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RNA methylation accounts for over 60% of all RNA modifications, and N6-
methyladenosine (m6A) is the most common modification on mRNA and lncRNA of
human beings. It has been found that m6A modification occurs in microRNA, circRNA,
rRNA, and tRNA, etc. The m6A modification plays an important role in regulating
gene expression, and the abnormality of its regulatory mechanism refers to many
human diseases, including cancers. Pitifully, as it stands there is a serious lack of
knowledge of the extent to which the expression and function of m6A RNA methylation
can influence prostate cancer (PC). Herein, we systematically analyzed the expression
levels of 35 m6A RNA methylation regulators mentioned in literatures among prostate
adenocarcinoma patients in the Cancer Genome Atlas (TCGA), finding that most of them
expressed differently between cancer tissues and normal tissues with the significance
of p < 0.05. Utilizing consensus clustering, we divided PC patients into two subgroups
based on the differentially expressed m6A RNA methylation regulators with significantly
different clinical outcomes. To appraise the discrepancy in total transcriptome between
subgroups, the functional enrichment analysis was conducted for differential signaling
pathways and cellular processes. Next, we selected five critical genes by the criteria that
the regulators had a significant impact on prognosis of PC patients from TCGA through
the last absolute shrinkage and selection operator (LASSO) Cox regression and obtained
a risk score by weighted summation for prognosis prediction. The survival analysis
curve and receiver operating characteristic (ROC) curve showed that this signature
could excellently predict the prognosis of PC patients. The univariate and multivariate
Cox regression analyses proved the independent prognostic value of the signature. In
summary, our effort revealed the significance of m6A RNA methylation regulators in
prostate cancer and determined a m6A gene expression classifier that well predicted
the prognosis of prostate cancer.

Keywords: N6-methyladenosine, prostate adenocarcinoma, prognostic signature, methyltransferase, biomarker,
RNA methylation, LASSO Cox regression, consensus clustering
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INTRODUCTION

Prostate cancer (PC), namely prostate adenocarcinoma (PRAD),
is a great threat to the male reproductive system (Attard et al.,
2016). Although most prostate cancers are slow growing, it may
spread to other parts of the body, as well as the primary tumor
growing quickly. According to cancer statistics from American
Cancer Society, PC is the second leading cause of death among
American men with cancer, with an estimate of 191,930 new
cases and 33,330 deaths, accounting for 21 and 10% of all sites,
respectively (Siegel et al., 2020). Surgical removal of the prostate,
radiation, chemotherapy, or hormonal therapy are recommended
to treat most PC patients. Five-year survival rate of localized or
regional PC patients is a whisker away from a hundred percent,
while that of distant PC patients is as low as around 30% (Siegel
et al., 2020). Notably, a quarter of PC patients are recurrent in
5 years (Schwartz et al., 2014), which may indicate an unfavorable
outcome. Between 2013 and 2017, mortality rates appeared
to have stabilized (Siegel et al., 2020). Hence, researchers are
striving for a breakthrough in complicated biological processes
and molecular mechanisms of PC to identify novel targets for
treatment of PC patients.

RNA modification participates in many biological processes in
vital movement, counting regulation of RNA post-transcriptional
stability (Wang et al., 2014), localization (Fustin et al., 2013),
translocation, slicing (Molinie et al., 2016) and translation (Meyer
et al., 2015). There exists expanding evidence of its importance
in tumor development and malignant progression, thus it has
stolen the spotlight from many researchers. Up until now, over
100 distinct chemical modifications have been identified from
RNAs containing mRNA, tRNA, miRNA, long non-coding RNA,
etc. (Wang et al., 2014; Liu et al., 2016; Roundtree et al., 2017a;
Boccaletto et al., 2018; Yang D. et al., 2018; Yang Y. et al.,
2018; Du et al., 2019; Shi H. et al., 2019). Among all of these,
RNA methylation accounts for over 60% in RNA modifications.
Transcriptome-wide m6A mapping has been disclosed to provide
the landscape of m6A RNA methylation for its crucial function in
cellular differentiation, cancer progression and other processes.

M6A modification mainly occurs on adenine in RRACH
(R = G, A; H = A, C or U) sequence, the functions of which are
regulated by an expanding list of writers, readers and erasers (Fu
et al., 2014; Zhao et al., 2017; Yang Y. et al., 2018; Sun et al., 2019;
Zaccara et al., 2019). The m6A-writer-complex is also known
as methyltransferase, including METTL3, METTL14, WTAP
and KIAA1429; erasers like ALKBH5 and FTO as demethylase

Abbreviations: M6A, N6-methyladenosine; TCGA, the Cancer Genome Atlas;
LASSO, the last absolute shrinkage and selection operator; ROC, receiver operating
characteristic; PC, prostate cancer; PRAD, prostate adenocarcinoma; PCA,
principal components analysis; GO, Gene Ontology; KEGG, Kyoto Encyclopedia
Genes and Genomes; AJCC, American Joint Committee on Cancer; OS, overall
survival; DFS, disease-free survival; DEG, differentially expressed gene; CAN,
copy-number alteration; PPI, protein-protein interaction; MCC, Maximal Clique
Centrality; CDF, cumulative distribution function; BP, biological process; CC,
cellular component; MF, molecular function; AD, Alzheimer disease; HD, Huntin
gton disease; PD, Parkinson disease; DCM, hypertrophic cardiomyopathy; HCM,
hypertrophic cardiomyopathy; PSA, prostate-specific antigen; CRPC, castration-
resistant prostate cancer; HPV, human papillomavirus; NAFLD, non-alcoholic
fatty liver disease.

can reverse methylation; m6A is recognized by m6A binding
proteins, i.e., m6A readers, including YTH domain proteins
(YTHDF1, YTHDF2, YTHDF3, YTHDC1, and YTHDC2) and
nuclear heterogeneous proteins HNRNP family (HNRNPA2B1
and HNRNPC) (Zaccara et al., 2019).

M6A is thought to be closely linked to various cancer types,
including gastric cancer (Yue et al., 2019), colorectal carcinoma
(Linnebacher et al., 2010), PC (Machiela et al., 2012), thyroid
cancer (Heiliger et al., 2012), breast cancer (Kaklamani et al.,
2011; Machiela et al., 2012; Akilzhanova et al., 2013; Long
et al., 2013; Reddy et al., 2013), pancreatic cancer (Pierce et al.,
2011; Lin et al., 2013), kidney cancer (Ortega et al., 2003;
Jin et al., 2012), sarcoma (Hesser et al., 2018; Tan and Gao,
2018), leukemia (Casalegno-Garduno et al., 2010), etc. With the
explosion of research, we may see a profound impact of m6A on
the proliferation of cancer cells.

In PC, literatures link pathogenesis and progression of the
tumor with m6A regulators that include METTL3 (Cai et al.,
2019; Li et al., 2020; Ma et al., 2020; Yuan et al., 2020),
VIRMA (Barros-Silva et al., 2020), YTHDF2, YTHDF3 (Li et al.,
2018), and FTO (Melnik, 2015). To the best of our knowledge,
it lacks a comprehensive analysis of the expression of m6A
RNA methylation regulators in PC with clinicopathological
characteristics, malignant progression, and prognosis.

Herein, we comprehensively investigated the role of RNA
m6A modification in PRAD. First, a genome-wide study showed
significant alteration in m6A RNA modification-related genes.
Then the expression profile of 35 genes in the PRAD cohort with
a normal cohort in the Cancer Genome Atlas (TCGA) database
was explored. Afterward, consensus clustering was conducted
according to the gene expression levels of m6A RNA methylation
regulators with principal components analysis (PCA), survival
analysis, Gene Ontology (GO), and Kyoto Encyclopedia Genes
and Genomes (KEGG) for evaluation. Finally, we formed an
efficient prognosis indicator comprising five pivotal genes related
to m6A RNA methylation by the last absolute shrinkage and
selection operator (LASSO) Cox regression.

MATERIALS AND METHODS

Dataset
The data were gathered from TCGA project1, cBioPortal for
Cancer Genomics2, and UCSC Xena browser3, including
gene expression datasets (RNA-seq) on PRAD patients,
as well as corresponding demographic (age and gender),
clinicopathological (clinical M stage, clinical T stage, Gleason
score, pathologic T stage, and pathologic N stage) and
survival [overall survival (OS) and disease-free survival
(DFS)] information. Anatomic stage or prognostic group was
determined by American Joint Committee on Cancer (AJCC)
Cancer Staging Manual 8th edition (2017) (Amin et al., 2017a,b;

1https://portal.gdc.cancer.gov/
2http://www.cbioportal.org/
3https://xenabrowser.net/
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Buyyounouski et al., 2017). Patients without survival information
were eliminated from further evaluation.

Screening of m6A RNA Methylation
Regulators
35 m6A RNA methylation regulators were selected from articles
and reviews manually (Sun et al., 2019; Zaccara et al., 2019;
Table 1). Corresponding RNA-Seq data were extracted from the
TCGA-PRAD cohort for further study.

Genetic Alterations and Screening of
Differentially Expressed m6A RNA
Methylation Regulators
Genetic alterations were gathered from the TCGA and PRAD
project in cBioPortal. Differential expression profiles of m6A
RNA methylation regulators were analyzed by “limma” package
(Law et al., 2014; Ritchie et al., 2015; Phipson et al., 2016) with
a cut-off value of p < 0.05 and visualized by several R packages
thereafter. Also, correlation analysis was performed by R 4.0.2.

Identification of Subgroups With a
Distinct Prognosis Using Consensus
Clustering
All PC patients were divided into subgroups by consensus
clustering according to the expression of differentially
expressed m6A RNA methylation regulators, utilizing the
“ConsensusClusterPlus” package (Monti et al., 2003; Wilkerson
and Hayes, 2010). Survival analysis, GO, and KEGG pathway
analyses between two subgroups were also performed. All
analyses above were performed by R 4.0.2.

Calculation of Prognostic Risk Scores
and Clinicopathological Relativity
Univariate Cox regression was performed to evaluate the
correlation between OS or DFS and the transcriptome levels
of differentially expressed genes (DEGs) above. The inclusion
genes with a cut-off criterion of p < 0.05 were then selected
for LASSO Cox regression analysis (Friedman et al., 2010;
Simon et al., 2011; Tibshirani et al., 2012). Five m6A regulators
were culled as indispensable biomarkers. Weighed summation
of selected biomarkers was calculated and termed risk score, a
novel prognostic signature. Then the validity of the risk score

TABLE 1 | The components of m6A RNA methylation regulators in writer-, reader-
and eraser-complex.

Regulators

Writers KIAA1429 (VIRMA), METTL3, METTL14, WTAP, RBM15,
RBM15B, METTL16, ZC3H13, and PCIF1

Readers TRMT112, ZCCHC4, NUDT21 (CPSF5), CPSF6, CBLL1
(HAKAI), SETD2, HNRNPC, HNRNPG (RBMX), HNRNPA2B1,
IGF2BP1, IGF2BP2, IGF2BP3, YTHDC1, YTHDF1, YTHDF2,
YTHDF3, YTHDC2, SRSF3, SRSF10, XRN1, FMR1 (FMRP),
NXF1, and PRRC2A

Erasers FTO, ALKBH5, and ALKBH3

was tested by survival analysis, risk plot and receiver operating
characteristic (ROC) curve. Univariate and multivariate Cox
regression analyses were performed to validate the independent
role of the risk signature. The analyses above were performed by
R 4.0.2. Finally, the relevance of risk score and clinicopathological
features was evaluated by Prism 7.04 (GraphPad Software Inc., La
Jolla, CA, United States).

RNA Extraction and qRT-PCR Assay
Total RNA was isolated from tissues using TRIzol R© reagent
(Thermo Fisher Scientific, United States). The concentration and
purity of the RNA solution were detected using a NanoDrop 2000
spectrophotometer (Thermo Fisher Scientific, United States).
Extracted RNA was then reverse transcribed into cDNA using
PrimeScriptTM RT Master Mix (Takara, Japan) according to
the manufacturer’s protocols. The reaction conditions were
as follows: 37◦C for 15 min; 85◦C for 5 s. Subsequently,
the cDNA was subjected to qPCR using AceQ R© qPCR SYBR
Green Master Mix (Vazyme, China) on CFX Connect Real-
Time PCR Detection System (Biorad, China) according to the
manufacturer’s protocols. The qPCR conditions were as follows:
pre-denaturation at 95◦C for 5 min; 40 cycles of denaturation
at 95◦C for 10 s; annealing and extension at 60◦C for 30 s.
The housekeeping gene, GAPDH, was used to normalize the
relative expression of HNRNPA2B1, NXF1, RBMX, YTHDF1,
and TRMT112 as an endogenous control by the comparative Ct
(threshold cycle) method (2−11Ct). All qRT-PCR reactions were
performed in duplicate. The primers used to amplify target genes
and GAPDH were chemically synthesized by TSINGKE, China.
The primer sequences were listed in Supplementary Table 1.

Genetic Alterations Indicated Potential
Effects of m6A RNA Methylation Related
Genes in Patients With Prostate Cancer
To investigate the role of m6A RNA methylation regulators in
patient with PC, we first considered the genome information.
The profiles of m6A RNA methylation related genetic alteration,
including mutation and putative copy-number alteration (CAN),
were accessed. Of 499 PRAD patients, 368 (73.7%) harbored at
least one type of genetic alterations, including inframe mutation,
missense mutation, truncating mutation, amplification, and
deep deletion, as well as transcriptomic changes (Figure 1).
From the result above, we speculated that significant changes
in m6A methylation regulators in the genome of PC tissues
may lead to that in transcriptome and regulate relevant
biological processes.

Gene Expression of m6A RNA
Methylation Regulators Jointly Involved
in Prostate Cancer Development
Then transcriptome profile of m6A RNA methylation regulators
was thoroughly investigated. RNA-Seq data from TCGA-
PRAD cohort was downloaded, including the data of cancer
tissue (n = 499) and para-cancer tissue (n = 52). The
information of m6A RNA methylation regulators was extracted
and analyzed for DEGs. As shown in Figures 2A,B, 24 of
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FIGURE 1 | Genetic alterations of m6A RNA methylation regulators in TCGA-PRAD cohort (n = 499). Mutations include inframe mutation, missense mutation, and
truncating mutation. Copy-number alterations (CAN) include amplification and deep deletion.

35 m6A regulators expressed differently with the significance of
p < 0.05, including 14 up-regulated genes (RBM15B, TRMT112,
HNRNPA2B1, ALKBH3, HNRNPC, CPSF6, RBM15, RBMX,
YTHDC2, METTL3, YTHDF1, YTHDF2, PRRC2A, and NXF1)
and 10 down-regulated genes (IGF2BP2, FMR1, METTL16,
METTL14, ZCCHC4, PCIF1, ZC3H13, FTO, NUDT21, and
ALKBH5), indicating the obvious variation of m6A modification
in tumorigenesis.

After validating the DEGs related to m6A, the interaction
among all m6A regulators was explored. As shown in Figure 2C,
most m6A RNA methylation regulators correlated with others.
Thereinto, RBMX, HNRNPA2B1, RBM15B, PRRC2A, YTHDF1,
YTHDF2, RBM15, KIAA1429, YTHDF3, YTHDC2, YTHDC1,
CPSF6, SRSF10, METTL14, NUDT21, ZC3H13, FTO, ZCCHC4,
FMR1, XRN1, and SETD2 positively correlated with other
regulators while TRMT112 and ALKBH3 negatively correlated.
However, some regulators such as WTAP, IGF2BP1, IGF2BP2,
IGF2BP3, ALKBH5, and PCIF1 showed poor correlation with
other regulators, which may result from their versatility in
multiple biological processes. Figure 2D showed a protein-
protein interaction (PPI) network of 35 m6A methylation
regulators, suggesting a close connection between them. A novel
algorithm of Maximal Clique Centrality (MCC) of CytoHubba
mode in Cytoscape was performed to filter the hub genes of
the network based on known or predicted PPIs (Figure 2E).
Notably, IGF2BP2 and IGF2BP3 seemed quite isolated from

the major network, in accordance with the correlation plot.
Yet PRRC2A and ZCCHC4 had no observed connection
with other regulators but strongly correlated, which is worth
further investigation.

Consensus Clustering Categorized
Patients According to DEGs Related to
m6A
From the results above, the alteration of m6A modification in
PC had been confirmed genomically and transcriptomically, but
we doubted that it was clinically or biologically meaningful.
To investigate the effect of m6A RNA methylation regulator in
development of PC, consensus clustering was applied to divide
the tumorous tissues into subgroups according to the RNA-
seq data of 24 differentially expressed m6A RNA methylation
regulators. Cumulative distribution function (CDF) of the
consensus cluster for k = 2 to 9 and increment in the AUC were
shown in Figures 3A,B. Under two considerations, maximum
AUC increment of CDF and expression correlation of m6A
RNA methylation regulators that is high within groups and low
between groups, k = 2 was determined, namely the number of
clusters (Figure 3D). The tracking plot of subgroups for k = 2
to k = 9 was shown in Figure 3C. PCA for total transcriptomic
data from TCGA-PRAD cohort was executed to access the
validity of consensus clustering and offer an intuitionistic sign
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FIGURE 2 | Transcriptome profiles of m6A RNA methylation regulators in prostate adenocarcinoma. (A,B) The differential expression of m6A related genes between
499 tumorous tissues and 52 normal tissues in TCGA-PRAD cohort. (C) The correlation of the m6A regulatory genes. (D) Protein-protein interaction (PPI) network of
m6A regulatory genes. Elements not connected to other genes are hidden. (E) PPI network of top 10 pivotal genes from all m6A regulatory genes obtained by
CytoHubba plugin of Cytoscape.

of two clusters (Figure 3E), which showed distinctly different
characteristics of two clusters.

Clusters Varied in Prognosis and
Predicted Function
To appraise the characteristics of the patients between clusters,
the survival analysis was carried out (Figure 4B), suggesting a
worse DFS of cluster 2 compared to cluster 1 with the significance
of p < 0.001. Although the OS of patients in cluster 2 was

also worse than that in cluster 1 (Figure 4A), the significance
was larger than 0.05, the reason of that might be a dearth
of dead cases in the dataset due to high morbidity and low
mortality of PC. The results showed a distinguishing classification
method by the profiles of differentially expressed m6A RNA
methylation regulators and offered us a primary impression that
alterations in expression profiles of m6A related genes affected the
prognosis of PC.

Next, we were engrossed in the functional differences between
the two subgroups. The result of GO was shown in Figures 4C,D
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FIGURE 3 | Consensus clustering of the tumorous cohort from TCGA-PRAD based on the differently expressed m6A regulatory genes. (A) Consensus clustering
distribution function (CDF) for k = 2 to 9. (B) Area under CDF curve increment for k = 2 to 9. (C) Tracking plot for k = 2 to 9. (D) Consensus matrix for optimal k = 2.
(E) Principal components analysis (PCA) of the total transcriptomic profile from TCGA-PRAD cohort for optimal k = 2.

for up-regulated and down-regulated genes, respectively. Up-
regulated DEGs highly enriched in processes related to protein
biosynthesis, including mRNA catabolic processes, ribosomal
activities, protein translocation, and energy transfer. Down-
regulated DEGs mostly enriched in muscle-cell related functions,
e.g., muscle system process, muscle contraction and muscle
cell development and differentiation in biological process (BP),
myofibril, contractile fiber, sarcomere I band and Z disc in
cellular component (CC), and actin binding in molecular
function (MF), that might result from degeneration of smooth
muscle in prostate infiltrated by cancer tissue. Also, down-
regulated genes enriched in malignancy-associated process,
including extracellular matrix organization, cell-cell adhesion
via plasma-membrane adhesion molecule and homophilic cell
adhesion via plasma membrane adhesion molecules. The results
of KEGG were shown in Figures 4E,F for up-regulated and
down-regulated genes, respectively. Classical pathways in tumor
pathology including PI3K-Akt pathway, focal adhesion and
proteoglycans in cancer were all enriched in down-regulated
DEGs. Part of the pathways were related to some other diseases,

like Alzheimer disease (AD), Huntington disease (HD), and
Parkinson disease (PD) for up-regulated DEGs and dilated
cardiomyopathy (DCM) and hypertrophic cardiomyopathy
(HCM), were also enriched.

A Novel Risk Signature Was Constructed
Based on Five Key m6A RNA Methylation
Regulators for Prognosis Prediction of
Prostate Cancer
As we had figured out the important effect of RNA methylation
regulators on the development of PC, we longed to unearth the
prognosis value of them in PC. As PPI based on universal data
alone could not fully reflect the clinicopathological characteristics
of PC patients, we combined the prognosis and transcriptome
data of PC patients to screen the critical genes that affect the
prognosis of PC patients.

In the first place, univariate Cox regression was performed
based on the RNA-Seq data of 25 differentially expressed
m6A methylation regulators from TCGA-PRAD dataset
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FIGURE 4 | Differential characteristics of total transcriptomic profile in TCGA-PRAD tumorous cohort between clusters. (A) Kaplan–Meier overall survival (OS) curves
for patients in distinct clusters (p = 0.162). (B) Kaplan–Meier disease-free survival (OS) curves for patients in distinct clusters (p < 0.001). (C,D) Gene Ontology (GO)
analysis of differentially expressed genes (DEGs) between clusters. Left, up-regulated DEGs; right, down-regulated DEGs. BP, biological process; CC, cellular
component; MF, molecular function. (E,F) Kyoto Encyclopedia Genes and Genomes (KEGG) analysis of DEGs between clusters. Left, up-regulated DEGs; right,
down-regulated DEGs.

to appraise the efficacy of prognosis value of individual
regulators. As a result, nine of 25 regulators significantly
correlated to DFS with p < 0.05, including RBM15B, TRMT112,

HNRNPA2B1, HNRNPC, CPSF6, RBMX, METTL3, YTHDF1,
and NXF1 (Figure 5A). All nine regulators above were
risk factors with HR > 1. Then LASSO Cox regression
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FIGURE 5 | Identification of five critical m6A regulatory genes. (A) Forest plot of univariate Cox regression analysis for differentially expressed m6A regulatory genes.
(B–D) The last absolute shrinkage and selection operator (LASSO) Cox regression for m6A regulatory genes that meet the criteria of p < 0.05 in univariate Cox
regression analysis. (E) Relative mRNA expression of selected m6A regulatory genes measured by qRT-PCR assays.

analysis for those nine regulators was performed to make up a
comprehensive and effective risk signature for prognosis (see
Figure 5B,C). Five critical genes stuck out were HNRNPA2B1,

NXF1, RBMX, YTHDF1, and TRMT112 (Figure 5D).
Then the weighed summation of gene expression levels of
constituent biomarkers, i.e., risk score, for tumorous samples
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were calculated based on the coefficients determined by
LASSO Cox regression.

Risk Score Based on Five Critical Genes
Well Predicted the Prognosis of Prostate
Cancer and Associated With Multiple
Clinicopathological Features
Consequently, the PRAD patients from TCGA were divided
into a higher and lower half according to the risk score for
further assessment. The result of survival analysis illustrated

that the high-risk group had worse survival status (disease-free
vs. recurred/progressed) in comparison with the low-risk group
(p < 0.001, Figure 6A). A time-dependent ROC curve illustrated
the true positive rate versus false positive rate of the prediction
with AUC of 0.716 (Figure 6B), suggesting good prediction
performance. The risk plot also depicted a reliable prognostic
value of risk score (Figures 6C,D).

Finally, we explored the connection of risk scores,
clinicopathological features and expression levels of critical
genes. The heatmap suggested that patients in the high-risk
group harbored a significantly higher Gleason score, N stage

FIGURE 6 | The efficacy of novel risk signature consisted of five m6A regulatory genes. (A) Kaplan–Meier disease-free survival (DFS) curves for patients with higher
and lower risk score (p < 0.001). (B) Receiver operating characteristic (ROC) curve for patients with higher and lower risk score (p < 0.001, AUC = 0.716). (C,D)
Risk plots for patients with higher and lower risk score.
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and AJCC clinical stage (Figure 7A). Afterward, univariate
and multivariate analyses were performed for confirmation of
an independent prognostic indicator. According to univariate
Cox regression, AJCC stage, T stage, N stage, Gleason score,
and prostate-specific antigen (PSA) and risk score were
significantly associated with DFS (Figure 7B). Multivariate Cox
regression confirmed the T stage, Gleason score and risk score as
independent prognostic indicators (Figure 7D). Moreover, the
risk score inclined with older age and higher clinicopathological
stage, including AJCC clinical stage, T stage, N stage, G stage,
and Gleason Score (Figures 7D–I). From the above findings we
concluded that the novel prognostic signature integrated by five
critical m6A RNA methylation regulators could independently
predict the prognosis of PC.

DISCUSSION

Prostate cancer is a disease with leading new cases and
secondary new deaths among men with cancer. Although PC
has a better prognosis compared with many other types of

cancers, the negative impact of recurrence, progression, and
metastasis on human life span and quality of life should
not be underestimated. At present, the major treatment
methods for PC are surgery, endocrine therapy, chemotherapy,
radiation therapy, cryotherapy, and immunotherapy. In terms
of drug therapy, anti-androgen drugs and castration drugs are
the mainstreams. However, castration-resistant prostate cancer
(CRPC) caused by long-term use of drug is calling for new
therapeutic targets.

Previous studies have shown that m6A RNA methylation, the
most frequent modification in RNA, closely relates to many types
of cancers (Ortega et al., 2003; Casalegno-Garduno et al., 2010;
Linnebacher et al., 2010; Kaklamani et al., 2011; Pierce et al.,
2011; Heiliger et al., 2012; Jin et al., 2012; Machiela et al., 2012;
Akilzhanova et al., 2013; Lin et al., 2013; Long et al., 2013; Reddy
et al., 2013; Hesser et al., 2018; Tan and Gao, 2018), but its roles
in the occurrence and development of PC have not been fully
explained. Nowadays, research on the roles of individual genes
in tumorigenesis via mediating m6A methylation is in full swing.
METTL3 promotes development, progression and metastasis
of PRAD through regulating MYC methylation, hedgehog

FIGURE 7 | Clinicopathological characteristics of novel risk signature constituted of five m6A regulatory genes. (A) The heatmap of five constituent genes of risk
signature along with clinicopathological characteristics. (B,C) Univariate and multivariate Cox regression analyses of risk score along with clinicopathological
characteristics. (C–H) The distribution of risk score in different clinicopathological characteristics. (I–N) Receiver operating characteristic (ROC) curve for patients
with different clinicopathological characteristics.
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pathway, and Wnt pathway (Cai et al., 2019; Ma et al., 2020;
Yuan et al., 2020) and enhances bone metastasis through m6A-
HuR-dependent mechanism (Li et al., 2020). VIRMA sustains
invasiveness of PC cell through regulating oncogenic lncRNAs
(Barros-Silva et al., 2020). YTHDF2 promotes the proliferation
and migration of PC that is suppressed by miR-493-3p (Li et al.,
2018). However, we cannot ignore the holistic study of m6A RNA
modification regulators, which is a virgin territory in PC. On
this paper, we studied genes, including some crucial factors, that
played major roles in m6A methylation modification for guidance
of future research directions.

First, we selected 35 important m6A-related genes from
literatures, finding their significant genetic alterations. Next,
we conducted an analysis on TCGA transcription profiles,
obtaining 24 DEGs between PC tissue and para-cancer tissue.
Afterward, consensus clustering based on their expression levels
was conducted to divide the TCGA-PRAD cohort into two
clusters. Through PCA and survival analysis, we confirmed
the significant discrimination between groups. In addition,
GO analysis illustrated the function of DEGs between two
clusters: for up-regulated DEGs the enrichment of pathways
involved in gene transcription, mRNA translation, and protein
translocation, in accordance with the higher activity of m6A RNA
methylation regulators; for down-regulated DEGs the function
involved in muscle contraction-related genes, making prostate
smooth muscle cells alter their normal contraction and induce
the malignant tendency which provided a new direction for
further research. KEGG analysis provided us with even more
interesting results: up-regulated DEGs may inextricably linked to
many other diseases, including many neurodegenerative diseases,
human papillomavirus (HPV) infection, non-alcoholic fatty liver
disease (NAFLD); down-regulated DEGs not only affected some
classic cancer-related biological processes, such as PI3K-Akt
pathway and focal adhesion, but may also participate in the
onset of cardiomyopathy. According to the literatures, AD and
PC shared genetic etiology via gene expression regulators (Feng
et al., 2017), but the answer as to whether a patient harboring
AD is a protective factor of PC was controversial (Roe et al.,
2005; Ou et al., 2013; Lee et al., 2018; Lin et al., 2018). Many
researchers stated that HD or PD patients were less likely to
develop PC than healthy people (Jespersen et al., 2016; McNulty
et al., 2018). As regards HPV infection, it is recognized as
the cause of many cancers, including cervical cancer and anal
cancer. Although there stands much evidence to support it as
a risk factor of PC, no unified conclusion has been reached
yet (Whitaker et al., 2013; Singh et al., 2015; Yang et al., 2015;
Moghoofei et al., 2019). Regarding NAFLD, some literatures
consider it as a protective factor for PC biochemical recurrence
(Choi et al., 2014), but a large sample epidemiological study
declared it as a risk factor of PC (Choi et al., 2018). The results
above were hints for further exploration of function alteration
and linked diseases of PC.

Subsequently, through univariate single Cox regression
analysis on 24 DEGs, we obtained nine genes that were
significantly associated with survival time. Later, LASSO Cox
regression analysis selected five critical genes and constructed
an integrated risk score for prognosis prediction of PC

patients. All these genes above were confirmed up-regulated
in cancer compared to para-cancer by qRT-PCR assays
(Figure 5E). Survival analysis, ROC curve, univariate and
multivariate Cox regression analyses illustrated that it is a
reliable independent prognostic indicator of PC and had a
significant relationship with many clinicopathological features.
With the promotion of clinical grade and Gleason score, the risk
score increased, which not only suggested that the expression
of critical genes may promote tumor progression, but also
proved the importance of the risk score in predicting the
prognosis of PC. At present, most cancer risk scores were
based on clinicopathological characteristics, including clinical
symptoms, pathology, histology, key bioproteins and metabolites.
Also, many studies were exploring the utility of genomics
for risk prediction, such as polygenic risk score. However,
the role of transcripts, a messenger connecting genes and
biomacromolecules, should not be ignored, and risk scores based
on them are potentially applicable.

Finally, we aimed to discuss and predict the mechanism by
which these critical genes affect the occurrence, development, and
prognosis of PC.

HNRNPA2B1, also known as HNR(N)PA2 and HNR(N)PB1,
is an RNA binding protein and complex with heterogeneous
nuclear RNA (hnRNA). HNRNPA2B1 mostly binds a set of
mRNAs in nuclear and elicits alternative splicing effects but it
also works in part on primary microRNA (Alarcon et al., 2015).
HNRNPA2B1 took part in many biological processes, such as cell
survival regulation, cell cycle alteration, telomere maintenance,
metastasis regulation, and cellular energetics regulation, and
acted as a prognostic biomarker in multiple cancers including
lung cancer, pancreas cancer, and hepatocellular cancer (Chen
et al., 2017; Dai et al., 2017; Roy et al., 2017; Yu et al., 2018).
HNRNPA2B1 also highly expressed in CRPC and associated
with tumor progression and prognosis (Cheng et al., 2020).
Through quantitative proteomic mass spectrometry profiling,
HNRNPA2B1 was likely involved in TGF-β induced-EMT
transition of PC (Singh and Sharma, 2020).

NXF1 matters in interaction between two m6A readers,
YTHDC1 and SRSF3, for mRNA export promotion (Roundtree
et al., 2017b). Pitifully, the link between NXF1 and any cancer
has not been established.

HNRNPG, also known as RBMX, is an m6A reader that
preferentially binds non-coding RNAs and also binds m6A on
mRNAs for their splicing (Zhou et al., 2019). Literatures exist
showing that RBMX predicted prognosis in patients with head
and neck cancer (Guo et al., 2020) and regulated apoptosis in
breast cancer (Martinez-Arribas et al., 2006). The function of
RBMX in PC remains unknown.

YTHDF1 is a cytosolic m6A reader that preferentially binds
m6A sites in mRNAs and promotes translation of a subset of
m6A-containing mRNA (Shi et al., 2018; Zhuang et al., 2019).
YTHDF1 served as a prognostic factor in ovarian cancer (Liu
et al., 2020), hepatocellular carcinoma (Zhao et al., 2018), lung
cancer (Shi Y. et al., 2019), etc. In terms of the function,
YTHDF1 regulated tumorigenicity and cancer stem-cell-like
activity in colorectal carcinoma (Bai et al., 2019), promoted
hypoxia adaption in lung cancer (Shi Y. et al., 2019), promoted
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ovarian cancer progression, and facilitates oral squamous cell
carcinoma tumorigenesis (Zhao et al., 2020). However, the role
of YTHDF1 in PC still needs to be clarified.

TRMT112 is a methyltransferase activator which stablishes
a key enzyme responsible for 18S rRNA m6A modification
named METTL5 (van Tran et al., 2019). Together with
C21orf127, TRMT112 acutely affected the proliferation of
androgen receptor-dependent, as well as that of castration-
and enzalutamide-resistant PC cells and xenograft tumors
(Metzger et al., 2019).

In summary, our results systematically demonstrate the
expression, potential function, and prognostic value of m6A
RNA methylation regulators in PC. The expression of m6A
RNA methylation regulator is highly correlated with the
malignant clinicopathological features of PC. Our research
provides important evidence for further testing the role of m6A
methylation in PC.
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