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A B S T R A C T   

Humans’ great and quick technological breakthroughs in the previous decade have undoubtedly influenced how surgical procedures are executed in the operating 
room. AI is becoming incredibly influential for surgical decision-making to help surgeons make better projections about the implications of surgical operations by 
considering different sources of data such as patient health conditions, disease natural history, patient values, and finance. Although the application of artificial 
intelligence in healthcare settings is rapidly increasing, its mainstream application in clinical practice remains limited. The use of machine learning algorithms in 
thoracic surgery is extensive, including different clinical stages. By leveraging techniques such as machine learning, computer vision, and robotics, AI may play a key 
role in diagnostic augmentation, operative management, pre-and post-surgical patient management, and upholding safety standards. AI, particularly in complex 
surgical procedures such as cardiothoracic surgery, may be a significant help to surgeons in executing more intricate surgeries with greater success, fewer com-
plications, and ensuring patient safety, while also providing resources for robust research and better dissemination of knowledge. In this paper, we present an 
overview of AI applications in thoracic surgery and its related components, including contemporary projects and technology that use AI in cardiothoracic surgery and 
general care. We also discussed the future of AI and how high-tech operating rooms will use human-machine collaboration to improve performance and patient 
safety, as well as its future directions and limitations. It is vital for the surgeons to keep themselves acquainted with the latest technological advancement in AI order 
to grasp this technology and easily integrate it into clinical practice when it becomes accessible. This review is a great addition to literature, keeping practicing and 
aspiring surgeons up to date on the most recent advances in AI and cardiothoracic surgery.   

1. Artificial intelligence in surgery 

Artificial intelligence (AI) can be defined as the study of algorithms 
that give an ability to reason to a machine and help it to perform 
cognitive tasks such as problem solving, decision-making, and word 
recognition [1]. With the blooming of the technological revolution, AI 
has become the centerpiece of both popular and academic literature. 
Today where data is key and technology is a major revolutionizing force, 
there is a shift in productivity like that of the industrial revolution [2]. 
Surgery stands to benefit from this technological growth as well, with a 
promising future for AI in surgery. There are four core subfields of AI in 
surgery namely machine-learning, natural language processing, artifi-
cial neural networks, and computer vision [1]. Machine-learning may 
seem very non-intuitive to the reader at first, as we are accustomed to 
human learning and machines being operators under human command. 
Machine learning (ML) basically recognizes patterns in enormous 

amount of data that may be imperceptible to the human mind, labels the 
data, and makes accurate predictions [3]. The role ML plays in surgery is 
evident from its ability to accurately predict surgical site infections and 
predict lung cancer staging, outperforming approaches based on clinical 
guidelines to unprecedented levels thought to be unattainable with 
conventional statistics [4,5]. Natural language processing (NLP) is a 
subfield of AI that emphasizes the computer’s ability to not only un-
derstand human language but also infer meaning and sentiments from 
unstructured data [6]. In surgical patients, NLP has been able to detect 
phrases in operative reports that predicted anastomotic leaks after 
colorectal resection surgeries with sensitivities of 100% [7]. For 
example, ANN (sensitivity 89% and specificity 96%) have outperformed 
traditional risk prediction approaches like APACHE II (sensitivity 80% 
and specificity 85%) for pancreatitis severity 6 h after admission [8]. 
Computer vision describes the machine’s ability to understand images 
and videos and has achieved capabilities comparable to human-level 
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understanding in areas such as object and scene recognition [9]. For 
example, a real time analysis of a laparoscopic video of sleeve gastrec-
tomy has noted missing or unexpected steps to 92.8% accuracy [10]. 

2. Role of AI in diagnostic augmentation 

A sub-field of AI called ML can aid in diagnosis, augment surgical 
performance in the operating room (OR), and skill assessment. There are 
mainly two imaging-based applications of ML to thoracic surgery: 
automatic diagnosis of cardiovascular pathology and detection of pat-
terns in imaging to detect thoracic pathologies like the classic chest X- 
ray example proposed by Wang et al. They used a chest x-ray database of 
108,948 frontal view x-ray images from 32,717 unique patients and 
found out that it was able to distinctively diagnose 8 different pathol-
ogies [11]. Kusunose et al. investigated whether deep convolutional 
neural networks (DCNN) could detect regional wall motion abnormal-
ities on echocardiography and achieved an area under the receiver 
operating characteristic (AUROC) of 0.99, outperforming physicians at 
the same task [12]. There are numerous applications of convolutional 
neural networks (CNN) to thoracic surgery, like detecting aortic diam-
eter and volumetric analysis of the left ventricle to assess cardiac func-
tion. Image segmentation plays a pivotal role in assessing the anatomy of 
moving organs such as the heart and blood vessels by assigning a class 
label to image voxels so that they can be quantified. Bai W et al. [13] 
proposed an image sequence segmentation algorithm by combining a 
fully convolutional network with a recurrent neural network. Experi-
ments of aortic magnetic resonance imaging studies demonstrated that 
the proposed method significantly improved accuracy and temporal 
smoothness, compared to a baseline method that only used spatial in-
formation. Another example where a video-based deep learning algo-
rithm surpassed human expert performance is the EchoNet-Dynamic 
algorithm. Human assessment of cardiac function is associated with 
limited sampling of cardiac cycles and shows a lot of variability between 
observers but the EchoNet-Dynamic algorithm reported in a study by 
Ouyang et al. [14] surpassed human performance in assessing for car-
diomyopathy and estimation of ejection fraction [14,15]. These studies 
show how useful AI can be for a thoracic surgeon’s practice in trans-
lating to better patient care. Although the tasks of a thoracic surgeon in 
the OR are highly extensive and making an ML robot that can perform all 
the actions of a surgeon may be impossible, however, a study by Tha-
nanjeyan et al. shows that reinforcement learning (RL) powered robots 
can perform minor surgical tasks like simple suturing and highly precise 
surgical incisions [15]. Wijnberge et al. report in a recent randomized 
controlled trial that ML can detect the intra-operative incidence of hy-
potension in elective non-cardiac surgery, decreasing the median 
duration of hypotension from 32.7 min to just 8 min, that is a huge 
difference [16]. 

3. Human-machine teaming and computer vision in 
cardiothoracic surgery 

Computer vision (CV) is a subdiscipline of AI engineering involved 
with the study of giving eyes to machines [17]. Computer vision is a 
promising AI method that can be used to monitor team dynamics in the 
OR [18]. Hao Xu et al. recently published a study focusing on the CV 
analysis of blood stains during thoracoscopic operations. They report 
that one of the major accidents that occur during thoracoscopic opera-
tions is massive bleeding accidents. These accidents lead to increased 
chances of mortality and prolonged hospital stays [19]. High throughput 
CV algorithms that could process many thoracic surgical videos were 
developed. They found a correlation between CV based-proportion of 
blood pixels (PBP) and bleeding volume by training the CV algorithm 
with thousands of pixels of either blood or non-blood that were selected 
randomly and labelled manually. PBP was only computed for some key 
reference frames but the CV algorithm could detect bleeding volume of 
whole surgery by just comparing frames from the surgery video with the 

reference frames of bleeding taught to the algorithm during its training. 
PBP can help guide postoperative fluid management, anticoagulation 
strategies, as high PBP values suggest a reduction in anticoagulation and 
vice versa, and selection of appropriate drainage tubes [19]. Cardio-
thoracic surgery requires top-notch technical (tying knots, suturing, and 
putting clamps) and non-technical skills like teamwork, communication, 
and awareness of the surrounding situation. In such conditions, Avrunin 
et al. [20] developed Smart checklists. These checklists can help the 
cardiothoracic surgical team, including surgical, anesthesiology, perfu-
sion, and nursing staff. [20] Smart checklists reduce cognitive load and 
subsequent procedural errors by reminding the team about the next step 
in the procedure and by alerting the other team members not to disturb 
or increase cognitive load on specific members of the team during some 
high cognitive load scenarios [20]. Communication, coordination, and 
adaptation are qualities that are critical to human-machine teaming, but 
machines have not yet fully realized the unique human cognition for 
effective teaming. The rapid technological advancements in the recent 
era, especially in the field of AI, have offered new capabilities to ma-
chines to maximize their competencies in this regard [21]. According to 
Seeber et al. [22] rapid technological advancements have enabled ma-
chines to acquire transportable teamwork competencies that are critical 
to teams. For example, machines may leverage a theory of mind 
reasoning to build a computerized model of their teammates. Using this 
model, the machine can know what information is available to team-
mates and what would be the subsequent action of their human team-
mates, creating better coordination with the human counterparts in a 
team. This model will also be able to determine when and how best to 
communicate with teammates, further enhancing ability and trust in 
machines [21–24]. Current AI research focuses on specific objectives to 
be achieved by machines and doesn’t incorporate many findings from 
teaming and human-computer interface literature. For Example, Open 
AI Five is a five neural network model developed to beat top five human 
champions in a game, although neural network models performed best 
when not paired with other machines, they performed worst when 
partnered with humans. Examining such phenomenon Carroll M et al. 
found out that the main limiting factor for such behavior of the neural 
networks was initial machine training in conjunction with other ma-
chines [24]. 

4. Role of AI in preoperative performance and safety in 
cardiothoracic surgery 

Chang Junior J et al. studied the role of artificial intelligence and 
reported that the sheer number of cardiac surgical interventions avail-
able for congenital cardiac diseases and the low volume of patients 
compared with adults make it hard to collect large amounts of data 
regarding pre-operative safety and efficacy for a single procedure [25]. 
The random forest model of artificial intelligence can learn from large 
pools of data and accurately predict individual death risks in patients 
with congenital heart disease. The findings of this model can assist pa-
tients, surgeons, and family members of patients in understanding the 
risks associated with a cardiac surgical intervention [25]. With the 
advent and integration of AI into clinical care, the traditional systems 
are replaced with more efficient and more accurate systems. Using deep 
and machine learning, AI helps in the pre-operative automation of 
clerical processes, provides assistance in how patients can be triaged and 
gives risk predictions during the COVID-19 pandemic where resources 
were already scarce, and cardiac surgery patients were facing delays in 
delivery of care [26]. Using machine learning techniques, Yoon et al. 
devised a new personalized method for prediction of risk both pre- and 
post-cardiac transplantation. The method is used to classify the hetero-
geneous cohort of patients and their interactions with each other across 
different zones of time. The method is so robust that it outperforms the 
best clinical scores and machine learning methods currently available. 
The same method can be applied to other fields of medicine and surgery 
[27]. Pre-operatively, Kwon et al. used the deep learning approach in AI 
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for predicting the mortality of acute heart failure by an algorithm known 
as deep-learning-based artificial intelligence algorithm for predicting 
mortality of patients with acute heart failure (DAHF). The deep learning 
algorithm was so efficient and reliably accurate that it could predict the 
one-year and three-year mortality of acute heart failure patients more 
accurately than the existing scores and machine learning methods [28]. 
A study by Kilic et al. revealed that there is an increase in the use of 
durable left ventricular assist devices (LVAD) being implanted in the 
United States but there was no widely used risk stratification tool for 
LVAD therapy. By utilizing the Interagency Registry for Mechanically 
Assisted Circulatory Support (INTERMACS) database they studied the 
90-day and 1-year mortality rates following primary LVAD implantation 
using both logistic regression and machine learning approaches and 
found that machine learning models were both well-calibrated and had 
improved discriminatory capability as compared to logistic regression 
[29]. Wang et al. developed and validated a machine learning method 
that can predict the amount of red blood cell transfusions required for a 
cardiothoracic surgery and showed excellent results [30]. Artificial in-
telligence and virtual reality can give a 3- dimensional view of whole 
pulmonary anatomy with its intricate parts to the cardiothoracic sur-
geon to preoperatively get a better insight into the individual patient’s 
anatomy [31]. 

5. Role of artificial intelligence in intra operative performance 
and safety in cardiac/cardiothoracic surgery 

Humans have made impeccable technological advancements in the 
past decades, and these advancements have also had an impact on the 
contemporary OR with artificial intelligence being at the forefront of 
these technological achievements. Artificial intelligence benefits the 
surgical team as an augmentation to the normal human cognition in the 
OR by processing complex computations to provide a meaningful result 
that helps the surgical team and the patient. Artificial intelligence is 
used to monitor and assess team as well as individual performance 
throughout the surgery which can help guide better patient outcomes by 
addressing the underlying areas of improvement specified by the arti-
ficial intelligence system [32]. Goldenberg et al. showed that tradi-
tionally, operative quality was assessed by retrospectively reviewing 
patient medical records, which were inundated with biases like recall 
bias and non-compliance on the part of the patient. Artificial intelligence 
allows for a highly sensitive prospective intraoperative approach called 
the OR black box system, which focuses from major points to the 
minutiae by collecting and integrating data regarding events that may 
cause patient harm at a magnitude not feasibly possible by a human 
[33]. Azari et al. used computer vision to assess individual task perfor-
mance during an ongoing surgical operation. The computer vision 
analysis assessed surgeon techniques more reliably and objectively than 
the individual assessments made by surgical experts [34].Artificial in-
telligence can accurately predict the risk of hypoxemia during cardiac 
surgery. Lundberg SM et al. revealed that machine learning can predict 
the future risk of intraoperative hypoxemia and provide an explanation 
of the risk factors to an accurate level consistent with literature. Artifi-
cial intelligence can amplify the current anesthesiologist’s prediction of 
hypoxemia during surgery by 15%–30%; an almost double when pre-
dicting events of hypoxemia [35]. Ali et al. shows in their study that 
surgeons often either underestimate or overestimate the time required 
for a surgery, leading to either underutilization of the financial and 
human resources in the operating room or over-burdening of the re-
sources when time required for a surgery is over-estimated. Artificial 
intelligence can bridge this gap by accurately predicting surgery dura-
tion leading to positive outcomes in the form of proper and commen-
surate resource utilization [36]. Even now, there is an absence of 
real-time intraoperative imaging techniques for the right ventricle dur-
ing cardiac surgery. Muzio L et al. used an AI-based video kinematic 
evaluation technique for the right ventricle during surgeries for tetral-
ogy of Fallot cases, using a supervised machine learning model to predict 

the outcome of the intervention and its success upon chest closure [37]. 

6. Role of AI in post-operative management 

Using personalized risk factor assessment is a future trend in preci-
sion medicine and using the help of AI, especially supervised machine 
learning can give us a feasible solution to it. Individualized risk assess-
ment by AI models can help us if the results are accurate, predictive, and 
consistently reproducible each time the assessment is performed. Chang 
et al. used the Naïve Bayes (NB) - algorithm assisted prediction system to 
assess the need of patients for high concentration oxygenation, ICU care 
and the risk of inability to wean-off the ventilator immediately following 
lung resection surgery with remarkable results of 100% of the patients 
agreeing that digitalization improved their understanding of the needs 
and the risks predicted by the NB-algorithm assisted prediction system 
[38]. Tseng et al. developed and validated machine learning models for 
94 pre- and intraoperative features to predict cardiac surgery-associated 
acute kidney injury (CSA-AKI), which occurs in approximately 22% of 
cardiac surgery cases. Previous studies and risk scores used categorical 
division of parameters pertaining to the risk which failed to preserve 
variability in continuous data. The machine learning method to deter-
mine the risk of CSA-AKI was successful and the study also demonstrated 
that intraoperative time-series and other features are important for 
acute kidney injury prediction [39]. Fernandes et al. used machine 
learning methods and also added cardiopulmonary bypass-specific 
intraoperative hypotension (CBP-specific IOH) as a parameter to the 
preoperative score leading to results that machine learning methods that 
incorporated the CBP-specific IOH to demonstrate great predictive 
ability of post-surgical mortality [40]. Mufti et al. studied different 
machine learning methods to develop models that could predict the 
occurrence of delirium after cardiac surgery and found that machine 
learning methods can help in revealing the hidden patterns in delirium 
causation and better predicting its occurrence [41]. 

7. Limitations, ethical issues and needs in future 

Although AI has shown highly encouraging results in all fields of 
patientcare, many issues need to be addressed before it can be used in 
the daily routine of a cardiothoracic surgeon. With the advent of AI, the 
privacy of patients’ data is a big concern [42]. Price et al. argue that 
overprotection with privacy can lead to a halting or braking in techno-
logical innovation, while on the other hand, allowing privacy to drive 
secrecy can lead to less trust in the technological achievements brought 
about by it [43]. He et al. argue that transparent and accurate input is 
required for the AI systems to generate accurate results. Another reason 
why transparency is related to functioning of the AI system is that if 
patient care providers can accurately work out how a machine came to a 
conclusion, this is a way in which it can be tested whether the reasoning 
is sound. Opaque AI systems do work based on algorithms, but there is 
no way a patient care provider can know how a system came to such a 
conclusion. This makes it harder to test for the soundness of its reasoning 
and integration of a particular a technology into the patient care [44]. 
Perhaps the biggest shortcoming of ML lies in its lack of interpretability 
of the produced outcomes. Normal regression techniques can be tested 
and relationships can be seen such that increasing or decreasing input 
feature x affects the output feature y in different ways, but AI uncovers 
non-linear and highly complex associations in and between datasets at a 
scale so humongous, that it’s hard for the human brain to compute. 
Hence the way AI finds these associations is also a mystery to care 
providers [45]. 

8. Conclusion 

Recent technological advances and diligent research have resulted in 
intelligent technology by the development of innovative computer al-
gorithms and the augmentation of the application of human cognitive 
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models for AI. AI technologies are becoming increasingly useful and are 
being integrated into multidisciplinary health-care models, such as 
perioperative medicine, smart operating theatres, robotic interventions, 
intraoperative management, maintaining patient safety, identifying risk 
factors, and postoperative rehabilitation. There is promising future of AI 
that can open a new world for cardiothoracic surgery, however there are 
certain barriers to mass-implementation of these novel technologies. 
The transparency of patients’ data, establishment of secure algorithms, 
human trials, and ethical concerns regarding involvement of extensive 
machinery in complex surgeries can limit the growth of this remarkable 
technology. It is critical for practicing surgeons and aspiring surgeons to 
stay current on technology advancements in order to better comprehend 
them and integrate them into clinical practice for improved outcomes 
and advancement of specialty. 
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