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R enal artery denervation (RDN) is a catheter-based
technique designed to decrease renal sympathetic
nervous system (SNS) signaling and return the body to more
physiological homeostasis. Preliminary investigations sug-
gested an excellent therapeutic profile in resistant hyperten-
sion,1’2 but results from SYMPLICITY HTN-3, a randomized
control trial (RCT) of RDN in treatment-resistant hypertension
using a sham control procedure, surprisingly contradicted
prior results and suggested no benefit with RDN.? There is
significant speculation regarding explanations for this result,
and forthcoming data from a large global registry continue to
suggest actual benefit with RDN for treatment of hyperten-
sion.* Some explanations for the failure of SYMPLICITY HTN-3
to reach its primary efficacy end point include potential biases
in prior trials and issues that may have affected SYMPLICITY
HTN-3, including ineffective denervation, inadequate operator
experience, and suboptimal medication compliance.’ This
result highlights the preliminary nature of the data available
regarding RDN’s clinical effect and the need for carefully
designed trials prior to introduction as a therapeutic modality.
Preclinical studies and proof-of-concept human trials continue
to support the potential use of RDN in the management of
multiple disease states characterized by sympathetic overac-
tivation, often independent of antihypertensive effects. The
data currently available suffer from the same potential biases
as initial studies in hypertension, making the multitude of
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ongoing clinical trials in these areas crucial for understanding
the clinical application of RDN.

Sympathorenal Axis

SNS activation, the evolutionary backbone of the acute fight-
or-flight response, potentiates many diseases through chronic
pathological input (Figure 1).° These diseases include hyperten-
sion, heart failure, arrhythmia, renal insufficiency, and insulin
resistance—pathologies that are both causes and conse-
quences of sympathetic hyperactivity.” RDN is mechanistically
a modulator of the SNS. Anatomically, efferent SNS fibers to the
kidney, arising from the second sympathetic ganglion, form a
network within the renal artery adventitia.® Sympathetic stim-
ulation by the juxtaglomerular apparatus leads to volume
retention, sodium resorption, decreased renal blood flow, and
renin—angiotensin—aldosterone system activation.® Sensory
afferent fibers away from the kidney, acting through the
posterior hypothalamus, regulate sympathetic outflow to control
systemic hemodynamics and reflexive sympathetic efferent
activity.® Clinically, this systemic balance is exemplified by the
contrast between renal transplant and bilateral nephrectomy.
During transplant, sympathetic nerves are severed, but prior
sympathetic overactivation remains, likely because of continued
afferent signaling from the failing native kidney®; however,
bilateral nephrectomy in end-stage disease, by removing the
nidus for sympathetic activation, normalizes central sympathetic
outflow.” Reciprocal interaction along this loop ideally creates
homeostasis, but often it cannot be maintained.

Multiple animal models have demonstrated that renal
denervation effectively reduces SNS outflow to the kidney,
restoring physiological natriuresis and diuresis and reducing
renin release.'® Early 20th century radical sympathectomy for
uncontrolled hypertension had relative success controlling
blood pressure (BP), thereby reducing mortality'"'?; however,
these nonselective surgical approaches were associated
with significant morbidity, including bowel and bladder
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Figure 1. Sympathetic nervous system efferent activity stimulates the heart and arterial vasculature, causing pathological maladaptation.
Afferent renal signals, induced by multiple inflammatory mediators, reflexively activate sympathetic outflow. RDN interrupts this
pathological cycle. CNS indicates central nervous system; RDN, renal artery denervation.

incompetence, erectile dysfunction, and severe postural
hypotension.'"'? Advances in tolerability and safety afforded
by minimally invasive, selective RDN have improved the risk—
benefit profile for emerging catheter-based techniques."**”
In early studies of refractory hypertension, RDN reduced
sympathetic hyperactivity. In current studies, SNS activity is
measured using noradrenaline spillover and muscle sympa-
thetic nerve activity.'> Noradrenaline spillover, in which
infusions of radiolabeled noradrenaline spill over by avoiding
local neuronal uptake, characterizes regional and whole-body
sympathetic activity.'* Muscle sympathetic nerve activity
assesses nerve-firing rates to determine sympathetic outflow
to muscle motor units.'® Several initial studies have revealed
statistically significant reductions in both noradrenaline
spillover and muscle sympathetic nerve activity in patients
who have undergone RDN, often independent of antihyper-
tensive effects.’'®'° Decreases in sympathetic activity have
the potential to positively influence multiple disease states.

Heart Failure

Vascular Stiffness

Although recent results indicate that RDN may not have a
significant effect on ambulatory BP, RDN still has potential to

modulate vascular stiffness and central hemodynamic regu-
lation because adrenergic mechanisms are closely linked to
all aspects of arterial distensibility and compliance.''®
Aortic pulse wave velocity and peripheral augmentation index
are vascular stiffness measures that correlate with cardio-
vascular events and mortality and may provide superior
assessments of target organ outcomes compared with
traditional brachial BP measurement.'” Initial investigations
by Hering et al demonstrated in a cohort of patients with
chronic kidney disease (n=15) that RDN led to rapid
attenuation of peripheral augmentation index (decreased
from 51% to 39% at 3 months, P<0.01).'® This result was
replicated in a separate group with resistant hypertension
(n=50) with similar results following RDN, including
decreased peripheral augmentation index (30.64+23.8% ver-
sus 22.7422.4% at 3 months, P=0.002) independent of
change in both systolic and diastolic BP or sympathetic
nerve-firing reductions.”® An additional noncomparative
series by Brandt et al (n=120) that more comprehensively
measured cardiovascular workload parameters reported sim-
ilar improvements.'® At 6 months after RDN, aortic augmen-
tation, augmentation index, and mean central aortic BP were
all improved. There were additional reductions in pulse wave
velocity and both central and peripheral pulse pressures.
These changes importantly corresponded to improved cardiac
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workload parameters, measured by ejection duration and
aortic systolic pressure load. RDN also led to qualitative
improvement in radial and central aortic waveform. These
changes are difficult to interpret without comparison but
suggest a favorable hemodynamic response to RDN.

Systolic Heart Failure

The consistent benefits of pharmacological neurohormonal
blockade observed in clinical trials of systolic heart failure
support the primacy of sympathetic activation in progression
of ischemic and nonischemic dilated cardiomyopathies;
however, the role of SNS activity in reacting to versus
precipitating and worsening systolic heart failure is unclear
and raises legitimate questions about potential treatment
benefit. Multiple animal models simulating heart failure
report success using RDN to limit these pathological
sympathetic responses.19 Indirect clinical evidence in
humans also supports potential benefit, although results of
active clinical trials are needed to assess true clinical
impact.’” These implied benefits correlate to significant
outcomes because renal sympathetic activation is a strong
negative predictor of progression to heart transplantation
and all-cause mortality in systolic heart failure.? Despite this
strong correlation, no data link reduced SNS activation with
clinical benefit.?’

Two pilot studies demonstrate potential for RDN in systolic
heart failure. The Renal Artery Denervation in Chronic Heart
Failure (REACH) study assessed RDN safety in 7 patients with
New York Heart Association (NYHA) class Il to IV heart failure
with left ventricle (LV) ejection fraction 28% to 58% without
hypertension.?? At 6 months after the procedure, there were
no major adverse events, and benefit was reported for
important clinical parameters including increased 6-minute
walk (221433 to 249434 months, P=0.03) and decreased
diuretic requirement in 4 patients (P=0.046). No comparator
group is available to assess the significance of these poorly
powered results, but a larger randomized extension study is
currently ongoing (Table).?® The Olomouc pilot study investi-
gated patients with NYHA class Il to IV heart failure (n=51)
randomized to RDN versus optimal medical therapy.?* The
RDN group had a lower incidence of hospitalization (31%
versus 72%, P<0.001) and improved NYHA class, decreased
NT-pro brain natriuretic peptide, and improvements in
numerous echocardiographic parameters. These results merit
considerable scrutiny in light of previous data regarding
sympathetic manipulation in heart failure, including the 1934
patient MOXCON RCT, which surprisingly demonstrated
increased mortality in patients with systolic heart failure
using the central sympathetic inhibitor minoxidine.?' Addi-
tional RCTs investigating long-term effects of RDN in systolic
heart failure on cardiovascular events and mortality will

hopefully provide clarity as to RDN’s effect in this area
(Table).?®

Heart Failure With a Preserved Ejection Fraction

LV hypertrophy; LV diastolic dysfunction; and the clinical
correlate, heart failure with a preserved ejection fraction,
result from sympathetic overactivity, with important implica-
tions for cardiovascular outcomes including independent
associations with mortality.?®> Adrenergic tone is predictive
of LV mass and is associated with both LV hypertrophy and
diastolic dysfunction.?®> These changes may ultimately cause
cardiac fibrosis, resulting in impaired ventricular relaxation
and heart failure with a preserved ejection fraction.?® In
practice, however, these end-organ effects are primarily the
result of long-standing hypertension, and distinguishing
benefit outside of that associated with BP reduction presents
a constant confounder.

Preliminary reports suggest that RDN may limit this
pathology. In an RCT of patients with refractory hypertension
(n=64), one quarter of whom clinically had heart failure with a
preserved ejection fraction,' Brandt et al reported improve-
ments in echocardiographic correlates of LV hypertrophy and
stiffness. Compared with optimal medical therapy, at
6 months after RDN treatment, there was a 17% reduction
in LV mass with treatment alone (decrease of 53.9+15.6 to
44.7414.9 g/m?7, P<0.001), most prominently in a cohort
with baseline LV hypertrophy.?®> Systolic function likewise
improved from baseline in the RDN group, with reduced LV
end-systolic volume and increased ejection fraction
(63.1+8.1% to 70.1+11.5%, P<0.001). Diastolic dysfunction,
as measured by shortened mitral E-wave deceleration time,
decreased isovolumic relaxation time, increased diastolic
relaxation on lateral mitral tissue Doppler, and decreased
mitral inflow:annular velocity ratio, likewise improved from
baseline in the treatment group alone (Figure 2).”°> A multi-
center, blinded control trial by Mahfoud et al (n=72) of similar
patients used cardiac magnetic resonance imaging to assess
effects of RDN on LV hypertrophy and stiffness.?® Cardiac
magnetic resonance imaging is a modality with less interob-
server variability than echocardiography, increasing precision
and sensitivity.?® At 6 months after RDN, LV mass index was
reduced by 7.1% (decrease of 46.3+13.6 to 43+12.6 g/m*”,
P<0.001) in the treatment group. This represents a similar but
smaller degree of LV mass reduction than in the aforemen-
tioned echocardiographic study, underscoring potentially
increased specificity of imaging and bias in the these smaller,
preliminary studies.?” Systolic function, specifically in patients
with baseline reduction in ejection fraction, also increased
following RDN (ejection fraction 43% versus 50%, P<0.001).
RDN also improved diastolic dysfunction, with a 21% increase
in proportion of patients with reduced LV circumferential
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Figure 2. Effect of renal artery denervation (RDN) on diastolic
function. A, Mitral valve lateral E/E’ at baseline, 1 month, and
6 months in RDN and control patients. Although no significant
changes could be detected in the control group, E/E’ significantly
decreased in the RDN group. In the treatment group, P for trend
was <0.001. B, Differential effect of RDN on E/E’ reduction
depended on the degree of diastolic dysfunction at baseline.
Reduction of E/E’ by RDN was significantly greater in those
patients with an E/E’ above the median of 8.8 at baseline. Values
are presented as mean+SE. Reproduced with permission from
Brandt et al.?®. RD indicates renal denervation.

strain.?® These results are susceptible to difficulties similar to
those in studies examining hypertension, including difficulty
maintaining control groups, medication compliance, and
matching for baseline variables such as BP.?” In light of
these preliminary results, 2 large RCTs will compare the
effects of RDN and optimal medical therapy on imaging end
points, hemodynamics, exercise capacity, and quality of life in
heart failure with a preserved ejection fraction (Table).??

Arrhythmias

Atrial Fibrillation

Atrial fibrillation (AF) and other cardiac dysrhythmias result
from complex electrophysiological interactions influenced by

the autonomic nervous system and varied hemodynamic
conditions.?®2?° Both hypertension and autonomic imbalance
contribute to arrhythmogenic structural remodeling of the left
atrium, leading to local conduction disturbances that create
the substrate and precipitant for AF.?’ Beta-adrenergics
increase AF incidence, whereas beta-blockade reduces
recurrence.?® In contrast, enhanced vagal tone shortens the
atrial effective refractory period, potentially inducing and
maintaining AF.>° The relationship to autonomic control is
complex and likely involves imbalanced sympathetic and
parasympathetic input.*°

RDN decreased rates of AF inducibility in both a normo-
tensive porcine model comparing carotid baroreflex stimula-
tion and atenolol with RDN and a canine model of pacing-
induced heart failure.®*3? In humans, Pokushalov et al
reported a small cohort (n=27) of moderately hypertensive
patients with AF treated with pulmonary vein isolation (PVI)
alone and in combination with RDN, resulting in decreased AF
relapse with RDN plus PVI compared with PVI alone (69%
versus 29%, P=0.033).”® Limitations of this trial include
change in primary end point and small sample size.>* A recent
2-study meta-analysis of these data and a similar trial in
severe resistant hypertension reported similar results, with
decreased AF relapse with RDN plus PVI compared with PVI
alone (62% versus 41%, P=0.014) (Figure 3), with greater
effect reported for the combination of persistent AF and
severe hypertension (hazard ratio for RDN plus PVI versus PVI
alone: 0.25).3* Many ongoing RCTs are currently examining
the efficacy and safety of RDN as adjunctive treatment with
PVI and other modalities for the management of AF (Table).??

Ventricular Tachyarrhythmias

Ventricular tachyarrhythmias are prominent after ischemic
insult, potentially driven by central sympathetic hyperactiv-
ity.3% Initiation of beta-blockers to prevent ventricular tach-
yarrhythmias is standard postmyocardial infarction practice,
and RDN may play a similar role in autonomic modulation.>®
Radical interventions, including surgical cardiac sympathetic
denervation, have even been considered for patients with
refractory ventricular tachycardia.®® A porcine model of acute
coronary ischemia demonstrated significant suppression of
ventricular arrhythmia (86% versus 17%, P=0.029) using RDN
compared with a sham procedure after ischemia and an
equivalent effect to treatment with atenolol.® The potential of
RDN to suppress ventricular tachycardia in humans has been
explored thus far only in case reports and small series but
suggests decreases in premature ventricular contractions,
decreased ventricular tachycardia burden, and increased
ventricular tachycardia—free intervals in a variety of clinical
situations including dilated and hypertrophic cardiomyopathy
and refractory ventricular tachycardia and after myocardial
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Figure 3. Incidence of atrial fibrillation (AF) recurrences in all
patients with and without renal artery denervation. AT indicates
atrial tachycardia; PVI, pulmonary vein isolation. Reproduced
with permission from Pokushalov et al.3*

infarction.®®®” Two currently enrolling RCTs will address the
use of RDN in patients susceptible to ventricular tachyar-
rhythmias (Table).??

Chronic Kidney Disease

SNS activation is a hallmark of severe chronic kidney disease,
with the degree of activation directly correlated to adverse
cardiovascular prognosis.38 RDN, which directly manipulates
the renal arteries, is generally considered safe in this
population, as demonstrated by a pooled analysis document-
ing only a single renal artery dissection in 149 patients,
without hemodynamic, electrolyte, or renal function distur-
bances.? Initial investigations in patients with resistant
hypertension and preserved renal function showed that RDN
has a generally neutral effect on glomerular filtration rate
(GFR)."" In patients with lower baseline GFR, these studies
raised concern about worsening renal function following RDN,
an effect not seen in continued follow-up. Hering et al
reported that in a small cohort (n=15) with moderate to
severe chronic kidney disease (GFR<45 mL/min per
1.73 m?), RDN led to overall improvement in hemodynamic
and functional parameters from baseline, without change in
GFR, serum or urine biochemistries, or volume status at
6 months.'® This stability accompanied hemodynamic
improvement, with restoration of physiological dipping pat-
terns and reduced augmentation index. An additional cohort
with multiple causes of end-stage renal disease (hemodialysis
dependence >6 months) indicated the potential of RDN to
reduce hypertension in this group without major adverse
events.®” These results are clouded by increased anatomical
and procedural complications in this cohort that may limit

practical therapeutic applications.*° In addition, both of these
studies examined small uncontrolled cohorts, and large-scale
data regarding safety of RDN in chronic kidney disease are
needed. In a series of patients with resistant hypertension
(n=62), Dorr et al demonstrated no significant change in
sensitive biomarkers of renal structural and functional dam-
age (neutrophil gelatinase—associated lipocalin and kidney
injury molecule 1) at both 48 hours and 3 months after
RDN.*" This included a cohort (n=8) with chronic kidney
disease (GFR<45 mL/min per 1.73 m?) and was correlated
with stability of estimated GFR, urea nitrogen, and serum
creatinine, providing additional evidence of the safety of RDN
for renal function.*'

Although RDN appears well tolerated by the kidneys, the
additional benefit to this system remains less clear. In a
prospective study of patients with resistant hypertension
(n=100), Mahfoud et al reported that RDN led to baseline
improvement in renal resistive index, an ultrasonographic
marker of hypertension duration and severity associated with
decreased renal function.*” Renal filtration was also
improved, as shown by reduced micro- and macroalbuminuria
(—10% and —23% from baseline, respectively; P=0.001),
without significant change in GFR. Ott et al recently demon-
strated similar improvement in glomerular filtration at
6 months after RDN in a cohort of patients with resistant
hypertension (n=59).*®> Serum renal function remained
unchanged, whereas the urinary albumin:creatinine ratio was
reduced (160 versus 89 mg/g, P<0.001), an effect observed
in populations with both baseline micro- and macroalbumin-
uria. Although this promising suggestion for improvement
merits attention and continued investigation, it is not a result
that is consistently documented in initial trials of resistant
hypertension and suffers from the same pitfalls as these early
trials. In addition, given the direct relationship between
glomerular filtration and BP, this derived improvement in renal
function may be more related to effects of BP reduction than
sympathetic modulation. Ongoing trials will build on these
data, examining the effect of RDN on renal function in patients
with chronic kidney disease, diabetic nephropathy, renal
transplantation, and polycystic kidney disease (Table).?*

Insulin Resistance

SNS activation promotes glucose availability, increasing lipol-
ysis and hepatic gluconeogenesis and decreasing insulin
secretion.** In turn, insulin resistance mediates excess adren-
ergic drive, establishing a perpetuating cycle.** This creates an
environment of inflammation and oxidative stress present in
half of patients with resistant hypertension.*®> Preliminary
evidence suggests that RDN may help re-establish metabolic
balance and attenuate insulin resistance. A prospective study
(n=50) by Mahfoud et al demonstrated significantly reduced
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fasting glucose, serum insulin, and C-peptide levels and
improved insulin sensitivity with RDN compared with control
at 3 months (Figure 4).*> A small prospective study of patients
with sleep apnea (n=10) similarly demonstrated significant
reductions in post—oral glucose tolerance hyperglycemia and
long-term glycemic control, as measured from baseline hemo-
globin Alc 6 months after RDN (median 6.1% to 5.6%,
P<0.05).*¢ Similar improvement was noted in a case series
(n=2) of polycystic ovarian syndrome, a condition characterized
by adrenergic excess and metabolic derangement.** RDN
improved a broad array of end points including insulin sensitivity
and even return of physiological menstruation in 1 patient
despite a prior amenorrheic period of 3 years.** These results
have sparked great interest in the role of RDN as a metabolic
regulator, with RCTs under way to assess this effect (Table).??

Obstructive Sleep Apnea

Sleep apnea is an independent cardiovascular risk factor
characterized by recurrent upper airway obstruction and
intermittent hypoxia stimulating SNS activity, causing systemic
inflammation and endothelial dysfunction.*” Two groups

demonstrate an additive sympathostimulating effect of sleep
apnea in patients with metabolic syndrome.*” Hypothesis-
generating studies suggest a benefit of RDN in sleep apnea, but
current data are limited in both power and scope; larger studies,
such as those that are ongoing (Table),?® are needed to truly
characterize the effect of RDN in sleep apnea. In a prospective
study of patients with sleep apnea (n=10), Witkowski et al
reported that RDN decreased apnea—hypopnea index (median
16.3 versus 4.5 events per hour, P=0.059) and subjective
sleepiness.*® A retrospective analysis (n=31) comparing RDN
with continuous positive airway pressure in patients with
moderate to severe sleep apnea also demonstrated improve-
ment in sleep parameters (nocturnal apnea—hypopnea index
and duration SpO, <90%) with both RDN and continuous
positive airway pressure, but more significant improvement
was noted in the continuous positive airway pressure group.48

Myocardial Ischemia and Stroke

Although there are no human clinical data on the role of RDN
in myocardial ischemia and stroke, multiple preclinical models
and case reports have demonstrated potential benefits. Such
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benefits include preventative preservation of cardiac function,
noted in 2 models of induced coronary ischemia pretreated
with RDN,?>*? and benefit up to 7 days after ischemia in a rat
model that also demonstrated improved hemodynamics and
organ perfusion after RDN.*° Similar end-organ benefit was
noted in a high-salt-loaded, hemorrhagic stroke—prone,
hypertensive rat model in which RDN, compared with both
hydralazine and a sham procedure, reduced neurological
deficit and brain injury and attenuated other common
poststroke physiological changes.’® Multiple RCTs are under
way applying the conclusions of these models to patients to
assess RDN'’s effect on modulation of physiological deterio-
ration in these conditions of major morbidity and mortality
(Table).?

Conclusions

RDN moderates the SNS to improve physiological parameters
in many chronic diseases. Despite the recent failure of
SYMPLICITY HTN-3 to reach its primary end point, burgeoning
evidence in many alternative areas suggests the potential to
overcome current therapeutic hurdles. Preliminary data
continue to support the use of RDN to regulate SNS-derived
pathology, with suggestions for benefit outside of strictly
antihypertensive effects. Akin to initial results in resistant
hypertension, lack of adequate sample size and controls limits
interpretation and application of these results. Recent expe-
rience highlights their precursory nature and need for more
formal exploration. Currently, >100 registered RCTs (Table)?*
are designed to address these questions and formulate new
avenues of inquiry.
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