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Background: Lung adenocarcinoma (LUAD) is one of the most lethal malignancies and is
currently lacking in effective biomarkers to assist in diagnosis and therapy. The aim of this
study is to investigate hub genes and develop a risk signature for predicting prognosis of
LUAD patients. Methods: RNA-sequencing data and relevant clinical data were
downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus
(GEO) database. Weighted gene co-expression network analysis (WGCNA) was
performed to identify hub genes associated with mRNA expression-based stemness
indices (mRNAsi) in TCGA. We utilized LASSO Cox regression to assemble our predictive
model. To validate our predictive model, me applied it to an external cohort. Results:
mRNAsi index was significantly associated with the tissue type of LUAD, and high mRNAsi
scores may have a protective influence on survival outcomes seen in LUAD patients.
WGCNA indicated that the turquoise module was significantly correlated with the mRNAsi.
We identified a 9-gene signature (CENPW,MCM2, STIL, RACGAP1, ASPM, KIF14, ANLN,
CDCA8, and PLK1) from the turquoise module that could effectively identify a high-risk
subset of these patients. Using the Kaplan-Meier survival curve, as well as the time-
dependent receiver operating characteristic (tdROC) analysis, we determined that this
gene signature had a strong predictive ability (AUC = 0.716). By combining the 9-gene
signature with clinicopathological features, we were able to design a predictive nomogram.
Finally, we additionally validated the 9-gene signature using two external cohorts fromGEO
and the model proved to be of high value. Conclusion: Our study shows that the 9-gene
mRNAsi-related signature can predict the prognosis of LUAD patient and contribute to
decisions in the treatment and prevention of LUAD patients.
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INTRODUCTION

Lung cancer causes over one million deaths every year and, as such, is considered a malignant disease
associated with high mortality rates. Approximately 85% of all lung cancers are non-small cell lung
cancer (NSCLC) and NSCLCs are considered the predominant histological type (Siegel et al., 2022).
Within this histological type, lung adenocarcinoma (LUAD) is the most common subtype (Barlesi
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et al., 2016). While there have been significant improvements in
multimodal therapy, such as those utilizing a combination of
surgery, and targeted therapy. Patients diagnosed with LUAD still
have notably poor outcomes, largely due to an absence of early
diagnostic tools and predictive biomarkers (Brody, 2020).

There are still no definite conclusions about the origin of
LUAD and its pathological mechanism. However, increased use
of microarray profiles and genome-wide sequencing have
recently been involved in the identification of important
molecular prognostic factors allowing for more precise
classification of LUAD and, thus, increasingly personalized
treatment options can be made available to patients (Chang
et al., 2020). Identifying molecular characteristics of LUAD
may provide effective tools for predicting patient prognosis
and LUAD’s response to therapy, thus improving physicians’
ability to individualize LUAD treatment (Langfelder and
Horvath, 2008).

A variety of studies have indicated that tumor stem cells are
not only valuable in research, but also are important in tumor
differentiation, ultimate metastasis, and the development of drug
resistance (Malta et al., 2018). The development of the mRNA
expression-based stemness indices (mRNAsi) has allowed
researchers to quantitatively assess stemness. By using
mRNAsi to measure tumor development, scientists can
evaluate the trustworthiness of stem cell indices for
investigating tumors using data from TCGA (Pan et al., 2019).
Expression data ranging from 0 to 1 is used to calculate the
mRNAsi. Expression data with values closer to 1 indicate strong
stem cell characteristics and low cell differentiation. Higher
mRNAsi scores are correlated with increased biological activity
in CSCs and more dedifferentiation of tumors, as shown by
histopathological grading (Shibue and Weinberg, 2017).

Weighted gene co-expression network analysis (WGCNA) is a
tool that systematic describes biological patterns seen in gene
associations found between samples. WGCNA can be used to
identify biomarker genes that may make good therapeutic targets
by using information on the interconnectivity of gene sets and
associations between different phenotypes and gene sets (Xu
et al., 2020). WGCNA focuses on information from thousands
of genes that are the most varied or all the genes, as opposed to
only differentially expressed genes, to determine associations
between genotypes and phenotypes and identify gene sets that
may be of interest. In WGCNA, genes that have comparable
expression patterns may also have similar regulatory networks
and/or correlations in function or be members of the same
pathway; and the gene network fits to a scale-free distribution
model. The gene network can then be divided, based on these
characteristics, into modules using qualifiers such as similar
expression, resulting in the identification of hub genes (Zhang
et al., 2020).

Considering the strong association between tumor stem cells
and tumor pathogenesis, our study aimed to obtain a module that
is closely related to stem cell characteristics and develop a new
mRNAsi-related signature with hub genes in the module.
Following development of the risk signature, its relationship
with clinicopathological characteristics and prognosis in
LUAD was investigated. An external validation was also

conducted using GEO datasets to prove the predictive value of
the risk signature.

MATERIALS AND METHODS

Data Acquisition, Immune Score
Generation, and Clinical Relationship
We collected gene expression profiling data from past LUAD
patients that were included in the TCGA database so that 513
lung adenocarcinoma and 56 normal tissue samples were utilized
in our study (https://portal.gdc.cancer.gov/). Corresponding
patient data, such as age, gender, living status, tumor status,
TNM stage, radio- and chemotherapy and survival data, and were
available from TCGA. During data preprocessing we transformed
gene names into official gene symbols using Perl language, and
genes needed to have a non-zero expression value in a minimum
of half of the sample type to be kept.

Identification of Differentially Expressed
Genes (DEGs)
Differentially expressed analysis was conducted by the package
“limma”, and the cut-off criteria was set as |log (Fold Change)| > 1
and p-value < 0.05 (Pencina and D’agostino, 2004). The R
package “pheatmap” was used to draw heatmap and volcano
plot. The box plots of the key genes for validation were plotted by
R, using the package “ggpubr”.

Weighted Gene Co-Expression Network
Analysis
We constructed co-expression modules using the WGCNA R
package based off the DEGs we identified between normal and
tumor tissues in LUAD patients. WGCNA was able to group highly
correlated genes and identify important modules or genes that are
associated with clinical characteristics of interest. We also used
Pearson correlation coefficients between each identified gene
module to construct a matrix than can establish module-trait
relationships between DEG expression and the associated
mRNAsi with respect to the β value (soft threshold value). After
the most important module was identified we then calculated the
gene significance (GS) and module membership (MM). We defined
key genes as those with the GS > 0.7 and MM > 0.7 for this module.

Function Enrichment Analysis (GO/KEGG)
We used Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) analysis with the “clusterProfiler” R
package to explore potential gene pathways and biological
functions in the significant module. Statistical significance was
defined as a P. adjust value < 0.05. The R package “org.Hs.eg.db”
was used to map important genes with the Ensemble ID. Bubble
plots were assembled by R to visualize the top 10 results.

PPI Network Construction
The protein-protein interaction (PPI) networks were constructed
based on genes in the most mRNAsi-related module, using the
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STRING database (version 11.0) of known and predicted protein-
protein interactions (Ritchie et al., 2015), which now covers
24,584,628 proteins from 5,090 organisms. The users only
need to submit a list of gene symbols and species, and the
website provides interaction relationships among submitted
proteins. These interactions include direct (physical) and
indirect (functional) associations.

PCA Analysis and Subgroup Analysis
To study the function of hub genes in the key module, we
separated 513 LUAD patients into different subgroups by the
approach of “ConsensusClusterPlus”, an algorithm for
determining clusters using an unsupervised analysis based on
gene expression (Szklarczyk et al., 2019). The consensus
clustering tool provides users with quantitative and qualitative
evidence that allows the estimation of unsupervised class counts
in a dataset. The maximum evaluated k (max K) was set to 9 and
other parameters of ConsensusClusterPlus were set to default.
The R package (R v3.5.1) of PCA analysis was adopted to explore
the gene expression patterns in subgroups of LUAD.

Construction and Validation of
mRNAsi-Related Risk Signature
To explore the prognostic value of hub genes in hub module
resulting from WGCNA, we used a least absolute shrinkage and
selection operator (LASSO) regression to narrow the range of
target genes via the “glmnet” R package because the predictor
variable was much larger than the sample content in the gene
expression data. The risk score formula for predicting the
prognosis of LUAD patients was: risk score = the sum of the
multivariate LASSO regression coefficient ratio of each mRNA
multiplied by the expression level of each mRNA. We divided the
LUAD patients into two groups, high- and low-risk, based on the
median value of risk score. In the two groups, the
clinicopathological characteristics of each patient, including age,
gender, living status, tumor status, TNM stage, survival status,
chemotherapy, radiotherapy, and gene expression profile, were
presented via the “pheatmap” and “survival” R packages. In
addition, we conducted time-dependent receiver operating
characteristic (tdROC) curve and Kaplan-Meier survival curve
analyses to validate the signature in both the training set and
testing set. Log-rank test was applied to calculate the difference of
overall survival rate between the high-risk and low-risk groups.
“p < 0.05” was considered statistically significant. In the validation
phase, we verified the nomogram in the GEO by using another
LUAD cohort, GSE17536 and GSE17537.

Exploration of Clinical Independence and
Construction of the Nomogram
To validate the independence of the risk model, we conducted
univariate and multivariate Cox regression analyses to evaluate
the predictive efficacy of the model. A nomogram encompassing
the risk score model and clinicopathological factors was plotted
by the “rms” R package. The accuracy of the nomogram was
examined using the consistency between the actual and the

predicted outcomes. Next, we submitted these outcomes to the
calibration curve to visualize the performance of the nomogram.
The 45° line represented the best prediction (Wilkerson and
Hayes, 2010). Based on the different clinicopathological
characteristics and the risk score of each patient, we calculated
the total score to predict 1, 3, and 5-years prognosis of LUAD
patients. To determine the prognostic value of the nomogram, we
use the Kaplan–Meier survival curve to compare the predictive
value of nomogram for OS. The predictive efficiency of the
nomogram for 1/3/5-years survival was assessed using the
tdROC curve analysis.

Statistical Analysis
Differences between variables were assessed with independent
t-tests. Kaplan-Meier curves and log-rank tests were used to
analyze the survival data, and univariate Cox regression
analysis was used to identify independent prognostic factors.
Time-dependent ROC analysis was used to evaluate the accuracy
of the prognostic predictive model. The area under the ROC
curve (AUC) > 0.60 was regarded as acceptable for predictions,
and AUC >0.75 was deemed to have great predictive value. R
software was used to perform all statistical analyses, and p < 0.05
was considered statistically significant.

RESULTS

Weighted Co-Expression Network
Construction and Significant Module
Identification
The flowchart shown in Figure 1 summarizes the overall
bioinformatics analysis of our study. The WGCNA R package
was applied to build a co-expression network, and 4,430
differentially expressed genes (DEGs) was listed in
Supplementary Table S1. In this study, we set the soft
threshold to the power of β = 4 to guarantee a scale-free
network (Figures 2A,B). To investigate the gene sets that are
associated with mRNAsi of LUAD, we applied WGCNA because
it defines transcriptional modules using Pearson correlation and
establishes a relationship between different colored modules and
clinical traits. As a result, we identified 9 distinct co-expression
modules (Figure 2C).

To detect whether modules were significantly associated with
specific clinical traits, we looked for strong associations between
eigengenes and external traits. The correlation between module
and trait was then visualized as a heatmap (Figure 2D). These
results showed that patient disease state is significantly correlated
with seven modules. Based on the correlation coefficients, genes
clustered in black, pink, green, brown, blue, and yellow modules
are downregulated in LUAD tissues, while genes in the turquoise
module are highly expressed in LUAD tissues. Genes clustered in
turquoise modules have the strongest positive correlation (Cor =
0.7, p = 1e-76) with patients’ disease status. This data indicates
that genes in the turquoise module are significantly associated
with the mRNAsi of LUAD patients. The scatterplot below
illustrates the strength of the link between the mRNAsi
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signature and the module membership for each gene found in
blue, brown, and turquoise modules (Figures 2E–G).

Functional Enrichment Analyses of Genes in
Turquoise Co-expression Modules
Next, the turquoise module underwent GO and KEGG pathway
analysis and we identified the top 10 GO and top 7 KEGG
pathway enrichment terms, as shown in Figures 3A,B. The
GO analysis showed that this module is enriched in organelle
fission, chromosomal, and ATPase activity. The KEGG analysis
indicated that the genes are mainly involved in cell cycle, cellular

senescence, oocyte meiosis et al., which are pivotal in the
regulation of immune responses.

Correlation of the mRNAsi, Clinical
Characteristics, and Key Genes in the
Turquoise Module
As indicated in Figure 4A, we found a notable difference between
the mRNAsi of LUAD and the mRNAsi of normal tissues. The
mRNAsi of LUAD tissues was found to be higher compared to
that of normal tissues. We also observed significant differences in
N stage (Figure 4B), T stage (Figure 4C), and AJCC stage

FIGURE 1 | The flowchart of this study.
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FIGURE 2 | (A,B)Graphs of scale independence, mean connectivity and scale-free topology, the appropriate soft-power was 4. (C)Cluster dendrogram of the co-
expression network modules (1-TOM). (D) Correlation between the gene module and clinical characteristics, including the mRNAsi and EREG-mRNAsi. (E) Scatter
diagram for MM vs. GS for themRNAsi in the bluemodule. (F) Scatter diagram for MM vs. GS for the mRNAsi in the brownmodule. (G) Scatter diagram for MM vs. GS for
the mRNAsi in the turquoise module. LUAD, lung adenocarcinoma; mRNAsi, mRNA expression-based stemness index; EREG, epigenetically regulated.

Frontiers in Genetics | www.frontiersin.org April 2022 | Volume 13 | Article 8602685

Hou et al. mRNAsi-Related Risk Model in LUAD

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


(Figure 4D). The PPI network, consisting of the top 22 hub genes
in turquoise module, was constructed using the STRING
database. In total, 22 nodes and 460 edges were included in
this PPI network (Figure 4E), with an average node degree of 20.9
and strong correlations. The expression levels of the top 22 hub
genes were higher in tumor tissue than in normal tissue
(Figure 4F).

Consensus Clustering of Genes in the
Turquoise Module and Identification of Two
Clusters of LUAD Patients
ConcensusCluster analysis was utilized to classify the tumor
samples. According to the expressional similarity of the gene
expression in the turquoise module identified above as the
powerful independent prognostic factors, k = 3 could be the
optimal choice with clustering increasing from k = 2–9 (Figures
5A,B). However, we found that the interference found between
subgroups onlymeasured asminimal when k = 2. As such, we used k
= 2 for consensus clustering analysis and, though this, we identified
two subgroups named cluster 1 and cluster 2 (Figures 5C,D).
Patients in cluster 1 were found to have a significantly shorter
overall survival (OS, Figure 5E) and recurrence-free survival (RFS,
Figure 5F) when compared with patients in cluster 2.

Turquoise-Module-Based Prognosis
Classifier and Clinicopathologic
Characteristics in LUAD
To filter out an mRNAsi-based classifier to predict the prognosis of
LUAD patients, a LASSO regressionmodel was carried out using the
76 miRNAsi-related genes from the turquoise module. Furthermore,
the nine mRNAsi survival-related DEG prognostic model (CENPW,
MCM2, STIL, RACGAP1, ASPM, KIF14, ANLN, CDCA8, and
PLK1) was constructed with LASSO regression to improve the
predicted accuracy for overall survival in LUAD when
log(lambda) was between -3.0 and −4.0 (Figures 6A,B). Risk
scores were based on gene expression levels multiplied by its
corresponding regression coefficient (Table 1). The formula was
shown as: risk score = (ANLN*0.1574) (ASPM*0.0163)
−(CDCA8*0.1315) +(CENPE*0.0241) +(KIF14*0.0598)

−(MCM2*0.0431) +(PLK1*0.0907) −(RACGAP1*0.0916)
−(STIL*0.0478). We then deeply analyzed the relationship among
these 9 genes, and the results were shown inFigure 6C. Expression of
the 9 genes and clinicopathological features in low- and high-risk
patients from the TCGA dataset was demonstrated in the heatmap
(Figure 6D). We found significant differences between the high- and
low-risk groups associated with tumor status, stage_N, stage_T,
AJCC stage, recurrence, and living status. We then used the
median risk score to classify 513 LUAD samples as either low
risk (n = 256) or high risk (n = 257) (Figures 6E,F). K-M
survival curve indicated that patients in the high-risk group
showed markedly poorer overall survival (OS) than those in the
low-risk group (p = 7.852e−09; Figure 6G). The area under the ROC
curve (AUC) for OS was 0.716 (Figure 6H), suggesting that this
prognostic model exhibited a great sensitivity and specificity.

Building Predictive Nomogram in LUAD
Patients
To determine whether the risk signature could be used as an
independent risk factor for LUAD patients, we performed
univariate and multivariate Cox analyses (Figure 7A). The
covariates included age, gender, T stages, M stages, N stages,
chemotherapy, radiotherapy, tumor status, and risk model.
Univariate Cox regression analysis showed that age, stage_T,
stage_N, chemotherapy, radiotherapy, and risk model correlated
with the prognosis of LUAD (p < 0.05). However, subsequent
multivariate Cox analysis showed that the stage_N (HR = 1.378,
95% CI = 1.150–1.652, and p < 0.001), tumor status (HR = 6.324,
95% CI = 4.290–9.323, and p < 0.001), and risk model (HR = 2.373,
95% CI = 1.659–3.394, and p < 0.001) were independent risk factors
for overall survival. We constructed nomogram maps to predict 1-,
3-, and 5-years overall survival in LUAD patients with stage_N,
tumor status, and risk score (Figure 7B). The corresponding score of
each factor was listed as Table 2. We validated the nomogram by
calibration curve, and the 45° line represented the best prediction.
Calibration plots indicated that the nomogram performed well in
predicting 1-, 3-, and 5-years survival (Figure 7C). Patients were
then divided into 3 subgroups, equally, according to the total score
resulting from the nomogram. Kaplan-Meier survival curve revealed
that patients in the low score subgroup had a better clinical outcome

FIGURE 3 | Functional analysis for genes in turquoise module. (A) Representative results of GO analysis. (B) Representative results of KEGG analysis.
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than those in the moderate and high score subgroups (Figure 7D).
ROC curve analysis exhibited that the risk score AUC values of the
model were 0.797, 0.821, and 0.836 for 1-, 3-, and 5-years survival,
respectively (Figure 7E). These results reveal that the nomogram
constructed by the 9-gene signature has a high accuracy in predicting
the overall survival of LUAD patients.

Validation of Risk Classifier in Two
Independent Cohorts
The efficacy of the classifier was further evaluated using another
outcome of different type of survivals, and the results were
similar to what was seen in the TCGA cohort. To validate our

FIGURE 4 | mRNAsi differences in different clinicopathological features. (A) Differences in the mRNAsi between normal and LUAD tissues. (B) Differences in the
mRNAsi between different lymph nodemetastasis. (C)Differences in themRNAsi among different T stages. (D)Comparison of themRNAsi among four AJCC stages. (E)
Protein–protein interactions between 22 hub genes in turquoise module. The thickness of the solid line represents the strength of the relationship. (F) Differential
expression of 22 hub genes between normal and tumor cases in the LUAD dataset of TCGA shown by box-plots.
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signature, we first calculated the risk score for each patient
according to the coefficient value of the 9 genes. Patients were
divided into high-risk and low-risk groups with the median risk
score utilized as the cut-off value. In the GSE17536 dataset,
patients in the high-risk group had poorer outcomes in disease-
free survival (DFS, Figure 8A), disease specific survival
(DSS, Figure 8B), and overall survival (OS, Figure 8C).
Similarly, in the GSE17537 dataset, patients in the high-risk
group also had a worsened prognosis in DFS (Figure 8D) and
OS (Figure 8E) when compared with those in the low-risk
group. Altogether, this external validation indicated that risk
signature is stable and highly precise in its prediction of LUAD
patient prognosis.

DISCUSSION

NSCLC is a major cancer worldwide due to being associated with
particularly high rates of mortality and morbidity. A major
subtype of NSCLC, LUAD, and is not as well described as
small cell lung cancer in terms of pathogenesis and risk

factors (Herreros-Pomares et al., 2019). Poor outcomes is
often associated with the development of drug resistance in
lung cancer (Wu et al., 2020). However, a continually
increasing number of studies have suggested an important role
for cancer stem cells (CSCs). Therefore, it is urgent to do research
on the therapeutic targets present in LUAD stem cells. A
comprehensive study design, including an investigation of
mRNAsi-related genes, may assist in the development of this
innovative scientific perspective. In this study, we identified hub
genes related to the mRNAsi in module by WGCNA with the
TCGA database and the mRNAsi corresponding to each sample.
Then genes from the turquoise module were selected and
functional analysis of this module was conducted. We
performed LASSO regression using genes from this module
and built a robust 9-gene signature independent of clinical
factors for predicting the OS of LUAD patients. Our results
also indicated that these 9 genes are important factors in
clinical characteristics and patients with high-risk scores were
found to exhibit poor overall survival. External validation with
GEO datasets also proved the stability and accuracy of this risk
model. We constructed co-expression modules throughWGCNA

FIGURE 5 | PCA analysis of genes in turquoise module. (A)Consensusmatrix of two subgroups (k = 2). (B,C) Selection of k value. Consensus clustering cumulative
distribution function (CDF) was set from k = 2 to 9. (D) Principal component analysis of the total RNA expression profile. (E) Kaplan-Meier overall survival (OS) curve for
LUAD patients in cluster 1 and cluster 2. (F) Kaplan-Meier recurrence-free survival (RFS) curve for LUAD patients in cluster 1 and cluster 2.
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FIGURE 6 | Construction and validation of mRNAsi-related signature for LUAD patients. (A) Lasso regression identified the prognostic model in LUAD. (B) Cross-
validation to select the optimal tuning parameter (λ). The red dotted vertical line crosses over the optimal log λ. (C) The relationship among nine key genes. The bigger the
circle size, the more correlative two genes are. (D) The heatmap shows the expression of the 9 genes in high-risk and low-risk LUAD patients. The distribution of
clinicopathological characteristics was compared between the high-risk and low-risk groups. *p < 0.05, **p < 0.01 and ***p < 0.001. (E) Risk score distribution of
patients in the prognostic model. (F) Survival status scatter plots for patients in the prognostic model. (G) Kaplan-Meier curve analysis of the high-risk and low-risk
groups. (H) Time-dependent ROC curve analysis of the prognostic model.
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and the results indicated that three modules (blue, brown, and
turquoise) had the greatest positive correlations with mRNAsi.
The turquoise module was selected and key genes were screened
from this module based on the GS and MM scores.

Numerous studies have revealed that cancer stem cells (CSCs)
were thought to be a determinant of intratumor heterogeneity
(Tang et al., 2021). CSCs have also been reported to be valuable in
cancer research due to the important role they play in tumor
differentiation, metastasis, drug resistance, and epigenetic
alterations (La Noce et al., 2018). These theories led to Malta
et al. suggesting a novel concept–the stemness index–to measure
the development of tumors and evaluate how reliable stem cell
indices are for assessing tumors using TCGA data (Malta et al.,
2018). Some studies investigated the functional use of the stem
cell indices in lung cancer, and found that several genes and
pathways related to the immune system could help provide
insight into potential associations between cancer stemness
and the lung cancer microenvironment (Li et al., 2021).
Another study identified a stem cell-related biomarker and
provide a new strategy for exploring pathogenesis of LUAD
(Zhao et al., 2020). However, they did not construct a
prognostic risk signature and nomogram.

Next, GO analysis indicated that these genes were enriched in
positive regulation of cell cycle, microtubule, ATP activity, and
tubulin biding. It has been demonstrated that PMYT1 is
important for G2/M arrest and may be a potential target for
therapeutics (Long et al., 2020). Microtubule and tubulin binding
are two critical components consisting of cytoskeleton.
Cytoskeleton also plays an essential part in the progression of
LUAD. A recent study concluded that deregulating Linc00426
reduced rearrangement of the cytoskeleton and matrix
metalloproteinase expression, suggesting it may be a tumor
marker for LUAD (Li et al., 2020). Pathway and function
identified by KEGG included cell cycle and p53 signaling
pathway. Previous studies have confirmed that these pathways
are related to the occurrence, development, and drug resistance
seen in LUAD patients (Huang et al., 2021; Zhu et al., 2021).

In this study, we identified 9 genes that we then used to
construct our mRNAsi-related prognostic signature, and
outcomes show that this prognostic tool had significant value
in LUAD. The prediction performance of the above prognostic

tool was determined to be satisfactory in LUAD patients by ROC.
The risk signature, combined with clinicopathological features,
resulted in high accuracy predictions of OS in LUAD patients,
and AUC reached 0.836, which may help physicians develop
more precise estimates of individual survival rates. Previous
bioinformatics studies in LUAD have been conducted from a
different angle. For example, one study’s prognostic signature was
built using LASSO Cox regression that allowed them to predict
the progression-free survival of LUAD patients, demonstrating
that cancer stem cells may play an important role in the etiology
of LUAD. (Liao et al., 2020). However, the accuracy of the risk
model evaluated by AUC reached only 0.679. Another study
established a prognostic predictive model for lung
adenocarcinoma (LUAD) patients based on 13 metabolism-
associated genes and validated the signature in external
datasets. AUC at five year is 0.75 in the Okayama cohort (He
et al., 2020). A detailed and comprehensive study of the co-
occurring genetic abnormalities characterizing different LUAD
subsets was also conducted for a better understanding of the
disease heterogeneity, and for the discovery of new therapeutic
targets (Testa et al., 2022).

Similarly in our study, in order to validate whether our risk
model was efficient enough to predict the survival, we utilized
other mRNA expression profiles, GSE17536 and GSE17537, from
the GEO database as our testing set. The survival curves were
plotted and the results proved that the 9-gene signature could
significantly distinguish patients into low- and high-risk
subgroups and the survival rates were diverse. MCM2 has
been widely reported in lung cancer. The deregulation of
MCM2 impacts lung cancer cell proliferation, the cell cycle,
and cell migration. The mechanism revealed by multi-
dimensional proteomic approaches might be conditioned via
the regulation of HMGA1 phosphorylation (Cheung et al.,
2017). The mitotic kinesin KIF14 has been previously shown
to be overexpressed in a variety of cancers, including lung cancer.
Corson et al. conducted an investigation into KIF14 expression
and how it correlates with certain clinical variables, as well as how
KIF14 alters in vitro colony formation in lung cancer. Their
results indicated that expression of KIF14 is an independent
prognostic variable for DFS in lung cancer and they found that
knocking down KIF14 expression decreases tumorigenicity
in vitro, suggesting that KIF14 is a potentially important
marker in lung cancer that warrants further study (Corson
et al., 2007). Other genes, including PLK1, CDCA8, ANLN,
and RACGAP1, were all discovered to play different roles in
proliferation, metastasis, and enhanced chemotherapy sensitivity
to doxorubicin in lung cancer (De Carcer et al., 2018; Ge et al.,
2019; Xu et al., 2019; Hu et al., 2021). Other significant biomarker
such as BUB1B was found by a meta-analysis, and high BUB1B
expression was associated with male sex, a smoking history, and
an advanced TNM stage. High BUB1B expression was also a
predictive of poor overall survival (OS) and progression-free
survival (PFS) (Chen et al., 2021).

However, several limitations in this study must be
acknowledged. First, the power and accuracy of the model

TABLE 1 | Twelve hypoxia-associated genes and corresponding coefficient value.

Metabolic associated gene Coefficient

ANLN 0.15745076
ASPM 0.01634707
CDCA8 −0.1315837
CENPE 0.0241496
KIF14 0.05981211
MCM2 −0.043114
PLK1 0.09071628
RACGAP1 −0.0916811
Risk score Low: < 0.47

High: ≥ 0.47
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FIGURE 7 | Construction of a nomogram for survival prediction. (A) Univariate and multivariate Cox analysis of clinical characteristics and the risk model. (B) A
nomogram for predicting OS in patients with LUAD. (C) Calibration plot of 1-, 3- and 5-years actual risk probability was displayed, suggesting moderate potential for
predicting survival for patients of LUAD. (D) Kaplan-Meier curve analysis of the low, moderate, and high score groups. (E) Comparison of time-dependent ROC curves
predicting 1-, 3-, and 5-years overall survival.

Frontiers in Genetics | www.frontiersin.org April 2022 | Volume 13 | Article 86026811

Hou et al. mRNAsi-Related Risk Model in LUAD

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


could be improved by a large register-based series in our
center. Second, the present study is purely computational
from a public database, future experimental and clinical
data are needed to validate the mechanism of the
selected molecules. Finally, the data we used in this study

originated from patient cohorts in the United States and
are not representative of worldwide patient populations.
Therefore, further studies utilizing larger and more diverse
patient groups are needed to validate the findings within
this study.

CONCLUSION

In conclusion, we calculated and analyzed the mRNAsi of LUAD
samples from the TCGA database based on their mRNA
expression profiles. Our study revealed that the mRNAsi-
related genes in the turquoise module are closely correlated
with malignant clinicopathological characteristics of LUAD by
WGCNA analysis. These genes could be classified into two
clusters by PCA analysis and LASSO regression, and the
results proved to be accurate in their classification of patients.
External databases validated that the risk signature is highly
accurate. In total, we provide a new strategy for exploring
stemness-related genes in LUAD cases.

TABLE 2 | Corresponding risk score for each variable and total score.

Variables Category Score

Stage_N N0 0
N1 30
N2 40
N3 55
N4 70

Tumor status Tumor free 0
With tumor 85

Risk model Low 0
High 60

Total score Low risk 0–40
Moderate risk 50–95
High risk ≥100

FIGURE 8 | The validation of prognostic value of risk model in GSE17536 and GSE17537. (A–C). Kaplan-Meier plot of disease-free survival (DFS), disease specific
survival (DSS), and overall survival (OS) according to risk group for patients from GEO Series GSE17536. (D,E). Kaplan-Meier plots of DSS and OS according to risk
group for patients from GEO Series GSE17537.
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