atoms of the tetrazole group and
Lys771 (Lys771-N-H . . . N=C, 2.4 Å; Lys771-N-H . . . N=C, 2.0 Å).

Compared to the conformation of febuxostat, the changes in the docking results of
compound 44 might be caused by the deeper binding position and the rotation of the
benzene ring. These variations of compound 44 might have caused the purine ring to
form a hydrogen bond with Glu802. The previous study indicated that Glu802 as a key
residue could form at least one hydrogen bond with the amino group or the nitrogen-
containing heterocyclic ring of febuxostat analogues [8,15]. In comparison with compound
44, compound 26 was found to loss partial interactions with Glu802, which might be
considered as the primary reason caused its decreased potency.
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An online web service Protein Contacts Atlas (http://www.mrc-lmb.cam.ac.uk/pca/
(accessed on September 2020)) was also used for validating key residues interacted with
the ligand febuxostat in XO protein [25]. It could be seen from Figure S2 that there were an
inner circle and an outer circle, representing directly and indirectly interacted residues with
febuxostat (central blue note), respectively [26]. The circle size of each residue represented
the number of atomic contacts. It is worth noting that Phe914, Glu802, Phe1009, Arg880,
Leu648, and Thr1010 might play important roles for febuxostat binding, consistent with
the docking results.

2.4. Pharmacophore Model

The pharmacophore models were built using different selections of 12 compounds,
and the partial modeling results were displayed in Table S2. In order to make the phar-
macophores more reasonable, febuxostat, which has structural similarity with ODCs, was
given preference to construct models. The selection of remaining 11 molecules was fol-
lowed the principles of relatively higher structural diversity and better activity. Twenty
pharmacophore models were established by aligning and comparing the common features
from a set of 12 active compounds (Table 1), and their statistical results were listed in
Table 4. By comparing potential models based on different selections, the FEATS values
were almost unaffected. If the modeling molecules possessed too high structural difference,
it might cause poor N_HITS, low SPECIFICITY, and high ENERGY. However, too low struc-
tural difference might cause high SPECIFICITY, enrichment factor (EF), and Güner-Henry
score (GH), which would be likely detrimental for further screening. The model_6 was
considered as the optimal pharmacophore model as it gave relative fitting parameters, in-
cluding SPECIFICITY = 5.709 (>5), N_HITS ≈ 12, FEATS = 8, PARETO = 0, ENERGY = 9.41,
STERICS = 1864.20, HBOND = 486.00, and MOL_QRY = 104.79 [27]. Additionally, the
calculated parameters of a decoy set method for the model_6 could be concluded as follows:
GH = 0.75 (0.6 < GH < 0.8) and EF = 120.56 (> 1). These also indicated that the model_6 has
powerful ability to differentiate benign from inert compounds [28]. Therefore, the model_6
was chosen to analyze the key pharmacological features and was applied for the following
virtual screening.

Table 4. Statistical results of the pharmacophore models.

Name SPECIFICITY N_HITS FEATS PARETO ENERGY STERICS HBOND MOL_QRY

Model_1 4.629 11 8 0 8.76 2052.10 497.60 84.69
Model_2 4.630 11 8 0 9.53 2064.40 498.40 81.58
Model_3 2.330 9 10 0 8.47 2023.00 499.90 65.32
Model_4 4.651 11 8 0 11.39 1986.30 494.50 87.28
Model_5 4.629 11 8 0 10.10 1911.90 492.00 91.15
Model_6 5.709 11 8 0 9.41 1864.20 486.00 104.79
Model_7 3.440 12 10 0 11.68 1834.50 495.80 117.25
Model_8 4.630 11 8 0 10.80 1840.80 503.10 85.90
Model_9 3.440 12 10 0 12.21 1835.30 494.70 117.25

Model_10 4.629 11 8 0 22.58 2149.70 496.10 85.45
Model_11 4.628 11 8 0 10.47 1965.60 490.20 85.45
Model_12 4.649 11 8 0 12.18 1996.40 487.40 93.3
Model_13 4.630 11 8 0 1240.81 2059.40 497.30 85.90
Model_14 4.630 11 8 0 10.80 1786.20 499.50 85.90
Model_15 3.440 12 10 0 9.89 1780.70 484.10 141.11
Model_16 3.440 12 10 0 14.36 1750.50 492.50 152.73
Model_17 3.439 12 10 0 10.26 1929.00 470.00 129.80
Model_18 4.637 11 8 0 10.82 1830.30 487.90 97.00
Model_19 3.441 12 10 0 10.19 1723.60 485.60 130.83
Model_20 4.636 11 8 0 1385.32 2189.60 481.20 97.00

The pharmacophore features were shown in Figure 7 with the alignment of 12 XOIs.
There were 3 green, 2 magenta, 2 cyan, and 1 blue spheres, which represented 3 hydrogen-

http://www.mrc-lmb.cam.ac.uk/pca/
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bond acceptor atoms (HAs), 2 hydrogen-bond donor atoms (HDs), 2 hydrophobic centers
(HYs), and 1 negative center (NC), respectively. It could be observed that the HDs covered
the nitrogen atoms of the pyridine ring, suggesting that the nitrogen-containing heterocyclic
structure might be indispensable for the activity. There were 2 HAs at the oxygen atoms of
-OR1 and the carboxyl group, respectively, and another HA at the tetrazole or the cyano
group, indicating that HA groups might be essential for activity in this position. The
common scaffolds of febuxostat analogues were reported to be necessary to maintain the
activity, which was consistent with the pharmacophore results that 2 HYs were located at
the center of the 2 aromatic rings. These pharmacophore characteristics were generally in
agreement with the 3D-QSAR and docking results. A graphical SAR summary of these
ODC XOIs based on the results of the 3D-QSAR models, the molecular dockings, and the
optimal pharmacophore model was shown in Figure 8.

Figure 7. The optimal pharmacophore model. Green, magenta, cyan, and blue spheres represent hydrogen-bond acceptor
atoms (HAs), hydrogen-bond donor atoms (DAs), hydrophobes (HYs), and negative centers (NCs), respectively.

Figure 8. The SARs of 1,6-dihydropyrimidine-5-carboxylic acid XOIs based on the 3D-QSAR models, molecular docking
results, and the pharmacophore model.

2.5. Virtual Screening and Docking Analysis

The best pharmacophore model was converted into a UNITY query for the virtual
screening from the ZINC purchasable database. The screened compounds (QFIT > 35)
from the pharmacophore were then docked into the XO protein, and 37 compounds (dock-
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ing score > 10) were obtained. We found that several screened compounds contained a
similar indole ring that corresponded to the benzene ring of febuxostat analogues, which
might provide new ideas for designing novel XOIs. The ADME properties of screened hits,
compound 44, and febuxostat were predicted by SwissADME (http://www.swissadme.ch
(accessed on December 2019)), and a portion of data was summarized in Table 5 and
Table S3. Finally, the screened hits VS12 (ZINC71763654), VS16 (ZINC09234838), VS19
(ZINC59369278), and VS26 (ZINC16688904) were obtained through the following cri-
teria: 150 < molecular weight (MW) < 500 g/mol, 20 < topological polar surface area
(TPSA) < 130 Å2, high gastrointestinal (GI) absorption, inexistent blood–brain barrier (BBB)
permeability, synthetic accessibility (SA) score < 4.5, Lipinski violations = 0, and lower
inhibitory characteristics with cytochrome P450 (CYP450) [21,29–31].

Table 5. The ADME prediction results of the virtual-screened hits (VS12, VS16, VS19, and VS26), compound 44, and
febuxostat.

Parameter
Compound

VS12 VS16 VS19 VS26 Febuxostat 44

MW (g/mol) 375.4 417.39 401.44 429.4 316.37 310.31
Fraction Csp3 0.3 0.09 0.22 0.35 0.31 0.12

Rotatable bonds 4 7 8 9 5 5
TPSA (Å2) 113.4 105.7 98.6 130.3 111.5 122.9

GI absorption High High High High High High
BBB permeant No No No No No No

CYP1A2 inhibitor Yes No Yes No Yes No
CYP2C19 inhibitor No Yes No Yes Yes No
CYP2C9 inhibitor No No No No Yes No
CYP2D6 inhibitor No No No No No No
CYP3A4 inhibitor No No No No No No
Lipinski violations 0 0 0 0 0 0

SA score 3.4 3.32 3.25 3.34 3.12 2.64

The chemical structures and docking scores of compounds VS12, VS16, VS19, and VS26
were summarized in Table 6, and their docking conformations were shown in Figure 9.
Compounds VS12, VS16, and VS26 could form similar hydrogen bonds with residues
Arg880, Thr1010, and Glu802, which were similar with the docking results of febuxostat
and compound 44. In the previous docking results, residues Arg880, Thr1010, and Glu802
have also been proved to be essential for XOI binding. As for compound VS19, it could be
observed to bind stably by hydrogen bonds with Arg880, Thr1010, Asn768, and Leu648.
Compared with febuxostat and compound 44, the nitrogen-containing heterocyclic rings
of compounds VS12, VS16, VS19, and VS26 were also observed to form π-π stacking
interactions with Phe914 and Phe1009. These docking results demonstrated that the
4 screened compounds might have the potential to become novel XOIs, which might
provide new ideas for designing novel XOI chemotypes.

2.6. Molecular Dynamics Simulations

The best docking conformations of compounds febuxostat, 44, VS12, VS16, VS19,
and VS26 were subjected to MD simulations based on the repaired XO protein. To further
analyze the stability of these protein–ligand complexes, the time-dependent behavior of
complexes XO-VS12, XO-VS16, XO-VS19, and XO-VS26 in the 50 ns simulation trajectories
were analyzed using XO-febuxostat and XO-44 as the comparisons, and their results were
shown in Figures 10 and 11, Figures S3–S5.

http://www.swissadme.ch


Int. J. Mol. Sci. 2021, 22, 8122 13 of 21

Table 6. Chemical structures and docking scores of the virtual-screened hits obtained by the third-round screening.

Hit
Compound VS12 VS16 VS19 VS26

Structure

Docking score 10.62 11.87 10.76 11.03

Figure 9. The docking results of the screened compounds VS12 (a), VS16 (b), VS19 (c), and VS26 (d) in the XO protein
(PDB ID: 1N5X). The ligands, important residues, and hydrogen bonds were shown in blue sticks, green sticks, and yellow
dashes, respectively.
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Figure 10. The results of the 50 ns MD simulations of complexes XO-febuxostat (black), XO-44 (red), XO-VS12 (green),
XO-VS16 (cyan), XO-VS19 (magenta), and XO-VS26 (violet). (a) The RMSDs of the XO backbone atoms. (b) The RMSDs of
ligands (febuxostat, 44, VS12, VS16, VS19, and VS26). (c) The residue RMSFs of XO. (d) The Rg of XO.

Figure 11. Molecular alignment for the 3D-QSAR models. (a) The common scaffold (magenta) used for the alignment.
(b) The alignment result of all used XOIs.

The RMSD values that could reflect the differences between the initial and current
conformations were suited to evaluate the convergence and stability of the systems [32].
The comparisons between the initial and final conformations of 6 complexes were shown in
Figure S3. According to Figure 10a, the RMSD values of backbone atoms in the 6 complexes
could become stable at approximately 25 ns and varied around 0.2 nm. In complex XO-
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febuxostat, the RMSD values of backbone atoms were higher than those of the other
complexes. As shown in Figure 10b, the ligands (febuxostat, 44, VS12, VS16, VS19, and
VS26) with low RMSD values could become stable during MD simulations. Compared to
febuxostat, the RMSD results manifested that compounds VS12, VS16 and VS26 might be
more favorable for binding to XO.

The root-mean-square fluctuation (RMSF) values (Figure 10c) were used to evaluate
the flexibility of the protein side chains, and the RMSF values of >0.35 nm were considered
as high flexibility [33]. The RMSF values of the most residues in the 6 systems showed
similar fluctuation, and the critical residues in all complexes exhibited low flexibility,
illustrating that the key interactions of all compounds in the binding pocket might similar.
The gyration radius (Rg) values could estimate the protein compactness, and the numerical
results of each system over time were summarized in Figure 10d. All complexes showed
slight fluctuations, and the Rg values finally stabilized between 3.17 and 3.21 nm. The
above evidence suggested that the protein conformations of all complexes were basically
stable, which was consistent with the RMSD results [28].

The hydrogen-bond number were carried out to assess the stability of the complexes
from another perspective [34]. Figure S4 showed the hydrogen-bond numbers between
the ligand and protein in complexes XO-febuxostat, XO-44, XO-VS12, XO-VS16, XO-VS19,
and XO-VS26 fluctuated within 0–4, 0–6, 0–7, 0–4, 0–5, and 0–4, respectively, during the
MD simulations. Furthermore, the hydrogen-bond numbers in complexes XO-febuxostat,
XO-44, XO-VS12, XO-VS16, XO-VS19, and XO-VS26 maintained in 2, 3, 3, 2, 1, and 1,
respectively. The above results suggested that compound VS12 might bind tightly with
XO by more hydrogen bonds than the other virtual-screened compounds.

The binding free energy was calculated by the Molecular Mechanics-Poisson Bolzmann
Surface Area (MM-PBSA) method, and the corresponding values are listed in Table 7. The
binding free energies of compounds febuxostat, 44, VS12, VS16, VS19, and VS26 in the XO
protein were −97.04, −95.30, −88.31, −159.71, −95.91, and −150.84 kJ/mol, respectively.
These results indicated that the binding strengths of compounds VS16 and VS26 might be
stronger than those of compounds febuxostat and 44 [35]. It was observed that binding
energies of VS16 and VS26 with XO were more favorable due to their higher van der
Waals interactions (∆Evdw: VS16 = −220.50 kJ/mol; VS26 = −216.89 kJ/mol). In addition,
VS16 exhibited relatively low polar solvation energy (∆GPB: 109.67 kJ/mol), and VS26
showed relatively good electrostatic interaction (∆Eele: −40.34 kJ/mol), respectively. As
for all 6 systems, the ∆Evdw played an important role in the ∆Gbinding, the contribution
of ∆Eele was nearly counteracted by the ∆GPB, and the values of SASA energy (∆GSA) in
each complex were semblable. These results indicated that the nonpolar energy might
be the main driving force for the binding of these XOIs. To understand the stability of
complexes, the binding energies obtained during the MD simulations versus time were
shown in Figure S5. It was observed that the binding energies of all complexes reached
stability after 45 ns. Essentially, the stability of compounds VS12, VS16, VS19, and VS26
in the XO binding pocket were verified. The above analyses proved that the screened
compounds might have powerful potential to be XOI hits.

Table 7. The free binding energies (kJ/mol) of febuxostat, compound 44, and the virtual-screened hits (VS12, VS16, VS19,
and VS26) in the XO protein.

Complex ∆EvdW ∆Eele ∆GPB ∆GSA ∆Gbinding

XO-febuxostat −175.32 ± 8.81 −39.95 ± 6.37 136.43 ± 11.05 −18.20 ± 0.73 −97.04 ± 9.45
XO-44 −160.03 ± 10.29 −107.25 ± 10.15 189.25 ± 11.17 −17.27 ± 0.78 −95.30 ± 8.32

XO-VS12 −195.31 ± 9.21 −69.99 ± 13.91 197.26 ± 13.45 −20.27 ± 0.81 −88.31 ± 10.40
XO-VS16 −220.50 ± 9.93 −28.10 ± 8.40 109.67 ± 10.71 −20.78 ± 0.86 −159.71 ± 11.41
XO-VS19 −152.19 ± 8.97 −49.01 ± 6.76 124.32 ± 11.20 −19.03 ± 0.86 −95.91 ± 10.52
XO-VS26 −216.89 ± 9.57 −40.34 ± 8.46 127.33 ± 14.15 −20.94 ± 0.91 −150.84 ± 9.61
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3. Materials and Methods
3.1. Molecules Set and Optimization

All calculations and simulations were performed using SYBYL-X 2.1 software (Tripos
Inc., St. Louis, MO, USA) running on Windows 7 workstations, unless otherwise specified.
A dataset of 46 ODCs (Table 1) was selected from the published literature [3,4] for 3D-
QSAR modelling. The energy and geometry minimizations of all ODC compounds were
applied in the Tripos force field and the Gasteiger–Hückel charges under the energy
gradient convergence criterion of 0.005 kcal/(mol·Å) and the maximum iteration coefficient
of 10,000 [36].

3.2. Molecular Modeling and Molecular Alignment

The CoMFA and CoMSIA models were used to help us to better understand the
relationship between the characteristics of molecular structures and their activities. SYBYL-
X 2.1 software was used for the CoMFA and CoMSIA models. Different physicochemical
properties used for the CoMFA and CoMSIA models are calculated by the same lattice boxes
with the same sp3 carbon probe (default probe atom) [28]. Thereinto, the CoMFA model
incorporates two different descriptor fields: steric and electrostatic fields. The steric and
electrostatic fields were calculated using Lennard-Jones potential and Coulombic potential,
respectively [37]. In CoMSIA, five different similarity fields, including steric, electrostatic,
hydrophobic, HBD, and HBA fields, were calculated using the Gaussian function [38].
Besides, the CoMFA and CoMSIA models are transformed to contour maps using the field
type of “StDev*Coeff”, which are useful for analyzing the SARs [6]. Forty-six compounds
used for the 3D-QSAR models were randomly divided into a training set of 35 molecules
for the model generation and a test set of 11 molecules for the model validation. The
molecular alignment quality has a great effect on the predictability and robustness of the
models [39]. In this study, the compound 44 with the highest potency was selected as a
template, and the other molecules were superimposed onto the common skeleton (colored
as magenta) by automatic alignment and manual adjustment. The alignment results of all
ODCs were shown in Figure 11.

3.3. Model Validation

PLS regression analysis method was performed for establishing the 3D-QSAR models.
The first step detecting the reproducibility and robustness of the CoMFA and CoMSIA models
was the internal validation. In the PLS analysis, a series of parameters, including q2, ONC, R2,
F, and SEE, were calculated to assess the predictive ability of models [36]. To further judge
the feasibility of the constructed models, external validation parameters, including r0

2, r0
′2,

k, k’, rm
2, r’m2, rpred

2, ∆rm
2, r2

m, and RMSE, were further taken into consideration [39]. r0
2

(predicted vs. actual pIC50) and r0
′2 (actual vs. predicted pIC50) are the correlation coefficients

of regression lines with a zero intercept, and k (predicted vs. actual pIC50) and k’ (actual vs.
predicted pIC50) are the slopes of regression lines, respectively. rm

2, rpred
2, and RMSE are

calculated according to the following Equations (1)–(3), respectively.

rm
2 = r2 ×

(
1−

√
r2 − r02

)
(1)

rpred
2 = 1−

∑
(

ypred(test) − y(test)

)2

∑
(

y(test) − y(training)

)2 (2)

RMSE =

√
1
n∑

(
y(test) − ypred(test)

)2
(3)

The y(test), ypred(test), and y(training) represent the actual pIC50 value of each test set
compound, the predicted pIC50 value of each test set compound, and the mean pIC50
value of the training set compounds, respectively [40]. An appropriate model should
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satisfy the following conditions: q2 > 0.5, R2 > 0.8,
r2−r2

0

(
or r

′2
0

)
r2 < 0.1, 0.85 ≤ k (or k’) ≤ 1.15,

∆rm
2 < 0.2, r2

m > 0.5, and rpred
2 > 0.6 [41].

3.4. Molecular Docking

Molecular docking served as a helpful tool to obtain the reasonable binding conforma-
tions of bioactive molecules and to identify core residues in the active site of target protein.
The crystal structure of bovine XO protein (PDB ID: 1N5X), a very close homologue of
human XO enzyme, was used for molecular docking by the surflex-docking package of
SYBYL-X 2.1 with default parameters [1]. The sequence alignment of bovine (Bos taurus)
and human (Homo sapiens) XO with approximately 90% sequence identity was shown
in Figure S6, and particularly in the febuxostat binding site, the key amino acids were
the same, which was consistent with the reported literatures [1,20]. Before docking, an
online web service (http://www.mrc-lmb.cam.ac.uk/pca/ (accessed on September 2020))
was used to explore the non-covalent contacts between ligand and protein [25]. After the
pretreatment steps of the original protein, including hydrogenating, adding electric charges,
extracting the crystallographic ligands, and removing water and other unnecessary atoms,
the applicable docking pocket was generated with a threshold of 5 Å by a “ligand” mode.
The crystallographic ligand was first redocked into the pocket to examine the dependability
of the docking method. The conformation differences between the redocked and original
ligands were evaluated by the RMSD values [17]. The RMSD < 2.0 Å is considered as a
reference criterion, indicating that the docking method is reasonable. The same docking
method was then applied on 46 ODC XOIs (Table 1), and the appropriate docking confor-
mations with different docking scores were then obtained [42]. Finally, the conformations of
febuxostat, the most active compound 44, and the least active compound 26 were used for
further analyses. The docking visualization was completed by PyMOL software (DeLano
Scientific LLC, San Carlos, California, USA).

3.5. Pharmacophore Model

Pharmacophore model could be used to extract the key chemical information of active
compounds, and to automatically generate pharmacophore features, for instance, HAs,
HDs, HYs, and NCs [23]. Twelve molecules (Table 1) containing febuxostat with relatively
high activities and diverse structures were selected to construct pharmacophore models by
the Genetic Algorithm with Linear Assignment of Hypermolecular Alignment of Datasets
(GALAHAD) module of SYBYL-X 2.1. Twenty models with different parameters were
generated, of which the models with optimal SPECIFICITY, N_HITS, ENERGY, STERICS,
HBOND, and MOL_QRY values were chosen for further studies. In addition, a decoy set
method was used to assess the searching active molecules capability of pharmacophore
models. The potential pharmacophore models were performed to screen a decoy set
database. The decoy set database was composed of 6234 inactive compounds (downloaded
from http://dud.docking.org/r2/ (accessed on September 2019)) and 35 active ODCs
(Table 1), except for the 11 ODCs and febuxostat that used for constructing this model [28].
The EF and GH values used for evaluating the reliability of the models were calculated
as follows:

EF =
Ha/Ht

A/D
(4)

GH =

[
Ha(3A + Ht)

4HtA

](
1− Ht −Ha

D−A

)
(5)

in which Ha, Ht, A, and D represent the number of true positive compounds in the hit list,
the number of all compounds in the hit list, the number of true positive compounds in
the database, and the number of all compounds in the database, respectively [43]. When
EF > 1 and 0.6 < GH < 0.8, the model is eligible to be chosen for further analyses and
virtual screening.

http://www.mrc-lmb.cam.ac.uk/pca/
http://dud.docking.org/r2/
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3.6. Virtual Screening

A multi-stage virtual screening was carried out against the purchasable ZINC15
database (http://zinc15.docking.org (accessed on September 2019)) [44] by the combina-
tion of the optimal pharmacophore model, molecular dockings, and ADME predictions.
The pharmacophore features from the best pharmacophore model were extracted to use
as a search query for the first-round screening. The QFIT parameters in the range of 0 to
100 were obtained to assess the matching degree of screened compounds with the pharma-
cophore features [33]. The compounds with a QFIT > 35 were then selected for the second-
round screening of docking. The compounds with a docking score > 10 were selected
for the third-round screening [13]. In the third-round screening, the ADME profiling was
then applied to assess pharmacokinetic and pharmacodynamic properties of the second-
round screened compounds by a web tool of SwissADME (http://www.swissadme.ch
(accessed on December 2019)) [30]. Among the predicted ADME properties, following
properties were considered preferentially to get the satisfied compounds, including MW,
TPSA, GI absorption, BBB permeability, inhibitory ability assessment of CYP450, Lipinski
violations, and SA score [10,29–31]. Finally, the hits compounds with desired pharma-
cophore compliance, preferable docking scores, and ideal ADME evaluation results were
further investigated for their binding interactions and stability in the XO protein by MD
simulations and post-analysis experiments.

3.7. Molecular Dynamics Simulations

To further verify the stability of the docked hits compounds in the XO protein, 50 ns
MD simulations were performed on different complexes using GROMACS 2016.5 soft-
ware (Uppsala University, Stockholm University, and the Royal Institute of Technology,
Sweden). The overall XO protein was a homodimer, in which one of subunit was selected
for simulations. Residue deficiencies in 166–191 and 532–536 (loop region) were repaired
by the protein loop search module of SYBYL-X 2.1 software, and the residues 1326–1332
were reasonably removed to solve the problem of the residues 1317–1325 deficiencies in
the subunit terminal. The repaired models with good fit and high homology were further
evaluated using PROCHECK and ProSa servers. Compared with the evaluation results of
the original and optimal repaired proteins (Figure S7), the residues in disallowed regions
were unchanged, and the Z-score value showed little difference, indicating the repaired
protein was eligible enough for simulations. The protein topology files were generated
by the pdb2gmx program under the AMBER99SB force field [1]. The ligand topological
files were obtained by the ACPYPE program [35]. The protein–ligand complexes were
positioned into the center of a cubic box with a side length of 13.7 nm, and there was
a buffering distance of approximately 12 Å between the protein periphery and the box
edges. This box filled with water, and five additional chloride ions, were added into box
to reach the neutralization. The steepest gradient descent method was then used to mini-
mize the energy of each system within 1 ns (50,000 steps) with a convergence criterion of
10 kJ/mol [32]. The protein–ligand complex was subjected to 100 ps simulation to achieve
the NVT and NPT equilibrium at 300 K and 1 atm, respectively [28]. Finally, 50 ns MD
simulations were performed for all systems, and their trajectories were recorded at every
10 ps (5000 steps) for post-analysis [26]. Many post-analyses, such as RMSD, RMSF, Rg,
and hydrogen-bond numbers, were conducted to investigate the stability or variation of all
complexes during the dynamic environment. The equilibrium trajectory (the last 5 ns) of
the MD simulations was extracted to calculate the binding free energy using the MM-PBSA
method. The binding free energy was calculated as follows:

∆Gbind = Gcomplex −Gfree−protein −Gfree−ligand (6)

in which Gcomplex, Gfree-protein, and Gfree-ligand represent the free energy of protein–ligand
complex, protein, and ligand, respectively [33].

http://zinc15.docking.org
http://www.swissadme.ch
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4. Conclusions

In this work, an integrated computational study, including 3D-QSAR models, molecu-
lar dockings, pharmacophore models, and MD simulations, was performed on 46 novel
ODC XOIs. 3D-QSAR models with good statistical parameters were constructed to provide
significant insights into the SARs of these ODCs. Molecular docking results indicated
that residues Glu802, Arg880, Thr1010, and Asn768 could form hydrogen bonds with
these XOIs, and residues Phe914 and Phe1009 could also form π-π interactions with them.
These interactions might be essential for their affinity with the XO protein. The best phar-
macophore model with eight features was inconsistent with the 3D-QSAR and docking
results. Four hit compounds (VS12, VS16, VS19, and VS26) with ideal compatibility for
the pharmacophore model, relatively high docking scores, and good ADME characteristics
were retrieved by the multi-round virtual screening. The MD simulations also indicated
hits VS12, VS16, VS19, and VS26 could bind well with the XO protein during the dynamic
environment. We expect that these results will be helpful for the design and development
of novel XOIs, and the screened compounds could provide more alternatives and ideas
for XOIs.
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