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Image segmentation has always been a considerable challenge in image analysis and understanding due to the intensity
inhomogeneity, which is also commonly known as bias field. In this paper, we present a novel region-based approach based on local
entropy for segmenting images and estimating the bias field simultaneously. Firstly, a local Gaussian distribution fitting (LGDF)
energy function is defined as a weighted energy integral, where the weight is local entropy derived from a grey level distribution of
local image.Themeans of this objective function have amultiplicative factor that estimates the bias field in the transformed domain.
Then, the bias field prior is fully used.Therefore, our model can estimate the bias field more accurately. Finally, minimization of this
energy function with a level set regularization term, image segmentation, and bias field estimation can be achieved. Experiments
on images of various modalities demonstrated the superior performance of the proposed method when compared with other state-
of-the-art approaches.

1. Introduction

Image segmentation has always been a crucial step in image
understanding and computer vision. However, due to the
limitations in imaging instrument and other external effects,
bias field is often seen in many medical images which
can be ascribed to a spatially varying field. Therefore, it is
often a fundamental step to correct the bias field before
performing quantitative analysis of the image data. Methods
of bias field correction can be divided into two groups:
prospective methods [1, 2] and retrospective methods [3, 4].
Prospective methods aim to avoid intensity inhomogeneity
by using the shim techniques, special imaging sequences, or
special hardware. However, the retrospective methods rely
exclusively on the information of the acquired images and
thus can extract information on intensity inhomogeneity.

Among all kinds of bias field correction methods, those
based on segmentation are the most popular. In these
methods, the tasks of segmentation and bias field correction
are interleaved in an iterative process, thereby allowing
their optimal results to be simultaneously achieved. In [5],
Wells III et al. proposed an expectation-maximization (EM)

algorithm for image segmentation and bias field estimation.
However, such algorithm is sensitive to the choices of initial
conditions, which limits its applications in automatic seg-
mentation. Based on the EM algorithm, Meena and Shantha
[6] presented a fully automated method for MR brain image
segmentation by introducing the Fuzzy C-means (FCM)
with spatial information. Also, a method of pixel relabeling
is included to improve the segmentation accuracy. So, this
method can very well be extended to segmentation of clinical
MR brain images and the identification of pathologies. In
[7], Xie et al. propose an approach joining a modified
MRF classification and bias field estimation in an energy
minimization framework, whose initial estimation is based
on 𝑘-means algorithm in view of prior information on MRI.
Thereby, this algorithm is also more reliable and effective.

Recently, the level set method has been applied to simul-
taneously segment images while estimating the bias field [8–
15]. For example, Li et al. [8] introduced a local weighted𝐾-means clustering-based variational level set approach to
estimate the bias field and segment the images with intensity
nonuniformity. A unique feature of this method is that the
calculated bias field is essentially guaranteed by the data term
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in the variational formulation, without any extra effort to
maintain the smoothness of the bias field. In [9], Zhang et
al. presented a statistical and variational multiphase level
set (SVMLS). This approach used the Gaussian distribution
with spatially varying mean and variance to describe the
image model. Thereby, it can distinguish regions with similar
intensity means but different variances. In [10], Wang and
Pan proposed a new image-guided regularization to restrict
the level set function. In this method, tissue segmentation
and bias field estimation are unified into a single Bayesian
inference framework and are simultaneously achieved by
minimizing the objective energy functional. So the method
can be used for accurate segmentation and bias correction of
medical images in the presence of severe intensity inhomo-
geneity. However, all of them are sensitive to initialization of
the contour to some extent.

In this study, we propose a novel LGDFmodel in terms of
noise and robustness for simultaneous image segmentation
and bias field estimation. Firstly, according to the observed
signal model of the image with intensity inhomogeneity,
the LGDF energy function that includes the local entropy
is defined for driving the evolution contour of the level set
toward the desired boundary. The means of this objective
function have a multiplicative factor that estimates the bias
field in the transformeddomain. Furthermore, by incorporat-
ing the bias field prior into a variational level set formulation
with a regularization term, our method can be used for
segmentation and bias field correction. Finally, we have also
made some comparisons with several state-of-the-art models
to show the superiority of our method over the traditional
local region-based methods.

The contributions of this paper may be summarized as
follows:

(1) Our model is built by simultaneous segmentation
and bias field correction within a single framework.
Hence, it can make full use of a priori knowledge on
the bias field and level set function.

(2) By incorporating the local entropy information, our
model can estimate the bias field more accurately.

2. Background

2.1. Li’s Method. In order to overcome the problem of inten-
sity inhomogeneity, Li et al. [8] introduced a variational level
set approach to estimate the bias field and segment the images
with intensity nonuniformity. The method is based on the
following model to describe an observed image:

𝐼 = 𝑏𝐽 + 𝑛, (1)

where 𝐼 is the measure image, 𝑏 is the bias field, 𝐽 is the true
image, and 𝑛 is the additive noise.The assumption on the true
image 𝐽 and the bias field 𝑏 has the following properties: (i)
the bias field 𝑏 is slowly varying in the image domain and
(ii) the true image intensities 𝐽 are approximately a constant
within each class of tissue; that is, 𝐽(𝑥) ≈ 𝑐𝑖 for 𝑥 ∈ Ω𝑖, with{Ω𝑖}𝑁𝑖=1 being a partition ofΩ.

According to the above assumption, this method applies
a circular neighborhood with a small radius 𝜌 centered at

each point 𝑥 in the image domain Ω, defined by 𝑂𝑥 ={𝑦 : |𝑦 − 𝑥| ≤ 𝜌}. Then, the value 𝑏(𝑦) for all 𝑦 in the
circular neighborhood 𝑂𝑥 can be well approximated by 𝑏(𝑥).
Therefore, the intensities 𝑏(𝑦)𝐽(𝑦) in each subregion 𝑂𝑥 ∩Ω𝑖
are approximately the constant 𝑏(𝑥)𝑐𝑖. Considering that the
intensities 𝐼(𝑦) in the neighborhood𝑂𝑥 can be classified into𝑁 classes, the local clustering criterion can be described as

𝐸𝑥 = 𝑁∑
𝑖=1

∫
𝑂𝑥∩Ω𝑖

𝐾(𝑥 − 𝑦) 󵄨󵄨󵄨󵄨𝐼 (𝑦) − 𝑏 (𝑥) 𝑐𝑖󵄨󵄨󵄨󵄨2 𝑑𝑦, (2)

where {Ω𝑖}𝑁𝑖=1 denotes a partition of the image domain Ω,𝑏(𝑥)𝑐𝑖 is the cluster center to be optimized, and 𝐾(𝑥 − 𝑦) is
a nonnegative weighting function.

2.2. Zhang’sMethod. In [9], Zhang et al. presented a statistical
and variational multiphase level set method. Assuming that
the mean and variance of the local Gaussian distribution are
spatially varying parameters, 𝑢𝑖(𝑥) is the local intensity in the
partition 𝑂𝑥 ∩ Ω𝑖, so 𝑢𝑖(𝑥) can be approximated by 𝑏(𝑥)𝑐𝑖:

𝑢𝑖 (𝑥) = ∑𝑦∈𝑂𝑥∩Ω𝑖 𝐼 (𝑦)|Ω| ≈ ∑𝑦∈𝑂𝑥∩Ω𝑖 𝑏 (𝑦) 𝐽 (𝑦)|Ω|
≈ ∑𝑦∈𝑂𝑥∩Ω𝑖 𝑏 (𝑥) 𝑐𝑖|Ω| = 𝑏 (𝑥) 𝑐𝑖,

(3)

where |Ω| is the number of pixels in 𝑂𝑥 ∩ Ω𝑖.
By using maximum a posteriori probability and Bayes’

rule [9], the local Gaussian distribution fitting energy can be
described as follows:

𝐸𝑥 = 𝑁∑
𝑖=1

𝜆𝑖 ∫
𝑂𝑥∩Ω𝑖

−𝐾 (𝑥 − 𝑦) log𝑝𝑖,𝑥 (𝐼 (𝑦)) 𝑑𝑦, (4)

where 𝜆𝑖 are the positive constants and 𝑝𝑖,𝑥(𝐼(𝑦)) is the
probability density in region 𝑂𝑥 ∩ Ω𝑖, which is defined as

𝑝𝑖,𝑥 (𝐼 (𝑦)) = 1√2𝜋𝜎𝑖 (𝑥) exp(−
(𝐼 (𝑦) − 𝑏 (𝑥) 𝑐𝑖)22𝜎𝑖 (𝑥)2 ) . (5)

3. The Proposed Scheme

3.1. Local Entropy. The definition of entropy has first been
introduced by Shannon [16] and has been further developed
by the information theory community. As far as segmentation
is concerned, a regionmay be characterized using the average
amount of information, namely, the entropy, carried by the
intensity of the region, or using joint entropy for features
combination.The entropy of an image is expressed as follows
[17]:

𝐸 (𝐼) = − 𝑁∑
𝑖=1

𝑃𝑖 log𝑃𝑖, (6)

where 𝑃𝑖 is the probability of the given images 𝐼.
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(a)

(b)

Figure 1: Results of the local entropy on images with noise and intensity inhomogeneity. (a)The original images. (b)The local entropy images.

In this study, we give the definition of the local entropy in
a spatially continuous domainΩ𝑥 ⊂ Ω; then the local entropy
of the point 𝑥 can be written as

𝐸 (𝑥,Ω𝑥) = − 1
log 󵄨󵄨󵄨󵄨Ω𝑥󵄨󵄨󵄨󵄨 ∫Ω𝑥 𝑃 (𝑦,Ω𝑥) log𝑃 (𝑦,Ω𝑥) 𝑑𝑦, (7)

where 𝑃(𝑦,Ω𝑥) is the grey level distribution. It is given by

𝑃 (𝑦,Ω𝑥) = 𝐼 (𝑦) ∫
Ω𝑥

𝐼 (𝑧) 𝑑𝑧, 𝑦 ∈ Ω𝑥. (8)

We first apply (7) and (8) to compute the local entropy on
images, which are displayed in Figure 1. As discussed in our
previous work [18], the local entropy has good robustness for
noise and intensity inhomogeneity.

3.2. New LGDF Energy Based on Local Entropy. As men-
tioned above, the energy 𝐸𝑥 in (4) is sensitive to initialization
and noise. In order to handle these problems, we use the
local entropy 𝐸(𝑥,Ω𝑥) defined in (7) to describe the intensity

variation in a neighbourhood Ω𝑥 of a point 𝑥. Therefore, we
redefined the new LGDF energy as follows:

𝐸NLGDF
𝑥

= 𝑁∑
𝑖=1

𝜆𝑖𝐸𝑟 (𝑥) ∫
𝑂𝑥∩Ω𝑖

−𝐾 (𝑥 − 𝑦) log𝑝𝑖,𝑥 (𝐼 (𝑦)) 𝑑𝑦, (9)

where𝐸𝑟(𝑥) = 𝐸(𝑥, 𝐵(𝑥, 𝑟)) is the local entropy of 𝑥,𝐵(𝑥, 𝑟) ={𝑦 : |𝑥 − 𝑦| ≤ 𝑟}, 𝑟 > 0, and𝐾(𝑥 − 𝑦) is a truncated Gaussian
kernel, where 𝐾(𝑥 − 𝑦) = 0 for |𝑥 − 𝑦| ≥ 𝑟.

The ultimate goal is to minimize 𝐸NLGDF
𝑥 for all the center

points 𝑥 in the image domain Ω, which directs us to define
the following energy:

𝐸NLGDF = 𝑁∑
𝑖=1

𝜆𝑖 ∫
Ω
𝐸𝑟 (𝑥)

⋅ (∫
Ω𝑖

−𝐾 (𝑥 − 𝑦) log𝑝𝑖,𝑥 (𝐼 (𝑦)) 𝑑𝑦)𝑑𝑥.
(10)

Substituting (5) into (10), we can obtain the proposed
energy formulation as follows:

𝐸NLGDF = 𝑁∑
𝑖=1

𝜆𝑖 ∫
Ω
𝐸𝑟 (𝑥)(∫

Ω𝑖

𝐾(𝑥 − 𝑦)(log (√2𝜋𝜎𝑖 (𝑥)) + (𝐼 (𝑦) − 𝑏 (𝑥) 𝑐𝑖)22𝜎𝑖 (𝑥)2 )𝑑𝑦)𝑑𝑥. (11)

3.3. Level Set Formulation. In this section, level set formu-
lation is used to solve our energy 𝐸NLGDF in (11). Let 𝜙 :Ω → 𝑅 be a level set function; then its signs partition the
domain into two disjoint regions Ω1 = {𝑥 : 𝜙(𝑥) > 0} andΩ2 = {𝑥 : 𝜙(𝑥) < 0}. We assume that the image domain

Ω can be separated into two regions Ω1 and Ω2. These two
regions can be represented by their membership functions
defined as𝑀1(𝜙(𝑥)) = 𝐻(𝜙(𝑥)) and𝑀2(𝜙(𝑥)) = 1−𝐻(𝜙(𝑥)),
respectively, where 𝐻(∙) is the Heaviside function. Thus,
the energy in (11) can be written as the following level set
formulation:

𝐸NLGDF (𝜙, 𝑐𝑖, 𝜎𝑖, 𝑏) = 2∑
𝑖=1

𝜆𝑖 ∫
Ω
𝐸𝑟 (𝑥)(∫

Ω
𝐾(𝑥 − 𝑦)(log (√2𝜋𝜎𝑖 (𝑥)) + (𝐼 (𝑦) − 𝑏 (𝑥) 𝑐𝑖)22𝜎𝑖 (𝑥)2 )𝑀𝑖 (𝜙 (𝑦)) 𝑑𝑦)𝑑𝑥. (12)
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In our implementation, Heaviside function 𝐻 is usually
approximated by a smoothing function𝐻𝜀 defined by

𝐻𝜀 (𝑥) = 12 [1 + 2𝜋 arctan(𝑥𝜀 )] . (13)

The derivative of𝐻𝜀 is the following smoothing function:

𝛿𝜀 (𝑥) = 𝐻󸀠𝜀 (𝑥) = 1𝜋 𝜀𝜀2 + 𝑥2 . (14)

To derive an accurate and smooth contour, we need to add
a length term 𝐿(𝜙) and a regularization term 𝑅(𝜙). Therefore,
the entire energy functional is

𝐹 (𝜙, 𝑐𝑖, 𝜎𝑖, 𝑏) = 𝐸NLGDF (𝜙, 𝑐𝑖, 𝜎𝑖, 𝑏) + ]𝐿 (𝜙)
+ 𝜇𝑅 (𝜙) , (15)

where

𝐿 (𝜙) = ∫ 󵄨󵄨󵄨󵄨∇𝐻 (𝜙 (𝑥))󵄨󵄨󵄨󵄨 𝑑𝑥,
𝑅 (𝜙) = ∫ 12 (󵄨󵄨󵄨󵄨∇𝜙 (𝑥)󵄨󵄨󵄨󵄨 − 1)2 𝑑𝑥

(16)

and ] and 𝜇 are positive constants.
By minimization of the energy 𝐹(𝜙, 𝑐𝑖, 𝜎𝑖, 𝑏) in (15), image

segmentation and bias field estimation can be simultaneously
achieved. The procedure is as follows: in each iteration, we
minimize the energy 𝐹(𝜙, 𝑐𝑖, 𝜎𝑖, 𝑏) with respect to each of its
variables 𝜙, 𝑐𝑖, 𝜎𝑖, and 𝑏, given the other three updated in
previous iteration. The energy minimization with respect to
each variable can be obtained as follows.

For fixed 𝑐𝑖, 𝜎𝑖, and 𝑏, minimization of the energy 𝐹 in
(15) with respect to 𝜙 can be obtained by solving the following
gradient flow equation:

𝜕𝜙𝜕𝑡 = −𝜕𝐹𝜕𝜙 , (17)

where 𝜕𝐹/𝜕𝜙 is the Gâteaux derivative of the functional 𝐹.
The Gâteaux derivative can be obtained by using cal-

culus of variation [19]; hence the gradient flow equation is
expressed by

𝜕𝜙𝜕𝑡 = −𝛿𝜀 (𝜙) (𝜆1𝑒1 − 𝜆2𝑒2) + ]𝛿𝜀 (𝜙) div( ∇𝜙󵄨󵄨󵄨󵄨∇𝜙󵄨󵄨󵄨󵄨)
+ 𝜇(Δ𝜙 − div( ∇𝜙󵄨󵄨󵄨󵄨∇𝜙󵄨󵄨󵄨󵄨)) ,

(18)

where 𝑒1 and 𝑒2 are the functions as follows:
𝑒𝑖 (𝑥) = ∫

Ω
𝐾(𝑥 − 𝑦) 𝐸𝑟 (𝑥)

⋅ (log (√2𝜋𝜎𝑖 (𝑥)) + (𝐼 (𝑦) − 𝑏 (𝑥) 𝑐𝑖)22𝜎𝑖 (𝑥)2 )𝑑𝑦.
(19)

For fixed 𝜙, 𝜎𝑖, and 𝑏, the optimal 𝑐𝑖 that minimizes the
energy 𝐹 is given by

𝑐𝑖 = ∫ (𝐾 ∗ 𝑏) 𝐼𝑀𝑖 (𝜙 (𝑥)) 𝑑𝑥∫ (𝐾 ∗ 𝑏2)𝑀𝑖 (𝜙 (𝑥)) 𝑑𝑥 . (20)

By fixing the other variables in (15), we obtain the
minimizer of 𝑏 as follows:

𝑏 = ∑2𝑖=1𝐾(𝑥 − 𝑦) (𝐼𝑀𝑖 (𝜙 (𝑥))) (𝑐𝑖/𝜎2𝑖 )
∑2𝑖=1𝐾(𝑥 − 𝑦) (𝑀𝑖 (𝜙 (𝑥))) (𝑐𝑖/𝜎2𝑖 ) . (21)

By fixing the other variables in (15), we find an optimal 𝜎𝑖
as follows:

𝜎2𝑖
= ∫∫𝐾 (𝑥 − 𝑦) (𝐼 (𝑦) − 𝑐𝑖𝑏 (𝑥))2 (1 −𝑀𝑖 (𝜙 (𝑥))) 𝑑𝑦 𝑑𝑥∫∫𝐾 (𝑥 − 𝑦) (1 −𝑀𝑖 (𝜙 (𝑥))) 𝑑𝑦 𝑑𝑥 . (22)

Remark. The minimization problem in (18) is nonconvex,
so we need to make the convergence criteria. The terminal
condition is similar to |𝐹(𝑛) − 𝐹(𝑛+1)| < 0.001 or the number
of iterations that is set in advance. If the convergence criteria
are reached, stop the iteration.

3.4. Description of Algorithm Steps. For a deep understanding
of our model, the iterative procedure is summarized below in
this section.

Step 1. Input the original image 𝐼(𝑥).
Step 2. Compute the local entropy in (7) and (8).

Step 3. Initialize the level set function 𝜙 = 𝜙0(𝑥):

𝜙0 (𝑥) =
{{{{{{{{{

−𝑐0 𝑥 is inside 𝐶
0 𝑥 ∈ 𝐶
𝑐0 𝑥 is outside 𝐶.

(23)

Step 4. Initialize the parameters Δ𝑡, 𝜆1, 𝜆2, 𝜇, 𝜎, and ].

Step 5. Update 𝑐𝑖, 𝑏, and 𝜎𝑖 by using (20), (21), and (22),
respectively.

Step 6. Update the level set function 𝜙 according to (18).

Step 7. Check the convergence criteria and iteration number.
If the iteration number reached a predetermined maximum
number or |𝐹(𝑛) − 𝐹(𝑛+1)| < 0.001 (𝐹(𝑛) is the 𝑛th iteration
result of 𝐹), stop the iteration; otherwise, return to Step 5.

4. Experimental Results

In this subsection, Li’s model [8], Zhang’s model [9], Wang’s
model [10], RSF model [20], LGDF model [21], and the
method of this paper are applied on a variety of synthetic
images and medical images. The algorithm is implemented
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Figure 2: Application of our method to synthetic images. (a) Original images and initial contours. (b) Final contours. (c) Estimated bias
fields. (d) Bias-corrected images.

in Matlab 2011a on a 2.8GHz Intel Pentium IV personal
computer. Unless otherwise specified, the parameters are set
as follows: iteration time step Δ𝑡 = 0.1, weighting coefficients𝜆1 = 𝜆2 = 1.0, 𝜇 = 1.0, and Gaussian kernel 𝜎 = 3.
4.1. Segmentation of Synthetic and Real Images. We firstly
apply our method to segment five synthetic images, which
are displayed in Figure 2(a). These images are corrupted by
strong noise and intensity inhomogeneity. The final segmen-
tation results obtained after the convergence of our algorithm
are displayed in Figure 2(b). The computed bias field and
the bias-corrected images are shown in Figures 2(c) and 2(d).
As the local regional difference is considered, incorrect
estimations of the true image in local region can be corrected
in every iteration step. It can be seen from Figure 2 that
the new contours gradually emerge during the evolution

process. In the final segmentation results, the complete object
boundaries can be effectively extracted despite the impact
of intensity inhomogeneity or heavy noise. We also test our
method on real images as shown in Figure 3. It reveals that the
proposedmodel can segmentmultiple objectives successfully
in both real images via driving the contours to desirable
boundaries.

4.2. Segmentation of Medical Images. We also evaluate the
performance of our model on five medical images with
obvious intensity inhomogeneity and high noise. Figure 4
shows the segmentation results by RSF model, Li’s model,
LGDF model, Zhang’s model, Wang’s model, and the pro-
posed model. It is obvious that the RSF model, Li’s model,
and Wang’s method which use the Euclidean distance as
a criterion of classification cannot detect the boundaries
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(a)

(b)

(c)

(d)

Figure 3: Application of our method to real images. (a) Original images and initial contours. (b) Final contours. (c) Estimated bias fields. (d)
Bias-corrected images.

correctly. Takingmore statistical characteristics into account,
LGDF method and Zhang’s method yield similar visual
quality to our model in some images. In order to test the
performance of our model, the computational time and iter-
ations for segmentation are presented in Table 1. Compared
to LGDF method and Zhang’s method, the proposed model
is much easier to converge. The reason is that, with the local
entropy, only a simple alternating optimization is needed
in every iteration step. Experiments have proven that our
method has higher computing efficiency besides the accurate
segmentation.

4.3. Segmentation of Noise Images. In order to evaluate the
sensitivity to noise, we apply our method to the images
corrupted by various levels of Gaussian noise, as shown in
Figure 5. Figure 5(a) shows the original images with the
ground truth. Figure 5(b) shows the images with Gaussian

noise levels {0.05, 0.1, 0.15, 0.2, 0.25, 0.3}, respectively. We
observe from Figure 5 that RSF, Li’s, LGDF, andWang’s mod-
els successfully extract the object when images are corrupted
by noise of lower strength, while the other two models can
segment both objects from all noisy images successfully. To
further illustrate the effectiveness of our method, we utilize
the dice similarity coefficient (DSC) [22–24] to evaluate the
performances of bothmodels quantitatively. If 𝑆1 and 𝑆2 stand
for the areas enclosed by contours obtained by the model
and the manual method, respectively, then the DSC metric
is defined as follows:

DSC = 2𝑁 (𝑆1 ∩ 𝑆2)𝑁 (𝑆1) + 𝑁 (𝑆2) , (24)

where 𝑁(∙) indicates the number of pixels in the enclosed
region.
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Figure 4: Comparison of different methods for medical images. The first column: original images and initial contours. The second row:
results of RSFmodel.The third row: results of Li’s model.The fourth row: results of LGDFmodel.The fifth row: results of Zhang’s model.The
sixth row: results of Wang’s model. The last row: results of our method (Image 1: ] = 0.03 ∗ 255 ∗ 255; Image 2: 𝜎 = 5, ] = 0.005 ∗ 255 ∗ 255;
Image 3: 𝜎 = 5, ] = 0.02 ∗ 255 ∗ 255; Image 4: 𝜎 = 5, ] = 0.01 ∗ 255 ∗ 255; Image 5: 𝜎 = 5, ] = 0.025 ∗ 255 ∗ 255).

TheDSC indices by applying the three comparedmethods
are reported in Figure 6, from where it is seen that the DSC
value of ourmodel is larger than those of othermethods.This
demonstrates the superior performance of our method in
segmentation of the images with high noise. By quantitative
comparison, we can see the proposed model has good
robustness to Gaussian noise.

4.4. Quantitative Evaluation. Figure 7 shows five stars images
with different degree of intensity inhomogeneity. Figure 7(a)
represents original image with initial contours, whereas the
segmentation results obtained by RSF method, Li’s method,
LGDF method, Zhang’s method, Wang’s method, and our
method are shown from Figure 7(b) to Figure 7(g), respec-
tively. Visual inspection clearly shows that all algorithms can
segment the images precisely when intensity inhomogeneity
is not strong, as shown in the first and second columns.
With the increasing of intensity inhomogeneity, segmen-
tation results of Li’s method, LGDF method, and Wang’s
method show that they are not able to strictly find the object

boundary. To further measure the quality of the extracted
objects, Jaccard similarity (JS) [25, 26] is used as a quantitative
measure to evaluate the segmentation results of six methods.
The JS index is the ratio between two regions 𝑆1 and 𝑆2, which
can be defined as JS = |𝑆1 ∩ 𝑆2|/|𝑆1 ∪ 𝑆2|. The corresponding
JS values for Figure 7 are shown in Figure 8. It can be seen
that our method is superior in terms of accuracy than the
other models even if strong intensity inhomogeneity exists.
This means that our method is very robust to image intensity
inhomogeneity.

As shown in Figure 9, we carry out the experiments with
Gaussian noise levels ranging from0.1% to 0.6%.The JS values
of these algorithms are listed in Table 2 and the best results of
these algorithms are in bold. From this table, we can see that
the proposed method obtained the highest JS values in spite
of high level noise. This analysis indicates that our method
also has good robustness toward the levels of noise.

To furthermeasure the quality of the extracted objects, we
test thesemethods on a strong intensity inhomogeneity image
with different initial contours. The results of the compared
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 5: Comparison results for synthetic images polluted by various levels of Gaussian noise. (a)The original image with the ground truth.
(b) shows the images with noise levels {0.05, 0.1, 0.15, 0.2, 0.25, 0.3}, respectively. (c)–(h) show the segmentation result by RSF model, Li’s
model, LGDF model, Zhang’s model, Wang’s model, and our method.
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Figure 6: DSC values for the images corrupted by Gaussian noise in Figure 5 in the same order.

Table 2: The JS values for images shown in Figure 9.

Image Noise RSF Li’s LGDF Zhang’s Wang’s Our model

1

0.1% 0.9457 0.937 0.9482 0.9321 0.9484 0.9785
0.2% 0.9427 0.9392 0.9477 0.9435 0.9701 0.9722
0.3% 0.9402 0.9333 0.9462 0.9428 0.9305 0.9721
0.4% 0.9284 0.9351 0.9438 0.9341 0.9524 0.9683
0.5% 0.9129 0.9394 0.9447 0.938 0.93 0.9697
0.6% 0.8765 0.9363 0.9447 0.9202 0.9438 0.9663

2

0.1% 0.9531 0.9427 0.9633 0.9503 0.9595 0.9786
0.2% 0.9517 0.945 0.9609 0.9782 0.9155 0.9752
0.3% 0.9437 0.9468 0.9594 0.9628 0.8568 0.9694
0.4% 0.9396 0.9414 0.9599 0.9608 0.8627 0.9656
0.5% 0.8973 0.9482 0.9519 0.9546 0.9602 0.957
0.6% 0.8641 0.9482 0.9488 0.9536 0.6934 0.9504

3

0.1% 0.9284 0.9414 0.9517 0.9588 0.9354 0.9647
0.2% 0.9251 0.9453 0.9495 0.9466 0.9147 0.9614
0.3% 0.9017 0.9427 0.9527 0.9478 0.8357 0.9587
0.4% 0.8761 0.9218 0.9403 0.9301 0.8597 0.9415
0.5% 0.8487 0.9324 0.9315 0.9354 0.921 0.9486
0.6% 0.8414 0.9247 0.9201 0.9214 0.5478 0.9354

methods are reported in Figure 10. The corresponding JS
values for Figure 10 are shown in Figure 11. It can be seen
that our method is superior in terms of accuracy than the
other models even if strong intensity inhomogeneity exists.
Moreover, the JS values have few differences for different
initial contours. This means that our method is very robust
to initial contours.

4.5. Analysis for the Parameters. In this section, we simply
discuss the parameters that need to be manually given to
obtain appropriate segmentation results. Generally, time step

Δ𝑡, penalty term coefficient 𝜇, binary value 𝑐0, weighting
coefficients 𝜆1 and 𝜆2, and the positive constant of Heaviside
function 𝜀 are relatively stable for all the experiment images.
However, the parameters 𝜎 and ] seem to be sensitive.There-
fore, it is necessary to discuss the relationship between the
segmentation results and these parameters, fixing the other
parameters and only changing one parameter each time,
using the images in Figure 5. From the segmentation results
shown in Figure 12, it is illustrated that the scale parameter𝜎 is the standard deviation of Gaussian kernel. Increasing
the value of 𝜎 will introduce more local image information.
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 7: Segmentation results of five star synthetic images with different levels of intensity. (a) Original image with initial contours. (b)–(g)
show the segmentation result by RSF model, Li’s model, LGDF model, Zhang’s model, Wang’s model, and our method.
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Figure 8: The JS values corresponding to Figure 7.

(a) (b) (c) (d) (e) (f) (g)

Figure 9: Segmentation results of stars images with different levels of Gaussian noise. (a) The original image with initial contours (the first
three columns of Figure 7). (b)–(g) show the images with noise levels {0.001, 0.002, 0.003, 0.004, 0.005, 0.006}, respectively.

Hence, higher 𝜎 may lead to oversmoothed segmentation of
the images with abundant details and textures.The regularity
term coefficient ] can be adjusted to smooth the curves in
a way that the smoothness of the curve increases when ]
increases. On the contrary, when ] is too small, the results
may be smooth enough and the obtained contour is sensitive
to noise.

5. Conclusion

In this paper, we propose a novel LGDF model based on
local entropy to simultaneously correct the bias field and
segment the images. The local Gaussian distribution fitting
term is responsible for attracting the contour toward object
boundaries. By including the local entropy, our method can
handle noise and intensity inhomogeneity efficiently. The
experimental results on synthetic and medical images show

the superiority of our method over several state-of-the-art
active contour models. However, our model cannot segment
imageswith different tissue types, such as brainMRI or tumor
PET images. In the future, our model will be extended from
two-phase to multiphase level set formulation, which would
further enhance its capability in processing more complex
medical images.
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Figure 10: Comparison results on synthetic images with different initial contours. (a) Original image with strong intensity inhomogeneity.
(b)–(g) show the segmentation result by RSF model, Li’s model, LGDF model, Zhang’s model, Wang’s model, and our method.
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Figure 11: JS values for the images with different initial contours in Figure 10.
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Figure 12: Experimental results of our model with different coefficients of length term ] (∗255 ∗ 255) and scale parameter 𝜎.
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