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Abstract 

Background: Accumulating evidence shows that physical exercise has a positive effect on the release of neuro-
trophic factors and myokines. However, evidence regarding the optimal type of physical exercise for these release is 
still lacking. The aim of this study was to assess the acute and chronic effects of open-skill exercise (OSE) compared to 
closed-skill exercise (CSE) on serum and plasma levels of brain derived neurotrophic factor  (BDNFS,  BDNFP), and serum 
levels of insulin like growth factor 1 (IGF-1), and interleukin 6 (IL-6) in healthy older adults.

Methods: To investigate acute effects, thirty-eight participants were randomly assigned to either an interven-
tion (badminton (aOSE) and bicycling (aCSE), n  = 24, 65.83 ± 5.98 years) or control group (reading (CG), n  = 14, 
67.07 ± 2.37 years). Blood samples were taken immediately before and 5 min after each condition. During each 
condition, heart rate was monitored. The mean heart rate of aOSE and aCSE were equivalent (65 ± 5% of heart rate 
reserve). In a subsequent 12-week training-intervention, twenty-two participants were randomly assigned to either a 
sport-games (cOSE, n  = 6, 64.50 ± 6.32) or a strength-endurance training (cCSE, n  = 9, 64.89 ± 3.51) group to assess 
for chronic effects. Training intensity for both groups was adjusted to a subjective perceived exertion using the CR-10 
scale (value 7). Blood samples were taken within one day after the training-intervention.

Results: BDNFS,  BDNFP, IGF-1, and IL-6 levels increased after a single exercise session of 30 min. After 12 weeks of 
training  BDNFS and IL-6 levels were elevated, whereas IGF-1 levels were reduced in both groups. However, only in the 
cOSE group these changes were significant. We could not find any significant differences between the exercise types.

Conclusion: Our results indicate that both exercise types are efficient to acutely increase  BDNFS,  BDNFP, IGF-1 and 
IL-6 serum levels in healthy older adults. Additionally, our results tend to support that OSE is more effective for improv-
ing basal  BDNFS levels after 12 weeks of training.
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factor 1 (IGF-1), Interleukin-6 (IL-6), Aging

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Aging is associated with changes in brain structure and 
function [1–4] and in turn, with an increased risk of 
developing cognitive impairments and neurodegenera-
tive diseases (e.g.,, dementia) [5–7]. In this context, it has 
been shown that physical exercise (defined as a specific, 
planned and structured form of physical activity, which 
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leads to acute (transient) effects [8–10]) and/or physi-
cal training (defined as repeated bouts of physical exer-
cise, which leads to chronic (long-term) effects [8, 10]) 
could be an appropriate approach to maintain or enhance 
physiological brain functions, thereby helping to prevent 
neurodegenerative diseases in the elderly population 
[11–19].

Although the exact underlying neurobiological mecha-
nisms are not yet fully understood, it is assumed that 
the beneficial effects of physical exercise and/or physi-
cal training on cognition are based on effects that can be 
observed at multiple levels (i.e., molecular and cellular 
changes, structural and functional changes, socioemo-
tional changes) [20–22]. At the molecular level, different 
neurotrophic factors and myokines like brain-derived 
neurotrophic factor (BDNF), insulin-like growth factor 1 
(IGF-1), and interleukin-6 (IL-6) are currently described 
as possible key factors that are up-regulated and released 
in response to acute physical exercise [23–29]. According 
to the “neurotrophic hypotheses” [30, 31], in long-term 
the exercise-related release of neurotrophic factors can 
promote functional and structural brain changes, that 
in turn might contribute to the maintenance or increase 
of cognitive functions [32, 33]. In this regard, it has been 
shown that BDNF promotes various processes of neu-
roplasticity, such as neurogenesis, neuronal differentia-
tion, synaptogenesis and neuronal protection [34–36]. 
Furthermore, BDNF is crucially involved in processes of 
synaptic plasticity like long-term potentiation through-
out the brain and thus regulates memory formation and 
learning processes [37–41]. Along these lines, higher 
serum levels of BDNF are positively associated with 
increased hippocampal volume in humans [42]. There is 
also evidence that an increase in IGF-1 improves neuro-
genesis [43–45], the maintenance and reshaping of brain 
vessels (angiogenesis), as well as the survival of neurons 
[46]. With regard to neurocognitive changes, IL-6 is 
involved in the homeostatic control of memory mecha-
nisms and neurophysiological processes in the brain 
[47] and stimulates the production of anti-inflammatory 
cytokines such as IL-1ra and IL-10 [48]. However, cur-
rent evidence suggests that the expression of neuropro-
teins and/or myokines (e.g.,, BDNF, IGF-1, IL-6) depends 
on exercise variables (e.g.,, exercise intensity, exercise 
duration, type of physical exercise) and/or training vari-
ables (e.g.,, frequency, density, duration) and training 
principles (e.g.,, progression, specificity, reversibility) [16, 
49–52].

With regard to the type of physical exercises, there 
exist various classification approaches in the literature. 
Exercise types can be classified based on the predict-
ability of the performing environment and the exercise 
complexity (motor and/or cognitive demands) [53, 54]. 

According to this differentiation, exercise types can be 
classified into (i) open skill exercise (OSE) and (ii) closed 
skill exercise (CSE). OSE (e.g., badminton, table tennis) 
are performed in dynamic, externally-paced, and more 
unpredictable environments, while CSE (e.g., running, 
bicycling) includes relatively consistent, self-adjustable 
and more predictable environments [50]. A recent review 
by Gu et  al. [50] that compared the effects of OSE ver-
sus CSE on cognitive functions, showed that OSE led 
to greater improvements in cognitive functions in both 
children and older adults. However, the majority of the 
studies in this review were observational studies. So it is 
not clear whether OSE is more beneficial to brain health 
than CSE or whether people with better status of cogni-
tive functions prefer this type of exercise. These results 
are confirmed by the meta-analysis of Zhu et  al. [55]. 
The authors show that, compared with CSE, OSE is more 
advantageous in improving cognitive functions, espe-
cially with respect to executive functions such as inhibi-
tion and cognitive flexibility. However, only 4 out of 19 
studies included in this meta-analysis were intervention 
studies. Excluding the cross-sectional studies, no signifi-
cant differences could be found between the two exercise 
types [55]. In this context, Hung et  al. [56] investigated 
the acute effect of OSE and CSE on the BDNF concentra-
tion in the blood of young males. The results of this study 
showed that OSE (badminton) leads to a stronger BDNF 
release than CSE (running). However, the observed acute 
effects found in the study of Hung et  al. [56] cannot be 
transferred to chronic effects or other cohorts, e.g., older 
people.

To further investigate the acute and chronic effects 
of OSE versus CSE on the release of neurotrophic pro-
teins and myokines, we compared the exercise and train-
ing related changes in blood levels of BDNF, IGF-1 and 
IL-6 in response to the two different types of exercise in 
healthy older adults.

Methods
Study design
The present study consisted of two investigations with 
different study designs (see Figs.  1, 2) to determine the 
(i) acute effects (after a single exercise session) and (ii) 
chronic effects (after a training period consisting of sev-
eral acute exercise sessions) of two different exercise 
types (OSE vs. CSE) on the blood levels of BDNF (plasma 
and serum), IGF-1, and IL-6. To assess acute exercise-
related effects, we used a 3 group  × 2 time points (pre 
and post exercise) cross-over design. Following the first 
investigation, a 12 week-long training intervention study 
with a 2 group  × 2 time (pre and post training interven-
tion) parallel group design was conducted between April 
and June 2019 to determine the chronic effects. The 
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group allocation in both groups was randomized. Due to 
the nature of physical exercise interventions, it was not 
possible to blind the participants and the trainers. Out-
come assessors including the medical doctor who took 
the blood samples and the laboratorian who analysed the 
blood samples for BDNF, IGF-1 and IL-6 concentration 
were blinded because they had no knowledge of the sub-
jects’ group allocation. The study is in accordance with 

the principles stated in the declaration of Helsinki and 
was reviewed and approved by the board of the ethical 
committee of the Otto-von-Guericke University Magde-
burg (29/19).

To investigate acute effects three separate appoint-
ments were carried out. At the first appointment, the 
participants were informed about the aim, purpose and 
procedure of the study and gave their written informed 

Fig. 1 Study design for the first investigation (acute effects)
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consent for voluntary participation. After consent was 
obtained, body height and body mass were measured 
using a standard stadiometer (Seca, Switzerland). There-
after, the participants’ physical activity and mental sta-
tus were determined using the German questionnaire 
“Freiburger Fragebogen zur körperlichen Aktivität” 
(FFkA) [57] and the Mini-Mental State Examination 
(MMSE) [58], respectively. The FFkA determined the 
health related activity including basic activity, extracur-
ricular activity and activity in sports retrospective for 
1 week (in hours per week). Following this, participants 

lay down in a quiet room for 15 min while the heart rate 
was measured using a heart rate monitor (RS800cx, Polar, 
Finland). The resting heart rate was defined as the mean 
value of the last 5 min. Participants were then randomly 
assigned in either an intervention group or a control 
group. After screening, participants from the interven-
tion group individually attended to the laboratory for 
two exercise sessions (OSE and CSE session) with a 7-day 
interval between sessions. The order in which the partici-
pants either performed the OSE or the CSE session was 
randomized and counterbalanced. The control group 

Fig. 2 Study design for the second investigation (chronic effects)
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visited the laboratory for only one additional measure-
ment appointment. Thus, the first investigation (assess-
ing the acute effects) consists of three groups: (i) acute 
OSE (aOSE), (ii) acute CSE (aCSE) and (iii) control group 
(CG). After the first investigation had been completed, 
we conducted a 12-week training intervention to com-
pare the chronic effects of OSE versus CSE. There were 
at least 8 days between the last acute exercise session of 
the first investigation and the first training session of the 
second investigation. Therefore, we designed two active 
groups: (i) chronic OSE (cOSE) and (ii) chronic CSE 
(cCSE) without an inactive control group.

Participants
Forty healthy elderly volunteers aged 55–75  years were 
recruited by a newsletter announcement and screened 
for their eligibility to participate. Exclusion criteria were 
defined as follows: participating in any regular exer-
cise program, cognitive impairments as detected by the 
MMSE, any history of several cardiovascular or meta-
bolic diseases, and reduced and uncorrected vision. 
Thirty-nine participants met the inclusion criteria and 
were included in our study.

Regarding the first investigation assessing the acute 
effects of a single exercise session, 25 of the remaining 
participants were assigned to the intervention group and 
14 participants were assigned to the control group. One 
participant from the intervention group left the study due 
to time constrains. Finally, data sets of 38 participants 
(24 from the intervention group and 14 from the control 
group) were analysed (see Fig. 1). The participants’ char-
acteristics of both groups are presented in Table 1.

Following the first investigation, 22 participants from 
the intervention group and the control group voluntar-
ily agreed to participate in the long-term intervention 
study to assess chronical effects. Participants were ran-
domly allocated to either the cCSE group or the cOSE 
group. After 12 weeks of training, we were able to evalu-
ate the data of 15 participants (6 from the cOSE group 
and 9 from the cCSE group). Seven participants had to be 
excluded due to injuries (cOSE group: n  = 1) and insuf-
ficient attendance rates (cCSE group: n  = 4, cOSE group: 
n  = 2). The anthropometric characteristics (age, weight, 
height, and body mass index) of the remaining partici-
pants are depicted in Table 2.

Procedure
First investigation: acute effects
The procedure for the first investigation is depicted in 
Fig.  1. Participants from the intervention group were 
instructed to perform either a single/acute OSE ses-
sion (aOSE group, badminton) or a single/acute CSE 
session (aCSE group, bicycling) (i.e., participants who 

started with the OSE session as the first intervention 
performed the CSE session during the second measure-
ment appointment and vice versa). Both exercise ses-
sions consisted of an identical 5-min warm up, followed 
by 30 min of the main exercise (badminton or bicycling) 
and an identical 5-min cool down. During the exercise 

Table 1 Characteristics on the participants of the active 
intervention group (aOSE and aCSE) and the inactive control 
group (CG) at baseline

BMI body mass index; HR heart rate

Group N (female/male) Intervention 
Group 24 (12/12)

CG 14 (6/8)

Measure M (SD) M (SD)

Age (years) 65.83 (5.98) 67.07 (2.37)

 < 65 years [N (%)] 9 (37.5%) 2 (14.3%)

 ≥ 65 years [N (%)] 15 (62.5%) 12 (85.7%)

Weight (kg) 84.05 (16.51) 76.84 (12.69)

Height (m) 1.73 (0.10) 1.68 (0.08)

BMI (kg/m2) 28.08 (4.37) 27.24 (4.41)

kcal/week 2047.23 (1674.41) 2313.03 (2118.45)

Resting HR (bpm) 68.25 (9.50) 70.00 (9.00)

Educational achievement (N)

 Secondary education 7 (29.2%) 6 (42.9%)

 High school 5 (20.8%) 2 (14.3%)

 University 10 (41.7%) 3 (21.4%)

 Academic degree 2 (8.3%) 3 (21. 4%)

MMSE 28.8 (1.2) 29.1 (0.9)

Table 2 Characteristics on the participants of the cOSE group 
and the cCSE group at baseline

BMI body mass index

Asterisk indicate significant difference between groups (*0.050 >  p  ≥ 0.001)

Group N (female/male) cOSE 6 (4/2) cCSE 9 (6/3)
Measure M (SD) M (SD)

Age (years) 64.50 (6.32) 64.89 (3.51)

 < 65 years [N (%)] 2 (33.3%) 4 (44.4%)

 ≥ 65 years [N (%)] 4 (66.7%) 5 (55. %)

Weight (kg) 76.05 (11.52) 86.02 (28.68)*

Height (m) 1.66 (0.05) 1.73 (0.05)

BMI (kg/m2) 27.58 (4.48) 28.68 (5.28)

kcal/week 2407.28 (1973.127) 1073.10 (670.21)

Resting HR (bpm) 67.67 (5.57) 67.56 (10.48)

Educational achievement (N)

 Secondary education 3 (50.0%) 2 (22.2%)

 High school 1 (16.7%) 1 (11.1%)

 University 2 (33.3%) 4 (44.4%)

 Academic degree 0 (0.0%) 2 (22. 2%)

MMSE 28.7 (1.8) 29.0 (0.9)
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sessions, heart rate was continuously recorded and 
controlled using a heart rate monitor (RS800cx, Polar, 
Finland). In the aOSE group (badminton session), the 
participants played individually against one of the two 
experienced instructors (i.e., 1 versus 1) without any 
breaks (e.g., for changeover). Scores were not recorded 
and no match-winner was determined. The single session 
of the aCSE group (bicycling session) was performed on 
a stationary bicycle ergometer (Kardiomed,  Proxomed®, 
Germany) at a cadence of 70–80 revolutions per min-
ute. The average session intensity was set to 60 ± 5% of 
each participant’s individual heart rate reserve (HRR). 
The HRR was defined as the difference between the 
maximum heart rate  (HRmax) and the resting heart rate 
 (HRrest) (HRR =  HRmax  −   HRrest). The  HRmax is calcu-
lated using the formula HRmax = 205.8− 0.685× age 
[59]. The target heart rate for the exercise ses-
sions was calculated using the Karvonen formula 
targetheartrate = (HRR× 60%)+HRrest [60]. Partici-
pants from the CG rested in a sitting position for 40 min 
in a quiet room and were asked to read in a magazine 
with sport science topics.

Blood samples were obtained at two time points: 
immediately before (T1) and 5 min after (T2) the respec-
tive test condition (badminton, bicycling or reading). 
Furthermore, ratings of perceived exertion (RPE) meas-
ures were obtained at rest and immediately after com-
pleting the respective test condition using the RPE-scale, 
which ranges from 6 to 20 with 6 for minimal effort and 
20 for maximal effort [61]. In addition, for both, the aOSE 
and aCSE group, an end-to-end capillary of 10 μl of cap-
illary blood was taken from the right hyperemic earlobe 
before and after exercising to determine the blood lactate 
concentration.

Second investigation: chronic effects
The procedure for the second investigation is depicted in 
Fig. 2. The training sessions of the cCSE group as well as 
the cOSE group took place once a week, lasting 50 min 
per session (5  min warm up, followed by 40  min of the 
main exercise and 5 min cool down), and were provided 
for 12 weeks. All training sessions were conducted by a 
sports coach who demonstrated the exercises.

The cOSE group practiced different sport games such 
as badminton, hockey and table tennis with a focus on 
learning specific techniques and variants of the respec-
tive sport game. In each individual session the partici-
pants either learned a new technique or were confronted 
with a new variation of the game.

The main part of the training sessions of the cCSE 
group consisted of two exercise blocks: (i) strength train-
ing and (ii) endurance training. Each exercise block 
lasted 20  min. The strength training involved exercises 

comprised alternating movements (e.g., leg-press, leg-
extension, leg-flexion, pull-down, rowing, chest-press, 
triceps-press, butterfly, upper body-flexion, upper body-
extension, upper body-rotation) and was performed at 
therapeutic weight machines (compass 530,  Proxomed®, 
Germany) with predicted motion range and direction to 
keep the coordinative requirements as low as possible. 
The intensity of the resistance training was determined 
by the following variables: number of exercises per unit: 
4; sets per exercise: 3; repetitions per set: 15; repeti-
tion velocity: 2–0–2–0 (2 s concentric, 0 s isometric, 2 s 
eccentric, 0 s isometric; time under tension: 60 s); inter-
set rest period: 30 s; inter-exercise rest period: 2 min. The 
endurance training was performed on stationary bicycle 
ergometers with a cadence between 70 and 80 revolu-
tions per minute. Compared to our first investigation 
(acute effects), we changed our approach to define exer-
cise intensity because of methodological reasons (e.g., 
number of people exercising at the same time and exer-
cise mode). For the second investigation (chronic effects), 
the intensity of the training was controlled and adjusted 
by an inductive approach using the Category Ratio-10 
Scale (CR-10 Scale) [62]. Participants were asked to rate 
their perceived exertion following each exercise (includ-
ing the endurance training). The target intensity was 
defined as “very strong” (7 on the CR-10 Scale). If the 
participants indicated values above or below the target 
intensity, the training load was adjusted by the trainer 
for the next training session. The participants were not 
informed about the target intensity so that they would 
not be influenced in their subjective perception.

Blood samples were taken within one day after (T3) the 
intervention to quantify basal changes (from T1 to T3).

Blood sampling
Venous blood samples were taken by a medical doctor at 
the above mentioned time points (T1, T2 and T3) from 
the median cubital vein or the cephalic vein. The pro-
cedure of the blood collection was identical for all par-
ticipants and was performed by the same persons. The 
blood samples were collected in two vacutainers with 
separating gel and coagulation activator (BD  Vacutainer® 
SST™ II Advance, green, 8.5 ml) and one vacutainer with 
li-heparin (BD  Vacutainer® LiHeparin, yellow, 4.0  ml). 
The vacutainer with li-heparin was used to determine 
the plasma level of BDNF. The vacutainers with separat-
ing gel and coagulation activator were used to analyze the 
serum levels of BDNF, IGF-1 and IL-6. Immediately after 
blood collection, blood samples were swirled head down 
for ten times. Thereafter, the serum samples were rested 
for 30 min at room temperature whereas the plasma sam-
ple rested for 10 min on ice. All blood samples were cen-
trifuged at 2000g for 15  min. 300  µl of the supernatant 
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fluid were then extracted and stored at − 80 °C. To ana-
lyzed the serum and plasma concentration of BDNF we 
used the BDNF DuoSet ELISA kit (R&D  Systems®, Wies-
baden, Germany). Serum IL-6 and IGF-2 levels were 
quantified using a chemiluminescent immunometric 
assay (for IL6:  IMMULITE® 2000; Siemens Medical Solu-
tion Diagnostics, for IGF-1: IDS-iSYS; Immunodiagnos-
tic Systems). The samples were processed accordingly to 
the kit instructions.

Statistical analysis
Data were tested for normal distribution and homogene-
ity of variance using the Kolmogorov–Smirnov-Test and 
Levene’s test, respectively. For normally distributed data, 
a 2 (time: pre-test, post-test)  × 3 (group: aOSE, aCSE, 
CG) repeated-measures ANOVA was used to check for 
interaction effects and main effects (main group effect 
and main time effect). To identify differences between 
groups during a measurement time point (group effect), 
we performed post hoc t test. If significant main time 
effects were detected, a one-way ANOVA with repeated 
measures was performed to identify time effects within 
the groups. The post-hoc tests were adjusted by Bonfer-
roni correction [63]. To clarify the practical relevance of 
the results, the effect size partial eta squared (ηp

2) were 
reported [64]. Group differences in age, weight, height, 
BMI, physical activity level, and resting HR were analyzed 
using an independent t test. For not normally distrib-
uted data, differences between measurement time points 
within a group (time effect) and differences between 
groups within a measurement time point (group effect) 
were analyzed with a Wilcoxon-test and Mann–Whitney 
U test, respectively. For statistically significant results, 
the effect size for these non-parametric tests were calcu-
lated using the formula: r = |z|/

√
n with r  ≥ 0.5 rates a 

large effect, 0.5 <  r  ≥ 0.3 rates a medium effect and 0.3 <  r  
≥ 0.1 rates a small effect. All statistical analyses were cal-
culated with SPSS Statistics 25 (IBM, Inc., Chicago). The 
level of significance was set to α  = 0.050.

Results
Acute effects
At baseline, no differences in age, weight, height, body 
mass index, activity level, and resting heart rate were 
observed between the active intervention group (aOSE 
and aCSE) and the inactive control group. Results also 
showed no differences for the average exercise heart 
rate between aOSE (129.21 ± 12.96  bpm) and aCSE 
(124.50 ± 7.15  bpm). For RPE, no differences between 
groups were found at pre-test (aOSE: 9.0 ± 3.5; aCSE: 
9.0 ± 2.3; CG: 9.0 ± 2.0). Significant time effects were 
observed for the aOSE (Z = 4.212, p < 0.001; 14.0 ± 2.0) 

and aCSE group (Z  = 4.217, p  < 0.001; 13.0 ± 2.0), indi-
cating that participants had higher RPE values after 
exercising. In the post-test, significantly higher RPE val-
ues were found for the aOSE (Z  =  −  4.150, p  < 0.001) 
and aCSE group (Z  =  −  4.076, p  < 0.001) in compari-
son to the inactive CG (10.5 ± 2.0). Between aOSE and 
aCSE, however, no significant differences were found 
(Z = -0.414, p = 0.679). In addition, there was no sig-
nificant interaction effect  (F1,23  = 1.274, p  = 0.271, ηp

2  
= 0.052) or group effect  (F1,23  = 0.003, p  = 0.956, ηp

2  
= 0.000) in blood lactate concentration. The time effect 
was significant  (F1,23  = 45.695, p  < 0.001, ηp

2  = 0.665), 
with higher blood lactate concentrations at post-test (see 
Fig. 3).

Brain‑derived neurotrophic factor
Outcome values of  BDNFP and  BDNFS are shown in 
Table 3. No interaction effect  (F2,58  = 0.392, p  = 0.678, 
ηp

2  = 0.013) or main group effect  (F2,58  = 1.039, p  
= 0.360, ηp

2  = 0.035) could be observed for  BDNFP. 
Nevertheless, we found a main time effect  (F1,58  
= 6.730, p  = 0.012, ηp

2  = 0.104) with significantly 
increased  BDNFP concentrations after the aOSE ses-
sion  (F1,23  = 5.135, p  = 0.033, ηp

2  = 0.183). No signifi-
cant time effect, but a tendency, was observed for the 
aCSE session  (F1,23  = 3.572, p  = 0.074, ηp

2  = 0.138). 
The absolute changes in  BDNFP showed no significant 
differences between groups (see Fig. 4). For  BDNFS, we 
found a significant interaction effect  (F2,58  = 11.619, 
p  =  < 0.001, ηp

2  = 0.286) and main time effect  (F1,58  
= 42.567, p  < 0.001, ηp

2  = 0.423), while no main group 
effect occurred  (F2,58  = 0.113, p  = 0.894, ηp

2  = 0.004). 

Fig. 3 Means and standard deviations of the blood lactate 
concentrations for the acute open-skill exercise group (aOSE: 
badminton) and the acute closed-skill exercise group (aCSE: 
bicycling) at pre-test and post-test. Asterisk or number sign indicates 
a significant difference between pre-test and post-test for aOSE 
(*p < 0.050) and aCSE (#p < 0.050), respectively
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In both, the aOSE and the aCSE group,  BDNFS 
increased significantly from pre-test to post-test  (F1,23  
= 32.145, p  < 0.001, ηp

2  = 0.582 and  F1,23  = 43.374, p  
< 0.001, ηp

2  = 0.663, respectively). As shown in Fig.  4, 
the increase in  BDNFS was significantly higher in the 
aOSE and the aCSE group compared to the CG.

Insulin‑like growth factor 1
An overview of the IGF-1 values can be found in 
Table  3. For the IGF-1, a significant interaction effect 
 (F2,59  = 5.964, p  = 0.005, ηp

2  = 0.162) and main time 
effect  (F1,59  = 22.965, p  < 0.001, ηp

2  = 0.280) were 
observed. Follow-up tests revealed that the IGF-1 con-
centrations were significantly increased after a single 
OSE or CSE session (aOSE:  F1,23  = 20.279, p  < 0.001, 
ηp

2  = 0.469 and aCSE:  F1,23  = 20.217, p  < 0.001, ηp
2  

= 0.468, respectively). In addition, the absolute changes 

in the IGF-1 were significantly higher in the aOSE and 
the aCSE group compared to the CG (see Fig. 4).

Interleukine‑6
Outcome values regarding IL-6 are shown in Table  4. 
Since no differences between groups were found during 
the pre-test, an initial homogeneity can be assumed. 
IL-6 values increased significantly from pre-test to 
post-test (time effect) in the aOSE and the aCSE group 
(Z  = −  3.460, p  = 0.001, r  = 0.706 and Z  = −  4.110, 
p  < 0.001, r  = 0.839, respectively). In post-test, par-
ticipants from the aOSE and the aCSE group showed 
significantly higher IL-6 levels compared to the partici-
pants of the CG (Z  = − 3.230, p  =  0.001, r  = 0.524 and 
Z  = − 3.136, p  = 0.002, r  = 0.509, respectively). Statis-
tical analyses of absolute changes in IL-6 concentration 
indicates a significant larger increase in the aOSE and 

Table 3 Acute effects of OSE and CSE on blood levels of  BDNFP,  BDNFS, IGF-1 and IL-6

Mean values (standard deviation) of  BDNFP,  BDNFS, and serum IGF-1—as well as median values (interquartile range) of serum IL-6 at pre-test and post-test

For  BDNFP,  BDNFS, and IGF-1, parametric tests were used. For IL-6, non-parametric tests were used

BDNF brain-derived neurotrophic factor; IGF-1 insulin-like growth factor 1; IL-6 interleukine-6

Asterisk indicate significant difference between pre-test and post-test (*0.050  >  p  ≥ 00.001; **p  < 0.001)

Number sign indicate a tendency for difference between pre-test and post-test (#0.100  >  p  ≥ 0.050)

Variable Intervention group CG

aOSE aCSE

Pre Post Pre Post Pre Post

BDNFP (pg/ml) 1599.54 (738.57) 1804.63* (780.00) 1376.26 (621.73) 1682.04# (807.15) 1825.43 (927.54) 1950.14 (1043.07)

BDNFS (pg/ml) 27,525.00 (6781.45) 29,783.33** (7433.40) 26,473.91 (6317.31) 29,556.52** (6929.83) 27,685.71 (7380.52) 27,528.57 (6848.74)

IGF-1 (ng/ml) 183.33 (66.83) 192.13** (65.65) 192.42 (70.50) 201.29** (75.30) 174.50 (63.66) 174.00 (64.94)

IL-6 (ng/L) 2.15 (1.65) 3.25* (2.90) 1.60 (1.18) 2.75** (2.88) 1.55 (0.53) 1.60 (0.60)

Fig. 4 Means and standard deviations of absolute changes (pre-test–post-test) in a  BDNFP, b  BDNFS and c serum IGF-1 for the acute open-skill 
exercise group (aOSE: badminton), the acute closed-skill exercise group (aCSE: bicycling) and the control group (CG: reading)
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the aCSE group compared to the CG. In addition, the 
absolute increase in IL-6 was significantly higher in the 
aOSE condition compared to the aCSE condition (see 
Fig. 5).

Chronic effects
Seven participants were excluded from data analyses 
due to injuries or low attendance rate (under 75%). 
This left a total of 15 participants (9 in the cCSE group 
and 6 in the cOSE group). Due to the small remaining 
sample size, we plotted the pre- and post-training lev-
els of  BDNFP,  BDNFS, IGF-1 and IL-6 in Fig. 6 to better 
illustrate the results. The average attendance rate of the 
remaining participants from the oCSE and cCSE group 
was 84.7 ± 7.5% and 91.7 ± 7.9%, respectively. Except 
for body height, the participants in both groups exhib-
ited comparable characteristics (see Table 2).

Brain‑derived neurotrophic factor
Regarding  BDNFP and  BDNFS, we did not find any 
between group differences at pre-test (Z  = −  0.825, 
p  = 0.456 and Z  = −  1.651, p  = 0.607) or at post-test 
(Z  = −  0.236, p  = 0.864 and Z  = −  0.885, p  = 0.388) 
(see Table 4). In addition, no time effects were observed 
for  BDNFP (cOSE: Z  = −  0.105, p  = 0.917; cCSE: Z  
= − 1.007, p  = 0.314). For  BDNFS, while no time effect 
for the cCSE group was observed (Z  = −  1.007, p  
= 0.314), a significant time effect with a large effect size 
was identified for the cOSE group, with higher  BDNFS 
levels at post-test compared to pre-test (Z  = −  1.992, 
p  = 0.046, r  = 0.813). The graphs in Fig.  6 show that 
changes in BDNF can be—depending on participant—
in opposite directions. With the exception of  BDNFP in 
the cOSE group, an increase of basal BDNF levels can 
be seen for most of the participants. Not unexpectedly, 
the direction of change is for most participants identi-
cal for  BDNFS and  BDNFP.

Insulin‑like growth factor 1
IGF-1 showed no significant between group differences 
at pre-test (Z  = −  0.943, p  = 0.388) or at post-test 
(Z  = −  0.471, p  = 0.689) (see Table  4). Regarding the 
cOSE group, a significant decrease in the IGF-1 levels 
could be observed (Z  = − 2.201, p  = 0.028, r  = 0.899). 
The IGF-1 levels also decreased in the cCSE group. The 
decrease in the IGF-1 levels from pre-test to post-test 
failed to reveal a significant time effect (Z  = −  1.718, 
p  = 0.086). However, the statistical effect size was 
large (r  = 0.573). Figure 6 shows that basal IGF-1 lev-
els decreased in all but two participants from the cCSE 
group, and was reduced in all participants of the cCSE 
group after 12 weeks of intervention.

Interleukin‑6
No significant pre-test or post-test differences were 
observed for IL-6 between groups (pre-test: Z  = 0.000, 

Table 4 Chronic effects of OSE and CSE on blood levels of  BDNFP,  BDNFS, IGF-1 and IL-6

Median values (interquartile range) of  BDNFP,  BDNFS, serum IGF-1, and serum IL-6 at pre-test and post-test

BDNF brain-derived neurotrophic factor; IGF-1 insulin-like growth factor 1; IL-6 interleukine-6

Asterisk indicates a significant difference between pre-test and post-test (*0.050 >  p  ≥ 0.001)

Number sign indicates a tendency for difference between pre-test and post-test (#0.100 >  p  ≥ 0.050)

Variable cOSE cCSE

Pre Post Change Pre Post Change

BDNFP (pg/ml) 1695.0 (837.5) 1810.0 (760.0) + 35.0 (1392.5) 1620.0 (810.0) 1850.0 (2168.0) + 63.0 (1739.0)

BDNFS (pg/ml) 25,200.0 (4800.0) 27,400.0* (7650.0) + 2450.0 (4625.0) 30,700.0 (6450.0) 32,400.0 (14,050.0) + 3600.0 (11,500.0)

IGF-1 (ng/ml) 209.5 (96.8) 158.5* (90.3) − 34.5 (34.25) 180.0 (81.0) 146.0# (63.0) − 21.0 (86.5)

IL-6 (ng/L) 1.6 (1.6) 5.4* (2.4) + 3.8 (2.8) 1.5 (4.7) 5.9 (1.4) + 4.0 (5.4)

Fig. 5 Median [grey line, median (interquartile range)] and 
intraindividual changes (black points) in serum IL-6 for the acute 
open-skill exercise group (aOSE: badminton), the acute closed-skill 
exercise group (aCSE: bicycling) and the control group (CG: reading)
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p  = 1.000; post-test: Z  = −  0.730, p  = 0.689) (see 
Table  4). While there was no significant time effect 
for the cCSE group (Z  = − 0.652, p  = 0.514), a signifi-
cant time effect was observed for the cOSE group, with 
higher IL-6 levels at post-test compared to pre-test 
(Z = -1.992, p = 0.046, r = 0.813). Figure  6 indicates 2 
participants in the cOSE group with substantially ele-
vated IL-6 levels at pre-test that seemed to be reduced 
back to normal levels after 12  weeks of intervention. 
When these two “outliers” with untypical high IL-6 
levels are removed from the statistical analysis, the 
observed trend for the other participants towards an 
increase in IL-6 becomes statistically significant (Z  
= − 2.371, p  = 0.018, r  = 0.896). For the cOSE group, a 
trend towards increased IL-6 post-test is obvious.

While such an analysis for different neurotrophic and 
immunomodulatory molecules in the blood of study 
participants might open up interesting perspectives for 
the overall evaluation of sport interventions our current 
sample size is too low to draw clear conclusions.

Discussion
In this study, we compared the acute and chronic 
effects of OSE and CSE on plasma and serum levels of 
BDNF, serum IGF-1, and serum IL-6 in healthy older 
adults. These neurotrophic factors and cytokines are 
assumed to modulate specific molecular and cellular 
pathways promoting neuroplasticity, that can enable 
cognitive improvements and the maintenance of brain 
integrity [20, 23, 25, 44, 65–67]. Based on our results 
presented above, the main findings of our study were 
two-fold: first, we could observe that  BDNFP,  BDNFS, 
IGF-1, and IL-6 levels were increased in response to 
both exercise types (aOSE and aCSE) after a single ses-
sion of 30 min. Differences between the exercise types 
could only be found for serum IL-6, suggesting that a 
single badminton session (aOSE) compared with a 
single bicycle session (aCSE) leads to an elevated IL-6 
level in healthy older adults. Second, after 12 weeks of 
training, the basal levels of  BDNFS and IL-6 increased 
whereas the basal level of IGF-1 decreased in the cOSE 
group, without differences between groups.

Fig. 6 Absolute values of  BDNFP,  BDNFS, serum IGF-1 and serum IL-6 from pre-test (T1: before intervention) to post-test (T3: after 12 weeks of 
intervention) for the a cOSE-group and the b cCSE-group. The symbols in a and b represent one and the same person
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Acute effects
BDNFS was significantly increased after both exercise 
types, suggesting that a single session of either an OSE 
(badminton) or a CSE (bicycling) could acutely increase 
peripheral  BDNFS levels in healthy older adults. Previous 
studies investigating the acute effect of a single exercise 
session also found elevated peripheral  BDNFS levels in 
older and younger healthy people [56, 68–73]. Hung et al. 
[56] compared the effect of a single badminton session 
with a single running session (30 min at 60% of HRR) on 
 BDNFS production in twenty young (23.15 years) healthy 
males and could observe similar effects. However, in this 
study, the authors reported that the badminton session 
resulted in a significantly higher  BDNFS level compared 
to the running session [56]. In our investigation, we could 
not observe any differences in  BDNFS levels between 
exercise types. Although, BDNF is also expressed in vas-
cular endothelial cells [74] and the skeletal muscle cells 
[75], the most prominent source of BDNF is the brain, 
where it is expressed at highest levels in the hippocampus 
and the neocortex [76–78]. Since BDNF can cross the 
blood–brain barrier [79], Rasmussen et al. [80] estimated 
that in humans, at rest and during exercise, 70–80% of 
circulating BDNF in the blood stream (determined in 
venous blood) originates from the brain. Strong evidence 
suggests that the exercise-induced changes in circulating 
BDNF levels are affected by a host of factors including 
general exercise variables such as the type (e.g., cycling, 
playing badminton, dancing), the intensity (describes how 
strenuous the exercise is), and the duration (time period 
of a particular exercise or entire exercise session) as well 
as individual characteristics such as age [10, 23, 49, 73, 
81–84]. Regarding the exercise variables, both qualita-
tive characteristics (e.g., exercise type and complexity) 
and quantitative characteristics (e.g., intensity and dura-
tion) need to be considered to clarify the exercise dose 
[10, 85, 86]. According to the distinction between OSE 
and CSE, the classification is based on qualitative exer-
cise variables such as the predictability of the perform-
ing environment (dynamic and less predictable vs. static 
and mostly predictable environments) and the exercise 
complexity (coordinative and/or cognitive demands) [50, 
87]. To take into account the differences between OSE 
and CSE in terms of their beneficial effects on cogni-
tive functions and the underlying molecular and cellular 
mechanisms, all relevant quantitative exercise charac-
teristics must be set equally. In the study of Hung et al. 
[56] as well as in our study, exercise duration (30  min) 
and intensity (average heart rate was used as a proxy for 
the internal load) were matched between OSE and CSE. 
However, while moderate continuous running and/or 
bicycling (CSE) are predominantly repetitive (cyclic) and 
internally-paced movements, badminton (OSE) is more 

externally-paced and consists of dynamic movements 
that, among other things, manifest themselves through 
rapid changes in movement direction and speed [88–90]. 
Therefore, it could be assumed that the internal load (as 
a proxy of exercise intensity) remains relatively constant 
during running or bicycling, while it fluctuates during a 
badminton session. Regarding the findings of Hung et al. 
[56], peaks in internal load during the badminton ses-
sion could be one reason why  BDNFS levels were signifi-
cantly higher compared to running. Compared to Hung 
et al. [56], our participants were much older and probably 
less agile. Thus, in our older cohort there were less pro-
nounced fluctuations in internal load during the badmin-
ton session which could be one possible reason, among 
other factors, why we did not observe statistically signifi-
cant differences in  BDNFS levels between the aOSE and 
the aCSE group. However, this remains speculative.

It should be noted that we did not screen our par-
ticipants for symptoms of depression and therefore we 
cannot rule out an influence on our results due to under-
lying depressive disorders. Previous studies have shown 
decreased basal levels of  BDNFS in elderly people with 
depression compared to people without depression [91, 
92]. Indeed, decreased  BDNFS levels may contribute 
to atrophy of certain limbic structures, including the 
hippocampus and prefrontal cortex, which have been 
observed in depressed adults [93, 94]. However, the mean 
values and standard deviations of the basal  BDNFS and 
 BDNFP levels presented in our study are comparable to 
the results of existing studies with healthy elderly adults 
[45, 95, 96].

While levels of  BDNFS reflect BDNF that is stored in 
platelets,  BDNFP concentrations reads out the freely cir-
culating BDNF in the absence of platelet activation [34]. 
We observed that  BDNFP levels increased after both 
acute exercise session (aOSE: significant time effect; 
aCSE: tendentious time effect). However, in contrast to 
 BDNFS, there were no differences, neither between the 
active groups (aOSE vs. aCSE) nor between any active 
group and the inactive CG (aOSE vs. CG and aCSE vs. 
CG). Recent studies have shown that  BDNFP levels did 
not significantly increase after a single session of aero-
bic [97–99] or resistance exercises [100] in young and 
older participants. Nofuij et  al. [98] observed a non-
significant increase in  BDNFP immediately after, 30 min 
after, and 60 min after low (40%  VO2max), moderate (60% 
 VO2max), and high (100%  VO2max) intensity exercise tests 
(performed on a bicycle), while  BDNFS was significantly 
increased immediately after the low intensity exercise 
test. However, Cho et  al. [101] have shown that both, 
 BDNFS and  BDNFP are significantly increased imme-
diately after a maximal treadmill test in 18 healthy male 
students. Furthermore, Rasmussen et  al. [80] reported 
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that  BDNFP is increased after 4 hours of ergometer row-
ing corresponding to an intensity 10–15% below the lac-
tate threshold but not after 2 hours. It is conceivable that 
an high intra- and inter-individual variability, caused by 
the dynamics of BDNF uptake and release, or other vari-
ables, like training status or neurological status, might be 
among the factors that account for the above mentioned 
inconsistent study results regarding the plasma BDNF 
levels [99]. We can only speculate, that acute changes in 
 BDNFP between the active groups and the inactive con-
trol group could become statistically significant with a 
higher sample size or another exercise prescription (e.g., 
prolonged exercise duration).

With regard to IGF-1, we observed that a single bad-
minton session (aOSE) as well as a single session of 
bicycling (aCSE) leads to an increased IGF-1 concentra-
tion in blood serum. Existing studies indicate that the 
exercise-related release of IGF-1 is highly variable and 
is a function of exercise intensity, duration and modal-
ity. While IGF-1 serum levels were increased after short 
bouts (10–22 min) of high- [28, 70, 102] and low-inten-
sity [28] cycling, other studies have reported a non-
significant increase in serum IGF-1 following a single 
session of moderate swimming [103] and high intensity 
bicycling [69]. However, there is also evidence that the 
acute exercise-related release of IGF-1 is transient, peak-
ing after 5–10 min of exercise and return to baseline or 
to significantly lower levels within 30–60 min after exer-
cising [28, 104, 105]. Berg and Bang [104] suggested that 
the rapid increase in serum IGF-1 concentration follow-
ing acute exercise is due to the release of IGF-1 from tis-
sue stores (i.e., in the skeletal muscle) rather than to the 
peptide synthesis in the liver or muscle cells [67]. While 
findings of previous studies indicate that increased basal 
IGF-1 levels after long-term (24 up to 52  weeks) resist-
ance training improve behavioural (several cognitive 
functions) and physiological (P3-amplitude) indicators 
for brain function [106, 107], an acute increase in IGF-1 
following a single exercise session does not correlate 
with functional improvements [105]. These results sug-
gest that the beneficial effect of IGF-1 relies on long-
term mechanisms such as angiogenesis, and potentially, 
the regulation of synaptic plasticity in the brain [44, 67, 
108–110].

Regarding IL-6, our results show an acute exercise-
related increase in IL-6 in both active groups, with sig-
nificantly higher changes in the aOSE group. Strong 
evidence suggests that IL-6 is expressed by myocytes in 
contracting muscle fibres e.g., due to physical exercis-
ing [111–113]. Interestingly, IL-6 is also expressed by 
the brain during prolonged physical exercise [47, 114], 
for instance, as a signal of metabolic stress within the 
brain or as a consequence of increased brain activity [33, 

115]. Chronically elevated levels of IL-6 are often associ-
ated with adverse health effects (e.g., cognitive declines, 
metabolic disorders). Importantly, results from human 
and animal studies showed that IL-6 stimulates the pro-
duction of anti-inflammatory cytokines (e.g., IL-10) [33, 
48], supresses expression of tumor necrosis factor-α [48], 
regulates neuronal functions [24], stimulates neurogen-
esis (i.e., the process of creating new neurons and glial 
cells from stem cells) [24] and acts neuroprotective [116]. 
Therefore, the acute exercise-induced release of IL-6 
could be involved in mediating some positive effects for 
brain health and cognitive functions. It is well known that 
the exercise type, intensity, duration as well as the mass 
of recruited skeletal muscles determines the magnitude 
of the acute exercise-induced release of IL-6 [48, 115, 
117]. Since bicycling involves a limited skeletal muscle 
mass (lower extremities) and badminton involves nearly 
all muscle groups of the whole body, it is not surprising 
that the aOSE group leads to a significantly higher release 
of IL-6 into the blood compared to the aCSE group. 
Hence, we speculate that the group differences for acute 
changes of IL-6 (aOSE: badminton vs. aCSE: cycling) 
could be explained by the magnitude of involved mus-
culature rather than by the inherent differences between 
OSE and CSE (i.e., predictability of the performing envi-
ronment and the exercise complexity).

Chronic effects
After 12  weeks of training, basal  BDNFS levels were 
increased in both groups (cOSE: + 2450.0  pg/ml; 
cCSE: + 3600.0 pg/ml). Although the absolute changes in 
the cCSE group are greater than in the cOSE group, only 
the peripheral  BDNFS levels of the cOSE group changed 
significantly from pre-test to post-test. The majority 
of previous studies investigating the chronic effects of 
regular physical-exercise (i.e. training) on basal levels of 
peripheral BDNF concentrations focused on aerobic and 
strength training with inhomogeneous results [49, 51, 81, 
82, 118, 119]. So far, existing studies report unchanged 
[45, 120, 121], increased [83, 122, 123] and reduced [71, 
124, 125] basal  BDNFS and  BDNFP levels in older indi-
viduals following an aerobic and/or resistance training. 
Additionally, a current meta-analysis by Marinus et  al. 
[49] indicates that a combined aerobic-strength training 
is more effective in increasing peripheral BDNF concen-
trations in the elderly population than an isolated aerobic 
training. However, there is no consensus about the most 
beneficial exercise variables (intensity, duration, type 
of training) and training variables (frequency, density, 
period) [10] to induce an increase in peripheral BDNF 
concentrations. Regarding the exercise type, Grégoire 
et al. [126] observed that after 8 weeks of participation, 
a one-hour training intervention performed three times 
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a week and including gross motor activities (juggling 
and ball-throwing exercises towards a target) induced a 
greater increase in basal  BDNFP levels than interventions 
including aerobic and strength training units in older 
healthy people. In addition, Rehfeld et  al. [127] noticed 
in their training intervention study (6  month, 2 ×  per 
week, 90 min) that dancing increased basal  BDNFP levels 
in older healthy adults more than a health-related exer-
cise training (including aerobic, strength and flexibility 
training units). In the same study the increase in grey and 
white matter volume in multiple brain areas was more 
pronounced in the dancing group (see also: [95, 128]). 
These results support the hypothesis, that physical exer-
cises with sensory enrichment and coordinative-cogni-
tive demands (e.g., OSE like dancing or badminton) have 
more pronounced effects, compared to physical exer-
cises with no or low sensory and coordinative demands, 
respectively (e.g., CSE like an combined strength-
endurance training), on neurophysiological mechanisms 
(e.g., the release of neurotrophic factors such as BDNF) 
and structural brain changes [95, 129]. In our study, we 
observed unchanged  BDNFP levels and increased  BDNFS 
levels (only statistically relevant for the cOSE group). 
However, we could not find any differences between the 
groups, neither for absolute values at post-test nor for the 
absolute changes from pre-test to post-test. This lack off 
an effect might result from two factors: (i) the low num-
ber of study participants and/or (ii) an insufficient “dose” 
of the physical exercise/training regime which depends 
on exercise prescription (e.g., exercise duration, training 
frequency, and training density) [10].

Although physical training, especially strength train-
ing, is traditionally associated with increased concentra-
tion of growth factors such as IGF-1 in the blood stream, 
we could not observe an increase in basal IGF-1 concen-
trations in blood serum for both groups. To the contrary, 
we observed in both groups a decrease of basal IGF-1 
levels at the end of the 12-week intervention (with sta-
tistically significant changes in the cOSE group and a 
tendency towards significance in the cCSE group). This 
finding is in accordance with the observation of compa-
rable studies which reported a decrease of basal IGF-1 
levels after endurance training and strength training for 
young individuals [130] and older individuals [131]. In 
this regard, it should be noted that the rate of synthesis of 
IGF-1 does also depend on non-exercise related factors, 
such as the nutritional status [104], age [132] and avail-
ability of human growth hormone (GH) [133]. In gen-
eral, a positive neurocognitive effect of IGF-1 has been 
observed in several intervention studies, in which a train-
ing-induced (aerobic and strength training) increase in 
basal IGF-1 concentration was associated with improved 
cognitive functions in older individuals [106, 134, 135]. In 

particular, in older individuals, several studies reported 
that an increase in basal levels of IGF-1 in response to a 
long-term aerobic training intervention is associated with 
improved functional connectivity, cognitive functions, 
and increased hippocampal volume, although the basal 
concentration of this growth factor was not affected by 
the training intervention [45, 131]. One might speculate 
that repeated rapid short-term changes in neuropeptides 
such as IGF-1 during and following physical exercises can 
trigger neurobiological processes that can converge into 
various neurocognitive changes (e.g., angiogenesis, struc-
tural and functional brain changes) if those short-term 
changes occur over a distinct time period repetitively. 
Since the exact mechanisms that explain the relationship 
between the exercise-induced alterations of IGF-1 and 
neurocognitive processes are sparsely understood [25, 
32], this is an unresolved issue. With regard to the com-
parison between the cOSE and cCSE group, our study 
results do not show any advantages of either training or 
exercise type.

With regard to IL-6, our results indicate that the basal 
IL-6 concentration in blood serum increased in both 
groups (cOSE: + 3.8  ng/l; cCSE: + 4.0  ng/l), whereas 
only changes from the cOSE group became statistically 
significant. The possible lack of significant changes 
in IL-6 for the cCSE group might be due to the rela-
tively small sample size and relatively high inter-indi-
vidual differences at pre-test (see interquartile range 
and Fig.  6). Contrary to our results, Forti et  al. [121] 
showed that basal IL-6 levels significantly decreased 
after 12  weeks of strength training (70–80% 1-RM, 
3 ×  per week) in 20 older adults. However, the reported 
absolute changes were relatively small, with a median 
value of approximately 0.45  ng/l (absolute changes) 
and the authors could not observe significant differ-
ences in changes of IL-6 in comparison to an inactive 
control group. Other studies, performing a strength 
training with elderly participants, did not detect sta-
tistically significant changes in basal IL-6 levels after 
six (3 × 10 repetitions of 50% up to 70–80% 1-RM, 2 ×  
per week [136]) and ten (3 ×  8 repetitions of 70–80% 
1-RM, 2 ×  per week [137]) weeks of training. While 
prolonged and exacerbated IL-6 exposure is associated 
with inflammatory processes and numerous chronical 
disease such as dementia [138], it is not clear whether 
IL-6 is the cause or only a marker of disease [47, 139]. 
During physical exercise, peripheral IL-6 concentration 
was reported to increase acutely and returning to base-
line level within 24  h [117, 140]. In this context, IL-6 
is rather assumed to have an anti-inflammatory effect 
and could be a factor by which regular exercise might 
reduce chronic (low-grade) inflammation and the risk 
for neurological disorders [115, 116, 141]. Since IL-6 
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plays multiple roles in a wide array of biological pro-
cesses in the human organism [33, 48, 142, 143], further 
research is needed to gain a better understanding of 
the relationship between exercise/training, the acute/
chronic alterations of IL-6 and its effect on neurocogni-
tive processes.

However, the present study is not without limitations 
that we have to acknowledge. First, we admit that there 
could be a possible bias due to the fact that badminton 
(aOSE) involves whole-body movements with weight-
bearing whereas bicycling (aCSE) involves mainly lower-
body movements without weight-bearing. Therefore, it 
might be possible that the muscle mass, which is involved 
in the body movement, may affect the acute exercise-
released response of physiological markers (e.g., BDNF, 
IGF-1, IL-6). On the one hand, we chose badminton as 
OSE because it represents an economic and popular 
sports game, which involves physical as well as cognitive 
demands [90, 144]. On the other hand, due to our older 
participants, we chose bicycling instead of treadmill run-
ning to reduce the risk of falls and injuries. Secondly, 
although we have checked the average heart rate, sub-
jective perception of effort, and blood lactate concentra-
tion during or immediately after each exercise, to ensure 
equal intensities between the aOSE and the aCSE group, 
we cannot be sure that during the exercise session, the 
internal load was exactly the same. This limitation should 
be taken into account when designing future studies. 
Third, the exercise sessions from the first investigation 
(acute effects; aOSE: badminton and aCSE: bicycling) and 
the second investigation (chronic effects; cOSE: perform-
ing different sport-games and cCSE: combined strength-
endurance training) are not completely comparable 
without limitations. During the acute exercise sessions, 
intensity of exercise was set to 60 ± 5% of participants 
individual HRR and the heart rate was continuously con-
trolled using a heart rate monitor. In the second inves-
tigation, the training intensity was individually adjusted 
to the subjective perceived exertion of the participants 
using the CR-10 Scale. Training intensity was individu-
ally adjusted so that each participant rated the intensity 
as a 7 out of 10. We have chosen to use the CR-10 scale 
for the chronic intervention because of methodological 
reasons. According to the American College of Sports 
Medicine position stand [145] and Noble et al. [62], both 
descriptions of intensity (60 ± 5% of HRR and a score of 
7 on the CR-10 scale) are defined as vigorous exercise 
intensity (i.e., hard to very hard). However, the first and 
second investigation (i.e., acute vs. chronical) differ in 
the type of exercise/training (e.g., endurance exercise vs. 
combined strength-endurance exercise/training). There-
fore, conclusions with regard to acute to chronic effects 
or vice versa should be interpreted cautiously. Finally, a 

high number of dropouts during the intervention study 
left a relatively small number of participants which could 
be analyzed.

Conclusion
In conclusion, the present study examined possible dif-
ferences between acute and chronic effects of OSE and 
CSE on  BDNFS,  BDNFP as well as IGF-1 and IL-6 serum 
levels. We observed that both exercise types were equally 
efficient to acutely increase the  BDNFS,  BDNFP, IGF-1 
and IL-6 serum levles in healthy older adults. Compared 
with cCSE, cOSE led to a significant increase in basal 
 BDNFS. Although our results tend to support the notion 
that OSE training is superior in improving some aspects 
of structural and/or functional brain integrity compared 
to CSE, it is important to interpret the results with cau-
tion due to the relatively small number of participants 
in the chronical intervention and individual responses, 
especially regarding the BDNF levels. To prove whether 
OSE is more effective to enhance or maintain brain health 
than CSE, further studies are needed that, (i) control for 
qualitative and quantitative exercise and/or training vari-
ables, (ii) measure acute and/or chronic changes of neu-
rotrophic factors with cellular resulution, (iii) determine 
structural and functional parameters (e.g., hemodynamic 
response, brain morphology), (iv) analyze behavioural, 
socioemotional (e.g., sleep, mood), and cognitive func-
tions (e.g., executive functions, memory [20]). Moreover, 
evaluating of further cohorts (e.g., people with mild cog-
nitive impairments, experts in badminton) is needed to 
obtain a more general picture regarding possible benefits 
of OSE over CSE.
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