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Kaempferide Prevents Titanium 
Particle Induced Osteolysis by 
Suppressing JNK Activation during 
Osteoclast Formation
Zixian Jiao1, Weifeng Xu1, Jisi Zheng1, Pei Shen1, An Qin2, Shanyong Zhang1 & Chi Yang1

Kaempferide (KF) is an O-methylated flavonol, a natural plant extract, which is often found in 
Kaempferia galanga. It has a variety of effects including anti-carcinogenic, anti-inflammatory, anti-
oxidant, anti-bacterial and anti-viral properties. In this study, we aimed to investigate whether KF 
effectively inhibits titanium particle induced calvarial bone loss via down regulation of the JNK signaling 
pathway. In the mice with titanium particle induced calvarial osteolysis, the Low dose of KF mildly 
reduced the resorption pits while in the high dose group, fewer scattered pits were observed on the 
surface of calvarium. Histological examination showed fewer osteoclasts formation in the KF group. In 
mouse bone marrow macrophages (BMMs) and RAW264.7 cells, KF significantly inhibited the osteoclast 
formation and bone resorption at 12.5 μM. However, KF does not affect the mature osteoclast F-actin 
ring formation. But when being co-treated with KF and anisomycin, BMMs differentiated into mature 
osteoclasts. At the molecular levels, the JNK phosphorylation was inhibited and the osteoclastogenesis-
related specific gene expression including V-ATPase d2, TRAP, calcitonin receptor (CTR), c-Fos and 
NFATc1 was markedly suppressed. In conclusion, these results indicated that KF is a promising agent in 
the treatment of osteoclast-related diseases.

End-stage temporomandibular joint (TMJ) diseases such as osteoarthritis, severe inflammatory condylar resorp-
tion, idiopathic condylar resorption and TMJ ankylosis usually result in loss of the posterior vertical height of 
the mandible and therefore need TMJ reconstruction. At present, the commonly used treatment modalities for 
such diseases include autogenous bone grafts1 such as costochondral graft, sternoclavicular graft, and coronoid 
graft or total joint replacement (TJR) with artificial prosthesis. TJR of the TMJ is an effective treatment for an 
intractable pain and impaired TMJ function2. However, those patients are often relatively young (30 to 35 years 
of age) and need long term use of prosthesis3. Wear particles such as titanium particles generated from prosthesis 
can cause long term complication such as aseptic peri-prosthesis loosening. Indeed, the loosening and instability 
of the condylar component and the fixation screws of the TJR are one of the most widely reported complications 
associated with TMJ prosthetic replacement4. Therefore, the prevention of aseptic loosening of TMJ prosthesis 
takes on added importance.

Theoretically, the long term use of the prosthesis will cause the release of small wear particles between the 
bone and the implant interface. The released titanium particles can thus recruit and activate macrophages, result-
ing in the release of different inflammatory mediators such as IL-1β, IL-6, IL-17 and TNF-alpha5,6, which in 
turn can enhance the expression of RANKL from the surrounding osteocytes and stromal cells7. The increased 
RANKL levels can subsequently activate osteoclast formation and bone resorption, leading to periprostheic bone 
loss and therefore causing prosthetic loosening and instability8.

Accordingly, there are two ways for improving the clinical outcome of the total joint prosthesis: 1) Synthesis 
of more biocompatible prosthesis materials that can reduce the release of wear particles. 2) Searching for com-
pounds that can inhibit macrophage and/or osteoclast activation. During the screening of such compounds 
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that can inhibit osteoclast formation and function, we identified a natural compound derived from the roots 
of kaempferia galanga, kaempferide (KF) and found KF is capable of suppressing osteoclast function. Previous 
studies showed that KF has a series of biological activities including antioxidant9,10 and antibacterial11 properties. 
However, to our knowledge, there are no reports discussing the role of KF on bone metabolism and titanium 
particles induced osteolysis. Furthermore, the possible use of KF in preventing osteolysis in vivo remains unclear. 
Therefore, this study aimed to investigate whether KF has an inhibitory effect on titanium particle induced oste-
olysis in vivo and to unveil its mode of action in vitro.

Results
KF inhibited osteoclast differentiation in vitro.  First, we investigated the effect of KF on osteoclast 
differentiation in vitro. As shown in Fig. 1A, a large number of TRAP-positive multinucleated osteoclasts formed 
in the control group, while the presence of KF inhibited osteoclast formation in a dose dependent manner. 
Treatment of osteoclasts with KF at 3.125 μM mildly inhibited osteoclast formation, with approximately 30% 
reduction in the number of osteoclast formation. Compared with the control group, the addition of KF at 12.5 μM 
significantly suppressed osteoclast formation, with almost no round osteoclast formed in this group. There are 
only about 10.16 ± 4.22 osteoclasts formed in the 12.5 μM group. (Fig. 1B). Collectively, KF inhibited osteoclast 
differentiation in a dose dependent manner.

KF had no cytotoxicity at low concentrations.  In order to exclude the possibily of KF on osteoclast 
differentiation is not due to the cytotoxicity of KF on osteoclasts, the effect of KF on cell viability was evaluated. As 
shown in Fig. 1C, KF exhibited cytotoxic effect on the osteoclast precursor cells at 50 μM or higher concentrations 
after the incubation for 48 h, 72 h and 96 h respectively. The IC50 of KF was 159.8 ± 15.6 μM, 90.72 ± 10.3 μM, and 
43.13 ± 8.7 μM at 48 h, 72 h and 96 h respectively (Fig. 1D). No cytotoxic effects were observed at 25 μM or lower 
concentrations. Thus, KF has cytotoxic effect on osteoclast precursor cells at concentrations ≥50 μM. Since we 
observed KF at 12.5 μM had dramatic inhibitory effect on osteoclast differentiation. Therefore, the inhibitory 
effect of KF on osteoclastogenesis is not due to its cytotoxic effect.

KF suppressed RANKL-induced gene expression in vitro.  The suppression of osteoclast differentia-
tion is further evaluated by examination the osteoclast specific gene expression profile. Osteoclasts treated with 
different doses of KF were harvested for RNA extraction and real-time PCR. As shown in Fig. 1E, the expression 
of osteoclast specific TRAP gene was expressed in the control group. However, its expression was significantly 
inhibited after being treated with KF. Approximately 50% reduction was noticed. Similarly, another osteoclast 
specific marker CTR demonstrated similar expression trend, suggesting a reduced osteoclast number after KF 
treatment. In addition to these mature osteoclast markers, the expression of key transcription factors NFATc1 
and c-fos were also inhibited after KF treatment, which result in the attenuated expression of their downstream 
gene expression such as V-ATPase d2 (Fig. 1E). Taken together, our realtime PCR results confirmed the inhibitory 
effect of KF on osteoclast differentiation in vitro.

KF inhibited the function of osteoclasts: bone resorption assay.  Since osteoclast differentiation was 
inhibited, we assumed that KF can subsequently inhibit the osteoclast function. Thus, the osteoclast precursors 
were seeded on the surface of bone slices with the absence or presence of KF at different concentrations. Scanning 
electron microscope (SEM) showed that large areas of bone resorption pits were observed in the control group. 
The percentage of the resorption area in the control group was significantly higher than in the KF group. A dose 
dependent suppressive effect of KF on osteoclast bone resorption was noticed, while nearly no resorption pits 
were observed at 12.5 μM (Fig. 2A). Further analysis of the bone resorption area using Image J software also con-
firmed the inhibitory effect of KF on bone resorption in vitro. About 60% and 90% reduction of bone resorption 
area were observed in the groups treated with KF at 6.25 μm and 12.5 μM respectively (Fig. 2B). Collectively, these 
data indicated that KF inhibited osteoclast bone resorption in vitro.

KF does not affect the RANKL-induced F-actin ring formation.  Prior to osteoclast induced bone 
resorption, the differentiated osteoclasts need to reconstruct their cyto-skeletal structure, known as F-actin ring 
formation. Thus, we then investigated whether KF can affect F-actin ring formation in vitro. As shown in Fig. 2C, 
under the circumstances of M-CSF (30 ng/ml) and RANKL (50 ng/ml) that induced the mature osteoclast forma-
tion, a well-structured F-actin ring was observed in the control group. In agreement with the suppressed osteo-
clast differentiation as mentioned above, the number of F-actin ring was indeed reduced after being treated with 
different doses of KF. However, we can still observe the well-preserved ring-like structures in the drug treated 
groups at 3.125 μM and 6.25 μM. When KF concentration was increased to 12.5 μM, almost no mature large oste-
oclasts were detectable. However, small ring-like structures still existed. Thus, our results suggested KF does not 
affect the mature osteoclast F-actin ring formation.

KF depressed the osteoclastogenesis via down regulating the JNK and ERK signaling path-
way.  All the aforementioned results indicate that KF can suppress the osteoclast differentiation and thus 
inhibiting bone resorption in vitro. However, the underlying molecular mechanisms on how KF affects the oste-
oclastogenesis require further investigations. MAPK signaling pathways are known to play pivotal roles in the 
osteoclast differentiation. Thus, we further checked the activation of these signaling pathways with the presence 
or absence of KF. As shown in Fig. 3A, the RANKL-induced JNK phosphorylation was observed in the control 
group, peaking at 20 min and 30 min. However, the activation of JNK phosphorylation was significantly sup-
pressed after KF treatment. The expression of p-JNK in the KF group was significantly lower than that in the 
control group as reflected by the statistical analysis (Fig. 3B). We also examined the effect of KF on other MAPK 
signaling pathways including p38 and ERK phosphorylation. As shown in Fig. 3A, the phosphorylation of ERK 
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Figure 1.  KF inhibits RANKL-induced osteoclast formation in vitro. (A) BMMs were treated with various 
concentrations of KF followed by 30 ng/ml M-CSF and 50 ng/ml RANKL, after incubation for 7 days, cells were 
fixed with 4% paraformaldehyde and subjected to TRAP staining. (B) Number of TRAP-positive multinucleated 
osteoclasts. (C) KF shows no cytotoxicity at low concentrations. Viability of KF treated BMM cells after being 
incubated for 48 h, 72 h and 96 h. (D) The half-maximal inhibitory concentration (IC50) of kaempferide 
was 159.8 ± 15.6 μM, 90.72 ± 10.3 μM and 43.13 ± 8.7 μM, respectively. (E) KF suppresses RANKL-induced 
gene expression. BMM cells were cultured with M-CSF (30 ng/ml), RANKL (50 ng/ml) and KF (6.25 μM 
and 12.5 μM) for 5 days. RANKL-inducible gene expression was analyzed by real time PCR. RNA levels were 
normalized relative to the expression of Beta-actin (*p < 0.05, **p < 0.01).
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was also observed in the control group. Similarly, KF partially attenuated the ERK phosphorylation as compared 
to the control group (Fig. 3C). Different from JNK and ERK, the phosphorylation of p38 was not affected after 
KF treatment (Fig. 3D). However, the NF-kB pathway, which is another downstream signaling pathway, was not 
affected (data not shown). The above results showed that KF inhibited the phosphorylation and degradation of 
JNK and ERK, without affecting the p38 signaling pathway.

The inhibitory role of KF on osteoclastogenesis was rescued by anisomycin.  In order to further 
confirm that KF suppressed the osteoclast formation by affecting the JNK activation, we further employed a res-
cue assay to validate this. As shown in Fig. 3E, the osteoclast formation was significantly restrained when the cells 
were treated with KF only. In contrast, the addition of the JNK agonist, anisomycin, rescued osteoclastogenesis, 
where mature osteoclasts were formed (Fig. 3E). Statistical analysis showed that when the BMMs treated with KF 
and anisomycin, both at 6.25 μM and 12.5 μM concentrations, the number of osteoclasts was significantly higher 

Figure 2.  (A) BMM cells were seeded onto bovine bone slices, the cells were treated with M-CSF (30 ng/ml), 
RANKL (50 ng/ml) and KF (0, 3.125, 6.25 or 12.5 μM) until the formation of osteoclasts. Bone resorption pits 
were examined by S.E.M. (B) Bone-resorption pits area were measured using image J software and are presented 
graphically. (C) KF suppresses RANKL-induced acting ring formation. BMM cells were treated with RANKL 
(50 ng/ml) and KF (0, 3.125, 6.25 or 12.5 μM), after osteoclasts were formed, the cells were fixed and stained 
for laser scanning confocal microscope assay. (D) The number of formed actin ring was not affected with the 
increasing concentration of KF. (E) KF suppresses the area of osteoclasts actin ring. (*p < 0.05, **p < 0.01).



www.nature.com/scientificreports/

5ScieNtific REPOrTS | 7: 16665  | DOI:10.1038/s41598-017-16853-w

Figure 3.  RAW264.7 cells were pretreated with vehicle or KF for 4 h followed by RANKL stimulation (50 ng/ml)  
for the indicated times. Then cells were lysed in lysis buffer, and lysates were analyzed by Western blotting 
with the indicated antibodies. (A) KF treatment suppressed the phosphorylation of JNK and ERK signaling 
pathways, while the phosphorylation of p38 was not inhibited. (B) Statistical analysis of p-JNK grey level showed 
significant difference between the KF treatment group and the control group at 20 and 30 minutes. (C) KF 
also attenuated the ERK phosphorylation at 10 and 20 minutes. (D) KF treatment does not affect p38 signaling 
pathway. (E) The inhibitory effect of KF on osteoclastogenesis was rescued by anisomycin. When treated 
with RANKL and KF, osteoclast formation was significantly inhibited, this inhibitory effect was rescued by 
anisomycin. (F) In each KF group with same concentration, the number of osteoclast increased significantly after 
treatment of anisomycin. (G) The JNK expression increased gradually from 0 to 120 mins. (H) When treated 
with RANKL+KF+Anisomycin, the p-JNK expression was observed compared to the RANKL+KF group.
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than that of the KF treated group (Fig. 3F). Western bolt showed that the JNK phosphorylation was rescued, as 
shown in Fig. 3H, when treated with RANKL+KF+Anisomycin, the p-JNK expression was observed compared 
to the RANKL+KF group, which means the JNK phosphorylation was rescued. At the same time, the administra-
tion of anisomycin didn’t affect JNK protein synthesis (Fig. 3H), the JNK expression increased gradually from 0 
to 120 mins (Fig. 3G). Together, these data implicated KF suppressed osteoclast formation via inhibiting the JNK 
signaling pathway.

Interaction between KF and the JNK/ERK protein.  As the phosphorylation of JNK is an important 
molecular step in the process of osteoclast differentiation, we next examined whether KF can bind to JNK protein 
based on a computational calculation. As shown in the molecular docking, KF could form stable connections 
with JNK1 (Fig. 4A) and JNK2 (Fig. 4B) ATP binding sites. Specifically, KF interacted with MET-111, LEU-110 
and GLU-109 of JNK1 and JNK2. However, we failed to find the potential binding sites of KF onto ERK protein 
(Fig. 4C). Together with the western blotting, the molecular docking indicated that KF suppressed the phospho-
rylation of JNK. In order to testify that the other JNK inhibitor might express the similar effects as that of KF, we 
also examined the possible interaction of 1,9-Pyrazoloanthrone, which is a specific JNK inhibitor, with JNK. As 
shown in the Fig. 4D, 1,9-Pyrazoloanthrone could form stable connections with JNK ATP binding sites at LEU-
110 and MET-111, which expressed the similar effect as that of KF.

KF suppressed Ti-particle induced osteolysis in vivo.  Our in vitro experiments suggested KF is effective 
in preventing the formation and function of osteoclasts. To validate the potential therapeutic effect of KF on prevent-
ing titanium particles induced bone loss, we then administered KF in titanium induced osteolysis model in vivo. As 
shown in Fig. 5A, reconstruction of micro-CT scanning showed an extensive bone loss after titanium stimulation 
in the vehicle group, with numerous large and deep resorption pits on the calvarial surface. In contrast, the calvarial 
surface was relatively smooth in the sham group. Interestingly, the administration of KF attenuated particle induced 
osteolysis. Low dose of KF (4 mg/kg/day) mildly reduced the resorption pits, with fewer and smaller pits on the cal-
varial surface. More obvious attenuation of titanium induced osteolysis was observed in the high dose group (8 mg/
kg/day), with fewer scattered pits observed on the surface, especially along the suture line. Statistical analysis of bone 
volume/total volume (BV/TV), number of porosity and the percentage of total porosity in the region of interest 
(ROI) also confirmed the Micro-CT scanning results. On the sham group, BV/TV was significantly higher than 
that of the vehicle group, while the value of BV/TV was increased with the presence of KF (Fig. 5C). On the vehicle 
group, both the number of porosity and the percentage of porosity were greatly higher than the other 3 groups. With 
the increasing concentration of KF, the value of the KF-L and the KF-H group were significantly decreased.

Figure 4.  (A–C) Molecular docking model produced by PyMOL visualization software showed the probable 
combining site of KF with JNK1/JNK2 and ERK. (D) Interactions of 1,9-Pyrazoloanthrone and JNK.
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Furthermore, the histological examination confirmed the protective effect of KF on Ti-particle induced oste-
olysis. Extensive bone destruction was observed in the vehicle group, with a lot of TRAP positive osteoclasts on 
the surface of the dissolved bone tissue (Fig. 5B). However, the number of mature osteoclasts in KF-L and KF-H 

Figure 5.  Kaempferide (KF) suppresses Ti-particle induced osteolysis. (A) Micro-CT scanning showed that 
the loss of bone volume on KF injection group was significantly less than that of vehicle group. (B) Both HE 
and TRAP staining indicated an inhibitory effect of KF on osteolysis, the vehicle group showed an obvious 
inflammatory reaction and notably osteolysis, while the KF injection groups reveled reduced inflammation and 
osteolysis. (C) Bone volume against tissue volume (BV/TV), number of TRAP positive osteoclasts, number of 
porosity and the total porosity of each sample was measured.
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group was significantly reduced (Fig. 5D). In addition, no fatalities were recorded and all mice remained with 
normal activity during the whole experiment. Together, these data indicated KF is capable of preventing titanium 
induced osteolysis in vivo.

Discussion
For many end-stage diseases of the TMJ such as severe osteoarthritis, ankylosis, idiopathic condylar resorption 
and tumors involving the mandibular condyle, TJR with an artificial prosthesis is the most effective way to treat 
these diseases. However, aseptic loosening of the prosthesis is one of the most important causes of failure for hip 
and knee joint prostheses12, and this complication most likely will be the same for TMJ total joint prostheses. 
Because TMJ patients are often relatively young (30 to 35 years of age), a total TMJ prosthesis must have a very 
long lifetime3. The prevention of aseptic loosening of the TMJ prosthesis gains much more attention recently. 
Generally, the titanium particle induced loosening is due to the periprosthesis osteolysis induced by an activation 
of a large number of osteoclasts. Therefore, osteoclasts inhibitors are thought to be potential drugs for the tita-
nium particle induced osteolysis.

Flavonoids are natural phenolic compounds present in fruits and vegetables with antioxidant13, 
anti-carcinogenic14 and other biological functions15,16 including osteogenic and anti-osteoclastogenic effects. 
Eerduna et al.17 found that flavonoids reduce the myocardial infarction size after an artery ligation in rats, through 
regulating the antioxidative enzymes activity and the endothelial nitric oxide synthase activity. Flavonoids also 
have neuroprotective actions, having the potential as multi-targeted therapeutic tools for protecting the brain18. 
Recently, being a kind of Flavonoids, kaempferol, an analogue of KF, has been shown to have an inhibitory role on 
the bone loss in mice long bones by preventing the osteoclast formation19. However, whether KF has the same role 
on osteoclast formation and bone resorption both in vivo and in vitro has not been discussed before.

In our study, KF was shown to have an inhibitory effect on osteoclast formation and function in a dose 
dependent manner. At the concentration of 12.5 μM, osteoclastogenesis was inhibited obviously and almost no 
resorption pits were observed on bone slices. The inhibited bone resorption is most likely due to suppressed 
osteoclast formation, as supported by the fact that KF suppressed TRAP positive ostgeoclast formation and gene 
expression in a dose dependent manner. These findings can further reflect the in vivo findings that the admin-
istration of KF can prevent osteoclastic bone loss by reducing TRAP positive osteoclast number in our titanium 
particle induced osteolysis model.

Furthermore, the molecular mechanisms underlying this inhibitory effect of KF were elucidated. Western 
blotting revealed that KF inhibited the RANKL-induced JNK and ERK signaling pathways without affecting the 
p38 signaling pathway. During the osteoclast metabolism process, JNK plays a very important role20. Johnson et 
al. found that c-Jun–deficient mice are embryonic lethal21. Ikeda also found that the body size of the transgenic 
mice in which the domain-negative c-Jun lacking the transcriptional activation domain was much smaller than 
that of the wild type mice. Also the transgenic mice showed an increased radio density of the long bones, jaw 
bones, and vertebrae compared with the control mice. An activated JNK subsequently leads to the activation of 
the transcription factor c-Jun22. C-Jun together with c-Fos, an essential transcription factor for osteoclast forma-
tion, can form the activator protein-1 (AP-1) complexes. AP-1 can bind to the NFATc1 promotor and regulate 
its expression. NFATc1 is a master regulator in osteoclastogenesis process23, and the coupling of c-Jun signaling 
with NFAT family is crucial for the transcriptional events during osteoclastogenesis24. NFATc1 can regulate the 
expression of several genes associated with osteoclast differentiation and function. In vitro promotor analyses 
identified the nuclear factor of activated T-cells (NFAT)/AP-1 sites in the osteoclast-specific Acp5 (TRAP) and 
Calcr (CTR) promotors. In addition, the transcriptional induction of NFATc1 is considered a major function of 
c-Fos in osteoclast differentiation25. In this study, KF inhibited JNK phosphorylation as demonstrated by WB 
results. This is further evidenced by our molecular docking assay that KF can interact with the ATP binding site 
of MET-111, LEU-110 and GLU-109 of JNK1 and JNK2. Again, the addition of JNK agonist anisomycin reversed 
the inhibitory effect of KF on osteoclast formation. All the results point to the possible mode of action that KF 
suppressed JNK activation and lead to impaired osteoclast formation.

In summary, our study demonstrated that KF is able to prevent titanium particle induced osteolysis in vivo and 
inhibit osteoclastogenesis in vitro, and the inhibitory effect can be played at a lower concentrations. KF could be 
considered as a potential agent for the prevention of particle induced osteolysis in future. Surface modification or 
local injection of this natural compound is of potential in the treatment of peri-prosthesis loosening. Also, KF is 
also used in Chinese cooking and traditional Chinese medicine, so it can be intake from the daily diet. Admittedly, 
there are some limits of this study. The effect of KF on osteoblast and osteocyte biology needs further investiga-
tion. For future translation of this finding into clinic, surface coating of this natural compound onto prosthesis 
need further validation. Another classical animal model for studying osteoclasts is the collagen-induced arthritis 
in mice, which will be performed in the further study of elucidating inflammatory lesions of TMJ such as TMJ 
osteoarthritis. Generally, we demonstrated natural compound KF is of value in Ti-particle induced osteolysis.

Materials and Methods
Media and reagents.  KF was obtained from Meilun (Dalian, Liaoning, China) and then it was dissolved in 
Dimethylsulfoxide (DMSO) with a concentration of 100 mM stock solution. Alpha-MEM, fetal bovine serum (FBS), 
and penicillin were purchased from Gibco BRL (Gaithersburg, MD, USA). Soluble mouse recombinant M-CSF and 
RANKL were purchased from R&D Systems (USA). Tartrate-resistant acid phosphatase (TRAP) staining solution 
was from Sigma–Aldrich. The Cell Counting Kit-8 (CCK-8) was obtained from Dojindo Molecular Technology 
(Japan). Primary antibodies targeting GADPH, phospho-ERK, ERK, phospho-JNK, JNK, phospho-p38, p38, 
NF-kB and IkB-a were purchased from Cell Signaling Technology (CST, Danvers, MA, USA). The Prime Script RT 
reagent Kit and SYBR® Premix Ex Taq™ II were obtained from TaKaRa Biotechnology (Otsu, Shiga, Japan).
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Cell culture.  BMMs were prepared according to the method of Qin26–28. Briefly, cells extracted from the 
femur and tibiae of a 6-week-old C57/BL6 mouse were incubated in complete cell culture media with 30 ng/ml 
M-CSF in a T-75 cm2 flask for proliferation. RAW264.7 cells were cultured in α-MEM containing 10% FBS, 2 mM 
L-glutamine, 100 U/ml penicillin/streptomycin. The cell cultures were maintained at 37 °C in a humid environ-
ment with 5% CO2

29.

Cell viability assay.  The anti-proliferative effect of KF on BMM cells was assessed with cell counting kit-8 
(CCK-8, Dojindo Laboratories, Kumamoto, Japan) following the manufacturer’s instructions30. BMM cells were 
seeded at a density of 1 × 104 cells/well supplied with complete α-MEM, M-CSF (30 ng/ml) and increasing con-
centrations of KF (0, 1.5625, 3.125, 6.25, 12.5, 25, 50, 100, 200, 400 μM). Following the treatment with KF for 48 h, 
72 h and 96 h respectively, 10 μl CCK-8 solution was added to each well; the cells were then incubated for 4 h and 
absorbance was measured at 450 nm and 630 nm using a microplate reader. The half-maximal inhibitory concen-
tration (IC50) value was calculated by GraphPad Prism program version 6.01. The effect of KF on cell viability was 
expressed as percent cell viability with the vehicle-treated control cells set at 100%31,32.

In vitro osteoclastogenesis assay.  BMM cells were seeded onto a 96-well plate at a density of 8 × 103 
cells/well in triplicate and supplied with complete α-MEM medium. The cells were treated with M-CSF (30 ng/
ml), RANKL (50 ng/ml) and various concentrations of KF (0, 3.125, 6.25 or 12.5 μM). The culture medium was 
replaced every 2 days until the formation of osteoclasts was noticed at day 7. Then the cells were fixed with 4% 
paraformaldehyde for 20 min and stained with TRAP using the Diagnostic Acid Phosphatase kit. TRAP positive 
cells with more than 3 nuclei were counted as osteoclasts.

Quantitative PCR analysis.  For real-time PCR, 5 × 104 BMMs were seeded in a 6-well plate and cultured 
in a complete medium containing α-MEM, 10% FBS, 100 U/mL penicillin, M-CSF (30 ng/mL), and RANKL (50 
ng/mL). Cells were treated with KF (6.25 μM or 12.5 μM) for 7 days. After formation of osteoclasts, the total RNA 
was extracted using the Qiagen Rneasy Mini kit (Qiagen, Victoria, Australia). A single-stranded cDNA was syn-
thesized from 2 μg of the total RNA using the iScript cDNA Synthesis Kit (Bio-Rad, Hercules, CA). Subsequently, 
a real-time PCR was performed on an ABI 7500 Sequencing Detection System using the SYBR® Premix Ex Taq™ 
II. In short, 10 μl of SYBR® Premix Ex Taq™ II, 7.2 μl ddH2O, 2 μl cDNA and 0.4 μl of each primer were mixed 
to make up a total volume of 20 μl for each PCR. Cycling condition was 95 °C 5 s and 60 °C 34 s for 40 cycles with 
specific primers for V-ATPase d2, TRAP, CTR, c-Fos and NFATc1. Beta-actin was included as housekeeping 
gene. The comparative 2−ΔΔCT method was used to calculate the relative expression levels of each gene as previ-
ously described33. The following primer sets were used as previously described34–37: mouse Beta-actin: forward, 
5′-TCTGCTGGAAGGTGGACAGT-3′ and reverse, 5′-CCTCTATGCCAACACAGTGC-3′; mouse NFATc1: 
forward, 5′-CCGTTGCTTCCAGAAAATAACA-3′ and reverse, 5′-TGTGGGATGTGAACTCGGAA-3′; mouse 
CTR: forward, 5′-TGCAGACAACTCTTGGTTGG-3′ and reverse, 5′-TCGGTTTCTTCTCCTCTGGA-3′; mouse 
c-Fos: forward, 5′-CCAGTCAAGAGCATCAGCAA-3′ and reverse, 5′-AAGTAGTGCAGCCCGGAGTA-3′; 
mouse V-ATPase d2: forward,5′-AAGCCTTTGTTTGACGCTGT-3′ and reverse 5′-TTCGATGCCTCTGTGA 
GATG-3′; TRAP: forward 5′-CTGGAGTGCACGATGCCAGCGACA-3′ and reverse 5′-TCCGTGCTCGGCGA 
TGGACCAGA-3′.

Bone resorption assay.  For the bone resorption assay, BMM cells were seeded onto bovine bone slices 
in a 96-well plate with complete α-MEM at a density of 2.4 × 104 cells/cm2. The cells were treated with M-CSF 
(30 ng/ml), RANKL (50 ng/ml) and KF (0, 3.125, 6.25 or 12.5 μM) for 7 days. Then osteoclasts were removed by 
mechanical agitation and sonication. The resorption pits were visualized under a scanning electron microscope 
(SEM, FEI Quanta 250). The percentage of resorbed bone surface area was quantified using the Image J software 
(National Institutes of Health). Briefly, the bone resorption pits were quantitatively measured using “Measuring 
Area” tool: first, surround an area with a perimeter. This can be done with an area selection tool, then select 
“Analyze → Measure” transfers the area measurement to a data window.

Actin ring-formation assay.  The BMM cells (8 × 103 cells/well) were seeded onto dentine slices in a 48-well 
plate at a density of 2.4 × 104 cells/cm2. Cells were treated consistently with the bone resorption assay. Briefly, after 
osteoclasts were formed, the cells were washed three times with ice-cold PBS, fixed in 4% formalin, and then per-
meabilized by the incubation in 0.1% Triton-PBS for 15 min. The cells were then blocked with 1% bovine serum 
albumin–PBS, and incubated with FITC-labeled phalloidin for 30 min. The cells were extensively washed with 
PBS, and the nuclei were stained with 4′, 6-diamidino-2-phenylindole (DAPI). Cover slips were mounted on a 
microscope slide with an embedding medium, and F-actin rings formation was visualized using a fluorescence 
microscope (Leica)38,39. For each dentine slice, five random fields were selected and the number of complete actin 
rings were counted, then the total number of actin ring formation was recorded. Each dentine slice was counted 
for 3 times and the average number was calculated as the number of actin ring formation. The area of actin 
ring formation was quantitatively measured using Image J software (National Institutes of Health) “Measuring 
Area” tool: first, surround an area with a perimeter. This can be done with an area selection tool, then select 
“Analyze → Measure” transfers the area measurement to a data window.

Western blot analysis.  RAW264.7 cells were pretreated with a serum-free α-MEM with/without KF for 4 h, 
and then stimulated with RANKL at 0, 5, 10, 20, 30, and 60 min. After being washed twice in 1× PBS, the cells were 
lysed in ice-cold lysis buffer containing 50 mM Tris–HCl, 150 mM NaCl, 5 mM EDTA, 1% Triton X-100, 1 mM 
sodium fluoride, 1 mM sodium vanadate, 1% deoxycholate, and protease inhibitor cocktail. Then the lysate was cen-
trifuged at 12,000 rounds/minute for 12 min and the protein in the supernatant was collected. Protein concentrations 
were measured through the BCA assay. Equal amounts of the protein lysates were separated using a 10% SDS–PAGE 
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and then transferred to polyvinylidene difluoride membranes (Millipore, Bedford, MA, USA). These membranes 
were then blocked with 5% (g/ml) skim milk solution for 1 h and probed with the primary antibodies (GAPDH, 
1:1000; phospho-ERK1/2, 1:1000; ERK1/2, 1:1000; phospho-JNK, 1:1000; JNK,1:1000; phospho-p38,1:1000; p38, 
1:1000; NF-kB, 1:1000, IkB-a, 1:1000) overnight at 4 °C. The membranes were incubated with the appropriate sec-
ondary antibodies conjugated with IRDye 800CW (molecular weight, 1166 Da; LI-COR, Lincoln, NE, USA), mean-
while the antibody reactivity was detected by the exposure in an Odyssey infrared imaging system (LI-COR).

Osteoclastogenisis rescue assay.  BMM cells were seeded onto a 96-well plate at a density of 8 × 103 cells/
well in triplicate and supplied with complete α-MEM medium. After adhering to the well, M-CSF (30 ng/ml), 
RANKL (50 ng/ml) and various concentrations of KF (0, 6.25 or 12.5 μM) were added to each well. In addition, a 
rescue group was treated with KF and a potent activator of JNK, anisomycin. After the mature osteoclasts formed 
at day 7, the cells were fixed and stained with TRAP, and the number of TRAP-positive cells was then counted. 
Then western blot analysis was performed to further verify the rescue effect of anisomycin. Briefly, BMM cells 
were treated with RANKL, RANKL+KF, RANKL+KF+anisomycin, the p-JNK expression was evaluated. At the 
same time, in order to exclude the effect of anisomycin on protein synthesis, JNK synthesis was evaluated after 
administration of anisomycin at 0, 20, 40, 60, 120 mins.

Molecular Modeling.  Homology models of mouse JNK1/JNK2 kinase domain and Mapk1 (Erk) kinase 
domain were built with MODELLER 9.1240, using the structure of the human JNK1/JNK2 (PDB code: 2H96, 
3E7O) and Mapk1 (Erk) as a template. The models were further evaluated for the stereochemical quality using 
PROCHECK41. The three-dimensional coordinates for KF was generated and optimized with Marvin Sketch and 
molconvert packages from ChemAxon (http://www.chemaxon.com/). Ligands were docked to the ATP binding 
pocket of JNK and Mapk1 (Erk) by AutoDock and AutoDock Vina42. Ligand conformation search was based on 
Lamarckian genetic algorithm. All the default parameters were used during the docking after protein preparation. 
Predicted binding mode figures were prepared with PyMOL visualization software (http://www.pymol.org).

Animal model of Titanium particle-induced calvarial osteolysis.  The Animal Care and Experiment 
Committee of Shanghai Jiao Tong University School of Medicine approved all experimental procedures, and the 
study was carried out according to the guidelines for the Ethical Conduct in the Care and Use of Nonhuman 
Animals in Research by the American Psychological Association.

Briefly, 32 8-week-old C57/BL6 mice were randomly assigned into 4 groups: sham operation group (sham), 
Ti-particle with phosphate-buffered saline (PBS, vehicle), Ti-particle with low concentration of KF (KF-L, 4 mg/kg/
day) and high concentration of KF (KF-H, 8 mg/kg/day). Pretreatment of Ti particle was performed according to the 
method of Liu as early reported37,43. Then the cranial periosteum was separated from the calvarium by sharp dissection 
and 30 mg of Ti-particle were embedded under the periosteum at the middle suture of the calvarium. Within the fol-
lowing 14 days, mice in the KF-L and KF-H groups were injected with different concentrations of KF (4 or 8 mg/kg/day 
respectively) every other day. The other 2 groups received PBS injection every other day. After 2 weeks of injection, the 
mice were sacrificed, and the calvaria were excised and fixed in 4% paraformaldehyde for micro-CT analysis.

Micro-CT scanning.  The micro-CT scanning was carried out using a high-resolution micro-CT (SCANCO 
100, SCANCO, Brüttisellen, Switzerland). The resolution of the scanning was 10 μm, and the X-ray energy was set 
at 70 kvp, 200 μA. After 3D reconstruction, the calvaria samples were decalcified in 10% EDTA for further studies.

Histological and histomorphometric analysis.  After being decalcified in 10% EDTA for 3 weeks, the 
calvaria were embedded in paraffin, and histological staining including hematoxylin and eosin staining (H&E) 
and TRAP-staining was performed. The slices were then examined and photographed under a high-quality 
microscope and the TRAP-positive multinucleated cell was considered as osteoclast.

Statistical analysis.  The data were expressed as the means ± SD. Results were analyzed with Student’s t-test 
using the SPSS 13.0 software (SPSS Inc., USA). p < 0.05 indicated a significant difference between the groups.

Equipment and settings.  Figures 1A and 3E were obtained using DP Manager version 1,1,1,71. Figure 2A 
showed the bone resorption pits were visualized under a scanning electron microscope (SEM, FEI Quanta 250). The 
percentage of resorbed bone surface area was quantified using the Image J software (National Institutes of Health). 
Figure 2B showed the actin ring formation was visualized using a fluorescence microscope (Leica) and the area 
of actin ring formation was quantified using Image J software (National Institutes of Health). Figure 3A,G and H  
representing the western blot gels were obtained by Odyssey infrared imaging system (LI-COR) application soft-
ware version 3.0.16. In Fig. 4, the predicted binding mode figures were prepared with PyMOL visualization soft-
ware (http://www.pymol.org). Figure 5 was the analysis of animal model, the figures of micro-CT scanning were 
obtained using a high-resolution micro-CT (SCANCO 100, SCANCO, Brüttisellen, Switzerland). The histological 
figures were obtained using LEICA DM4000 B microscope. Figures of statistical analysis including Figs 1B,C,D,E, 
2B,D,E, 3B,C,F, and 5C,D,E,F were obtained using GraphPad Prism program version 6.01.
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