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Abstract

Obese subjects with a similar body mass index (BMI) exhibit substantial heterogeneity in gluco- 

and cardio-metabolic heath phenotypes. However, defining genes that underlie the heterogeneity 

of metabolic features among obese individuals and determining metabolically healthy and 

unhealthy phenotypes remain challenging. We conducted unsupervised hierarchical clustering 

analysis of subcutaneous adipose tissue transcripts from 30 obese men and women ≥40 years old. 

Despite similar BMIs in all subjects, we found two distinct subgroups, one metabolically healthy 

(Group 1) and one metabolically unhealthy (Group 2). Subjects in Group 2 showed significantly 

higher total cholesterol (p=0.005), LDL cholesterol (p=0.006), 2h-Insulin during OGTT (p=0.015) 

and lower insulin sensitivity (SI, p=0.029) compared to Group 1. We identified significant up-

regulation of 141 genes (e.g. MMP9 and SPP1) and down-regulation of 17 genes (e.g. NDRG4 and 

GINS3) in group 2 subjects. Intriguingly, these differentially expressed transcripts were enriched 

for genes involved in cardiovascular disease-related processes (p=2.81×10−11–3.74×10−02) and 

pathways involved in immune and inflammatory response (p=8.32×10−5–0.04). Two down-

regulated genes, NDRG4 and GINS3, have been located in a genomic interval associated with 

cardiac repolarization in published GWASs and zebra fish knockout models. Our study provides 

evidence that perturbations in the adipose tissue gene expression network are important in defining 

metabolic health in obese subjects.
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Introduction

Many diseases of high public health importance, such as type 2 diabetes and metabolic 

syndrome, are profoundly influenced by obesity status (1). However, individuals with a 

similar body mass index (BMI) can exhibit substantially different metabolic profiles for 

glucose tolerance, lipids, and blood pressure. In the NHANES study, an estimated 31.7% of 

all obese individuals (~10% of the U.S. adult population) exhibit a better metabolic profile 

than age-adjusted BMI expectations and are categorized as “metabolically healthy obese” 

(MHO) (2;3).

An increase in white adipose tissue (WAT) mass in response to chronic positive energy 

imbalance is a defining feature of obesity. However, several structural/histological 

characteristics and depot-specific (subcutaneous and visceral) distributions of adipose tissue 

differ between metabolically healthy and unhealthy obese individuals (4). The location and 

cellular mechanisms of tissue expansion (hyperplasia and hypertrophy) greatly affect the 

normal physiological function of adipose tissue (5). This process may be mechanistically 

linked to the development of obesity-associated metabolic disorders (6;7). We and others 

have shown significant dysregulation in the adipose tissue transcriptome with obesity (8–

11). Many genes are correlated with obesity (BMI) and adiposity (% fat mass). However, 

pinpointing which defining genes underlie the heterogeneity of metabolic features among 

obese individuals and determine metabolically healthy and unhealthy phenotypes remains 

challenging.

The purpose of this study is to identify an adipose tissue transcriptomic signature that may 

determine metabolic health in obese subjects. Defining metabolically healthy and unhealthy 

obese subjects based on clinical and biochemical characteristics is difficult (2;3). Thus, we 

performed unsupervised hierarchical clustering analysis using data from obesity-associated 

adipose tissue transcripts to first identify comparatively homogenous sub-groups among 

obese subjects. We hypothesized that these transcriptionally homogenous sub-groups could 

differ in metabolic characteristics, and that a subset of obesity-associated transcripts in 

subcutaneous adipose tissue are involved in defining metabolic health in obese subjects. We 

then performed additional statistical and bioinformatics analyses to compare sub-groups of 

obese subjects.

Subjects and Methods

The sample included a subset (30 obese men and women) from the 170 subjects recruited for 

the University of Arkansas for Medical Sciences (UAMS) gene expression study (8;12). 

These 30 subjects were all obese (BMI ≥ 30 kg/m2), non-diabetic, and ≥ 40 years old. They 

had been characterized by frequently sampled intravenous glucose tolerance tests (FSIVGT), 

and genome-wide gene expression data were available from subcutaneous adipose tissue 

biopsy samples. Three additional subjects met the selection criteria mentioned above, but 

genome wide expression data of acceptable quality were unobtainable for these subjects. 

Methods for recruitment, physical examination, physiological experiments, and obtaining 

biopsies have been published. In brief, European-American or African-American men and 

women in general good health, between 19 and 60 years of age, and had a BMI between 19 
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and 45 kg/m2 were recruited. All participants had a screening visit, at which time height, 

weight, and waist and hip circumference were measured; body fat was determined by dual x-

ray absorptiometry (DXA) scan (Hologic QDR-4500); fasting blood samples for lipid 

measurements were taken; and a standard 75-g oral glucose tolerance test (OGTT) was 

done. At the second visit, adipose biopsies were obtained from fasting subjects. Insulin 

modified (0.03 U/kg) frequently sampled intravenous glucose tolerance tests (FSIGT) were 

performed to determine insulin sensitivity (SI) and acute insulin response (AIRG). Biopsies 

were obtained from abdominal subcutaneous fat near the umbilicus under local anesthesia 

(Lidocaine) using a Bergstrom needle. Each biopsy is made by opening the Bergstrom 

needle and applying suction using a 120 ml syringe. Samples were rinsed immediately in 

sterile normal saline, quick-frozen in liquid nitrogen, and stored at −80°C for further use. All 

participants provided written informed consent under protocols originally approved by the 

UAMS. Our current study was approved by the Institutional Review Board at Wake Forest 

School of Medicine.

Insulin was measured by the UAMS Clinical Research Center core laboratory using an 

immuno-chemiluminometric assay (Invitron Limited, Monmouth, UK). Plasma glucose was 

measured by glucose oxidase methods at LabCorp, Inc. (Burlington, NC). Plasma 

triglyceride, total cholesterol, and HDL cholesterol concentrations were measured directly 

(at LabCorp) by enzymatic colorimetric methods. LDL cholesterol and VLDL cholesterol 

concentrations were calculated indirectly by the Friedewald equation.

Total RNA was isolated from whole adipose tissue using the RNAeasy Lipid Tissue Mini kit 

(QIAGEN Inc-USA, Valencia, CA). The quantity and quality of the isolated total RNA 

samples were determined by ultraviolet spectrophotometry (Nanodrop, Thermo Scientific, 

Pittsburgh, PA) and electrophoresis (Experion nucleic acid analyzer, BioRad Laboratories, 

Inc., Hercules, CA), respectively. High-quality RNA with RIN (RNA integrity number) >8 

was used for genome-wide transcriptome analysis.

Genome-wide transcriptome analysis and initial array processing were done at the Center for 

Human Genomics Core Laboratory (Wake Forest School of Medicine) using HumanHT-12 

v4 Expression BeadChip (Illumina, San Diego, CA) whole genome gene expression arrays 

according to the vendor-recommended standard protocol (8). Raw expression intensity was 

background subtracted and normalized by the average normalization algorithm as 

implemented in GenomeStudio Gene Expression Module v1.0 application software 

(Illumina). Normalized data were used for further analysis.

Data Analysis

We performed unsupervised hierarchical clustering to identify homogeneous groups among 

obese subjects based on adipose tissue transcript expression. A dissimilarity matrix based on 

Pearson’s correlation coefficient between each individual was generated using Z-score-

normalized values for each probe and seriation under multiple fragment heuristics. The 

hierarchical clustering-based tree and heat map was generated using McQuitty’s criteria 

implemented in PermutMatrix version 1.9.3EN software (13). For the current analysis, we 

chose a set of 1595 obesity-associated probes (associated with % fat mass and BMI 

independent of age, gender and race) that may define the heterogeneity of metabolic features 
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among obese individuals, based on our previous study (8). To estimate the differences in 

gluco- and cardio-metabolic phenotypes between the two groups (two major groups/clusters 

assigned by unsupervised hierarchical clustering analysis), we used nonparametric Mann-

Whitney U-test and univariate analysis of variance, with age, gender, and race as covariates. 

To identify the transcripts with significantly different expression between the two groups, 

we utilized nonparametric Wilcoxon statistics on normalized data as implemented in 

Statistical Analysis for Microarray (SAM) software (14). We considered results significant 

for a false discovery rate (q value) ≤ 5%, and fold difference between groups of >1.5, based 

on 1000 permutations. Additional validation of SAM analysis was performed by t-test (p 

≤0.05) on log2 transformed expression data. Bioinformatic analysis was performed to 

investigate the enrichment of differentially expressed genes in known biological pathways or 

Gene Ontology (GO) categories. We performed canonical pathway analysis and interaction 

network analysis of differentially expressed genes using Ingenuity Pathway analysis (IPA; 

https://analysis.ingenuity.com, Build version: 313398M; Content version: 18841524). 

Pathways with a corrected p-value (Benjamini and Hochberg p-value) ≤0.05 were 

considered significantly enriched in our gene lists. Additional annotations of differentially 

expressed genes were performed by singular enrichment analysis (SEA) using the DAVID 

v6.7 functional annotation tool (http://david.abcc.ncifcrf.gov/)(15). Detailed analysis 

parameters for SEA using the functional annotation chart module of DAVID are described 

elsewhere (9). In the SEA analysis, a category with a gene count >5, an EASE score ≤0.05 

(modified Fisher’s exact p-value), and FDR ≤5% was considered as a significant threshold.

Results and Discussion

White adipose tissue modulates both glucose and lipid homeostasis in humans via its master 

regulatory role in controlling whole-body lipid flux (16). Under conditions of chronic energy 

overload, adipose tissue sequesters excess fuel via expansion of adipocytes and leads to 

obesity. However, decompensation of this adaptive homeostatic mechanism (largely 

regulated by the interaction of genetic and epigenetic factors with dietary components) may 

lead to adipose tissue dysfunction and is likely to be the causal link for metabolic 

abnormalities in a subset of obese subjects.

After unsupervised hierarchical clustering of 1595 obesity-associated (independent of age, 

gender and race) transcripts, we classified the 30 obese subjects into two groups of 16 and 

14 subjects, respectively (Figure 1A). These two groups were not significantly different in 

BMI. However, group 2 subjects had significantly higher total cholesterol (p= 0.005), LDL-

cholesterol (p= 0.006), 2h-Insulin during OGTT (p=0.015) and lower insulin sensitivity (SI, 

p= 0.029) compared to group 1 (Figure 1B). Despite similar BMI, obese subjects in group 2 

showed poor gluco-and cardio-metabolic phenotype. Thus, our study revealed a distinct 

signature of adipose tissue transcripts that can differentiate obese subjects with 

comparatively better metabolic health (Group 1) from obese subjects with poor metabolic 

heath (Group 2). Group 2 subjects showed higher fat mass (43.6 ± 6.7%) compared to Group 

1 subjects (35.5 ± 6.8%), but this difference was not statistically significant after adjustment 

for age, gender, and race. Similarly, differences in waist-hip ratio were also not significant. 

Thus, the observed difference in metabolic characteristics between the two groups cannot be 
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attributed to the differences in total adiposity. However, we have not analyzed depot-

specific distribution or histological characteristics of white adipose tissue in these subjects.

We identified 158 transcripts with ≥1.5 fold difference in expression between groups 1 and 2 

(Supplementary table 1). Group 2 had significant up-regulation of 141 genes and down-

regulation of 17 genes. Highly up-regulated genes included MMP9 (Matrix metallopeptidase 

9; 4.1 fold, p= 5.68×10−6) and SPP1 (Secreted phosphoprotein 1 or osteopontin; 3.2 fold, p= 

3.54×10−5); while the top down-regulated genes included NDRG4 (N-myc downstream-

regulated gene family member 4, −2.1 fold, p= 7.01×10−7) and GINS3 (GINS complex 

subunit 3; −1.8 fold, p= 1.58×10−5) (Figure 1C). Two large genome-wide association studies 

(GWAS) identified significant association of ECG QT interval (a quantitative measure of 

cardiac repolarization) in human chromosome 16q21, a genomic interval which includes 

several candidate genes including NDRG4 and GINS3 (17;18). NDRG4 knockdown in zebra 

fish embryos is associated with defective cardiac morphogenesis and function, including 

weak contractility due to marked reduction in proliferative myocytes (19). Similarly GINS3 

−/− zebra fish embryos show a significant defect in cardiac repolarization (20).

In our study, the distribution of age and race was not significantly different between groups, 

but distribution of gender was significant. Thus, we compared only women from Group 2 

(N= 12) and Group 1 (N=7) to identify differentially expressed genes. Despite the lower 

statistical power, results remain consistent. Of 158 differently expressed genes, 126 were 

significantly differentially expressed (p≤ 0.05) in the women-only analysis. The fold 

changes of these genes were strongly correlated between the overall cohort and the women 

only (overall vs women-only analysis, r=0.83, p= 8.76×10−42). Thus, the differential 

expression of genes between groups as identified by unsupervised hierarchical clustering 

analysis can mainly be attributed to differences in metabolic characteristics of the subjects.

Transcripts differentially expressed between the two groups were significantly enriched for 

the functional categories of genes (Table 1). These genes were primarily associated with 

cardiovascular disease, including peripheral arterial occlusive disease due to atherosclerotic 

lesions (enrichment p = 2.81×10−11). The Ingenuity knowledge base shows an interaction 

network of 31 differentially expressed genes involved in different cardiovascular disease-

related processes (Figure 1D). These differentially expressed genes were also enriched in 

several canonical pathways involved in immune and inflammatory response, including the 

complement system (p= 8.32×10−5), TREM1 signaling (p= 3.09×10−3) and IL-8 signaling 

(p= 3.09×10−3) (Table 1). Similarly DAVID analysis identified signaling in the immune 

system (p= 3.94×10−10, 21 genes, Reactome pathway database) as the most strongly 

enriched pathway. Stronger upregulation of genes in pathways involved in immune and 

inflammatory responses, in metabolically unhealthy obese subjects, may be the link between 

obesity, cardiovascular disease, and type 2 diabetes (7). Genes in immune and inflammatory 

response pathway in adipose tissue were associated with insulin resistance (9), which could 

explain the significantly lower insulin sensitivity among Group 2 subjects in our study. 

Genes in these pathways may become novel therapeutic targets in preventing obesity-

associated diseases. In conclusion, our study provides evidence that the perturbation in the 

adipose tissue gene expression network may be critical in defining metabolic health, 

including cardiometabolic phenotypes in obese subjects. Further functional studies will be 
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required to define the causal relationship of these genes with cardio- and gluco-metabolic 

phenotypes in obesity.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Adipose tissue transcripts play a role in defining gluco- and cardio-metabolic 
phenotypes in obese subjects
A) Unsupervised hierarchical clustering of 1595 obesity-associated transcripts in 

subcutaneous adipose tissue classified 30 obese subjects into two major groups. B) 
Metabolic characteristics of two groups of obese subjects identified by clustering analysis. 

M, Male; F, Female; CA, Caucasian; AA, African-American; P-value, statistical 

significance based on univariate analysis of variance. C) Expression (log2) of transcripts 

(mean ± SD) most significantly (p ≤ 0.0001, fold change ≥ 1.5 and FDR ≤ 5%) differentially 

expressed between two groups of obese subjects. D) Network and predicted molecular 

activity of 31 differentially expressed genes involved in different cardiovascular disease-

related processes.
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