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Loading human umbilical mesenchymal stem cell (hUMSC) derived exosomes onto
hydrogel scaffolds is a strategy for rapid wound healing. The clinical application of
exosomes is hindered by low production, and exosome mimetics could be substituted
for exosomes. Here, the therapeutic effects of exosome-loaded hydrogels and
exosome mimetic-loaded hydrogels on wounds are evaluated. Our results revealed
that exosome mimetic-loaded hydrogels promote wound healing more efficiently than
exosome-loaded hydrogels. Exosome mimetics can promote the proliferation and
migration of dermal fibroblasts (hDF-a) cells in vitro. To investigate how exosome
mimetics play a role, proteomics analysis was applied, and the obtained results
suggested that exosome mimetics significantly enrich mitochondrial-derived oxidative
phosphorylation-related proteins in comparison to exosomes. Overall, our work
envisages the emerging potential of exosome mimetics, which take the advantage
of exosomes and can be promising candidates for exosomes. It also suggests that
hUMSC-derived exosome mimetic-loaded hydrogels have remarkable prospects for
clinical application.
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INTRODUCTION

Skin wound healing, which is essential for the survival of organisms, is a natural process that restores
the integrity of normal skin and relieves injury (Han and Ceilley, 2017). However, inefficient
treatments for skin wound healing have always attracted the community’s attention because they
cause a tremendous burden on patients, families, and society (Singer and Clark, 1999; Brown et al.,
2008). Skin wound healing is a multi-process cascade that involves inflammation, hemagglutination,
cell proliferation, and extracellular matrix (ECM) remodeling (Gurtner et al., 2008; Rodrigues et al.,
2019). Delayed wound healing may occur due to a disorder in one of the four stages described earlier.
During different stages, rapid closure of the wound site through migration and proliferation of
epithelial cells is essential to restore barrier function (Takeo et al., 2015). In relation to re-
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epithelialization, the restoration of the dermis occurs by the
proliferation and migration of fibroblasts (Driskell et al., 2013).

Human umbilical mesenchymal stem cells (hUMSCs),
which can differentiate into cells, migrate to injured tissues
and secrete many factors, show special advantages in medical
applications due to their multipotent ability (Ding et al., 2011;
Biazar and Keshel, 2013; Nakamura et al., 2013; Huang et al.,
2020). However, there are still many obstacles to stem cell-
based therapy; for example, the allogenic source and the
tumorigenicity of these cells hinder their clinical application
(Han and Sidhu, 2011; Kim et al., 2017). Exosomes (Exos) are
extracellular vesicles with a size of 30–150 nm. Exosomes
contain different proteins, lipids, nucleic acids, and various
molecules (Kalluri and LeBleu, 2020). Evidence suggests that
exosomes, as a cell-free therapy, can stimulate the local healing
process via paracrine secretion (Tonnard et al., 2013;
Bernardini et al., 2015). Exosomes isolated from hUMSCs
have previously been shown to be capable of promoting
skin wound healing (Chen et al., 2018; Tao et al., 2018;
Henriques-Antunes et al., 2019). However, exosome
isolation is still difficult and costly (Gurunathan et al.,
2019). Recently, studies revealed that high-yield generation
of exosome mimetics (EMs) can be substituted for exosomes
for use in clinical practice, but this approach has not been
applied for skin wound healing and tissue regeneration (Nasiri
Kenari et al., 2020). Moreover, whether MSC-prepared
exosome mimetics could promote wound healing, and the
underlying mechanism in the treatment of skin injuries
remain unclear.

As a biomaterial, hydrogels have already been widely used
for various biomedical applications, such as drug delivery,
tissue adhesion, and tissue regeneration (Pacelli et al., 2015).
Gelatine methacryloyl (GelMA) hydrogels, with photo-
crosslinking properties, resemble the properties of ECM
based on their appropriate biological properties and tunable
physical characteristics (Klotz et al., 2016). Drugs loaded on
GelMA can be released slowly, improving the local drug
administration concentration (Wang et al., 2019; Zhao
et al., 2020). In this study, we investigated whether exosome
mimetics could promote skin wound healing and suggested the
underlying mechanism by defining proteomic differences
(Figure 1A).

MATERIALS AND METHODS

Cell Culture and Synthesis of Human
Umbilical Mesenchymal Stem Cell-Derived
Exosomes and Exosome Mimetics
All the cells were incubated at 37°C with 5%CO2, and hUMSCs were
grown in a mesenchymal stem cell basal medium (Cell Farm,
Shanghai, China) with 10% exosome-free fetal bovine serum (FBS)
(Gibco). FBS was managed by ultracentrifugation at × 120,000 g for
120min to remove the exosomes from FBS. All of the supernatant
was collected from hUMSCs from passages 4 to 8. After collecting the
supernatant of hUMSCs, the exosomes were ultracentrifuged at

×300 g for 10min, ×2000 g for 10min, and ×15,000 g for 40min
to remove cells and cell debris. Next, the supernatant was ultra-
centrifuged at ×1,00,000 g for 70min twice in Ultra-Clear centrifuge
tubes (Beckman Coulter, United States) for exosome purification.
Finally, the precipitate was resuspended in PBS and stored at −80°C
for identification and the following experiments.

After hUMSCs reached a confluence of approximately 70%–80%,
the cells were resuspended in a PBS solution of 1 × 106 cells per 1ml.
The EMs were collected using serial extrusive approaches through
polycarbonate membranes (Whatman, United States) of 10 nm,
5 nm, 1 nm, 800 μm, 400 μm, and 200 μm using a mini-extruder
(Morgec, Shanghai, China). Exosome mimetics were centrifuged at ×
100,000 g for 70min twice and purified by a 100 kDa centrifugal filter
(Millipore, CA, United States) at ×4,000 g for 20min. The final EM
sample was stored at −80°C.

Identification of Human Umbilical
Mesenchymal StemCell-Derived Exosomes
and Exosome Mimetics
Transmission electron microscopy (TEM), ZetaView, and
Western blotting analysis were applied to identify the
characteristics of the isolated hUMSC-Exos. The morphology
and microstructure of exosomes were observed using TEM (Jeol
1230, Japan). The size distribution and concentration of
exosomes were measured at VivaCell Biosciences with
ZetaView PMX 110 (Particle Metrix, Meerbusch, Germany)
and the corresponding software ZetaView 8.04.02. Exosomal
characteristic surface markers, including ALIX, CD9, TSG101,
and calnexin, were analyzed by Western blotting analysis.

Western Blotting Analysis
Exosome and EM solutions were used to isolate total cellular
protein, and a BCA kit (Beyotime Biotechnology, Shanghai,
China) was used for the quantification of protein levels. Proteins
were separated by 10% SDS-PAGE, transferred to PVDF
membranes, and finally probed with the appropriate primary
antibodies specific for ALIX (#ab275377, Abcam, Cambridge,
United Kingdom, 1:1000), CD9 (#ab236630, Abcam, Cambridge,
United Kingdom, 1:1000), TSG101 (#ab125011, Abcam, Cambridge,
United Kingdom, 1:1000), and calnexin (#133615, Abcam,
Cambridge, United Kingdom, 1:1000). The hUMSC and EM
solutions were used to isolate total cellular protein, and a BCA
kit was used for the quantification of protein levels. Proteins were
separated by 10% SDS-PAGE, transferred to PVDFmembranes, and
finally probed with the appropriate primary antibodies specific for
cardiotin (sc-53002, Biocompare, 1:1000) and β-actin (#3700, CST,
1:1000). Then, we used secondary antibodies to probe the blots, and
the proteins were detected with a Tanon 5200 scanner. The
AllDoc_x software was used to quantify the protein band density.

Exosome and ExosomeMimetics Uptake by
Human Dermal Fibroblasts-a
To examine the internalization of hUMSC-derived exosomes
by hDF-a, exosomes were labeled with a red fluorescent dye,
CM-DiI (Sigma, United States). Then, labeled exosomes were
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FIGURE 1 | (A) Schematic overview of the development of hUMSC-Exos and hUMSC-EM hydrogels for skin wound healing and tissue regeneration. (B) TEM
images of hUMSC-derived exosomes and exosomemimetics (hUMSC-derived exosomes: Exos; hUMSC-derived exosomemimetics: EMs). (C) Particle size distribution
of hUMSC-derived exosomes and exosomemimetics measured by using nanoparticle tracking analysis (NTA). (D)Characteristic markers of hUMSC-derived exosomes
and exosome mimetics. Membrane surface marker proteins (CD9), exosome biogenesis marker proteins (TSG101), endoplasmic reticulum related protein
(calnexin), and endoplasmic marker proteins (ALIX) were analyzed by Western blotting. (E) Internalization of exosomes and EMs by fibroblasts. Exosomes and EMs are
labeled in red, and fibroblast nuclei are labeled in blue. (F) The quantification of internalization. (n = 3, *p < 0.05)
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incubated with hDF-a for 24 h. After that, the cells were fixed
in 4% paraformaldehyde for 15 min and washed with PBS. The
nuclei were stained with 1 μg/ml Hoechst
(Invitrogen, United States) for 10 min before observation by
using TEM.

Preparation of GelMA Loaded With Human
Umbilical Mesenchymal Stem
Cell-Exosomes and Human Umbilical
Mesenchymal Stem Cell-Exosome
Mimetics
GelMA hydrogels (30% in LAP solution, EFL, Suzhou, China) were
prepared according to the manufacturer’s instructions. Briefly, 3 g of
gelatin was dissolved in 10ml of LAP solution in a 55°C water bath
for 30min. Next, another 200 μg of exosomes or EMs were added to
the mixed solution at room temperature. The mixed solution was
irradiated under UV light for 1 min for crosslinking. To detect the
distribution of exosomes in GelMA, exosomes and EMswere labeled
with CM-DiI and then observed by TEM.

Cell Counting Kit 8 Assay
CCK-8 assays were used to detect the effects of hUMSC-derived
Exos and EMs on the proliferation of hDF-a cells. Briefly, hDF-a cells
were seeded into 96-well plates at a density of 5 × 103 cells per well
and divided into seven groups when the cells were incubated until an
exponential growth period. A complete high-glucose DMEM was
used as the control (CN) group. The concentrations of exosomes and
EMs were as follows: exosome 5 μg/ml (E5), exosome 20 μg/ml
(E20), exosome 50 μg/ml (E50), EMs 5 μg/ml (EM5), EMs 20 μg/ml
(EM20), and EMs 50 μg/ml (EM50). After being treated with
different concentrations of exosomes and EMs for 1 day, 90 μl of
culture medium mixed with 10 μl of CCK-8 reagent (Dojindo,
Japan) was added into each well and incubated with 5% CO2 at
37°C for 2 h in a humidified incubator. Then, the optical density
(OD) value at 450 nm was measured by the microplate reader
(Tecan, Thermo Scientific, United States).

EdU Proliferation Assay
An EdU kit (Riobo, Guangzhou, China) was used to detect the
effects of hUMSC-derived Exos and EMs on the proliferation
of hDF-a cells. The hDF-a cells were seeded at 1 × 105 cells per
well in 24-well plates and were cultured until the exponential
growth period. Then, the cells were divided into seven groups
as follows: the control (CN) group, exosomes 5 μg/ml (E5),
exosomes 20 μg/ml (E20), exosomes 50 μg/ml (E50), EMs 5 μg/
ml (EM5), EMs 20 μg/ml (EM20), and EMs 50 μg/ml (EM50).
The control group of cells was cultured in high-glucose
DMEM. Moreover, the exosomes and EM groups were
prepared with a concentration gradient. After the cells were
cultured for 24 h, the EdU experiment was performed
following the manufacturer’s instructions. Cell proliferation
was determined by counting the number of EdU-positive cells
and total cells from randomly selected image fields. Then, the
ratio of EdU-positive cells to total cells was calculated. Images
were taken with a Zeiss fluorescence microscope (Axio
Observer.D1, Shanghai, China).

Scratch Wound Assay
Briefly, 1 × 105 cells per well were seeded into 6-well plates and
incubated for 24 h. Then, the confluent layer of cells was scratched
using a sterile 20–200 μL pipette tip. After washing the cells with
PBS, 0, 20, or 50 μg/ml exosomes or EMs were added. Images were
recorded at 0, 6, and 12 h after the monolayers were scratched.
Scratched areas were measured by ImageJ software.

In Vivo Cutaneous Wound Healing Model of
Mice
C57 mice (22 ± 2 g) at 8 weeks old were purchased from
Shanghai Jihui Laboratory Animal Technology Co., Ltd.
(Shanghai, China). Animals were housed in an SPF-class
laboratory and allowed access to water and food. All animal
care and experimental procedures were supported by the
Committee on Ethics of Biomedicine, Naval Medical
University (Approval No: 20180309020). Before the surgery,
the mice were anesthetized by an intraperitoneal injection of 2%
pentobarbital (50 mg/kg). After shaving the dorsal hair and
disinfecting the skin, two 10 mm × 10 mm bilateral
symmetry round full-thickness incisions were made by a 10-
mm punch biopsy on the upper back. The mice were randomly
divided into five groups of six animals as follows: 1) Control
group: the wounds were merely covered by gauze and
Tegaderm™ film (3M, United States) without any treatment.
2) Exos group: the 20 μg/ml hUSMC-Exos were injected
subcutaneously around the wound area. 3) Exosome
mimetics group: the 20 μg/ml hUSMC-EMs were injected
subcutaneously around the wound area. 4) GelMA-Exos
group: the wounds were covered by GelMA loaded with
20 μg/ml hUSMC-Exos. 5) GelMA-EMs group: the wounds
were covered by GelMA loaded with 20 μg/ml hUSMC-EMs.
The wounds were photographed at 0, 4, 7, and 14 days after
surgery. The wound size was measured by ImageJ software
(NIH, United States). At 4, 7, and 14 days after surgery, two
mice in each group were sacrificed for further analysis.

Histology Analysis
The wounded skin in each group was removed at days 4, 7, and
14 postsurgery, fixed in 4% paraformaldehyde for 48 h,
gradually dehydrated with a series of graded ethanol
solutions, embedded in paraffin, and sectioned into 5 μm-
thick sections. Then, the sections were stained with
hematoxylin and eosin (H&E) and Masson’s trichrome. H&E
staining was used to evaluate the extent of wound healing, while
Masson’s trichrome staining was performed to determine the
maturity of collagen. Cell proliferation was tested by
immunohistochemical staining of Ki67 (AF0198, Affinity
Biosciences, United States). The sections were rehydrated and
heated in a microwave in citrate buffer (0.01 M; pH 6.0) for
15 min to retrieve the antigen. Then, they were blocked in 1%
BSA for 30 min at room temperature, incubated with the
primary antibody anti-ki67 overnight at 4°C, and finally, they
were incubated with the respective secondary antibodies at
room temperature for 1 h in the dark. Images were acquired
with a fluorescence microscope.
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Proteomic Profiling
Liquid chromatography–tandem mass spectrometry (LC-MS/
MS)-based proteomic technologies were used to ionize and
separate eluted peptides by mass spectrometry according to
their unique mass-to-charge ratio (m/z). The data were
analyzed in Proteome Discoverer (v2.4.1.15) software
(Thermo Fisher) for the main search. The differential
expression threshold was set to a 1.5 fold change. After the
t-test analysis, significantly differentially enriched proteins
were identified through volcano plot filtering between the two
experimental groups. Finally, hierarchical clustering was
performed to show distinguishable enriched protein
profiles among the samples using the GO and KEGG
databases (http://eggnog5.embl.de).

Statistical Analysis
The data are presented as the mean ± standard deviation (SD).
Two groups were compared by Student’s t-test using GraphPad
Prism 8.0 software. A two-sided t-test with p < 0.05 was defined as
statistically significant.

RESULTS

Characterization of Human Umbilical
Mesenchymal StemCell-Derived Exosomes
and Exosome Mimetics
hUMSC exosomes were collected using ultracentrifugation as
previously described (Livshits et al., 2015; Li et al., 2017). Then,
hUMSCs were extruded to form EMs, which were collected by
using ultracentrifugation (Huang et al., 2020; Nasiri Kenari et al.,
2020).

hUMSC-derived exosomes and EMs were characterized by
TEM, NTA, and Western blotting analysis. TEM showed the
morphologies of hUMSC-derived exosomes and EMs as
shown in Figure 1B. We can see that EMs, which are the
same as exosomes, are round cup-shaped vesicles with lipid
membranes (Kalluri and LeBleu, 2020). The NTA results
(Figure 1C) of hUMSC-derived exosomes and EMs
demonstrated an approximate Gaussian distribution of size
with a peak diameter of approximately 100 nm, which is
consistent with the TEM results. From Western blotting
analysis, vesicle membrane markers (CD9), multivesicular
body proteins (TSG101), and cell generation-related protein
(ALIX) (Kalluri and LeBleu, 2020) are used as identification
proteins for exosomes. In addition, EMs had endoplasmic
reticulum-related protein (calnexin) which exosomes did not
have (Figure 1D) (Chen et al., 2020).

Previous work verified that exosomes and EMs have similar
characteristics and extensive biological effects (Lu and Huang,
2020). After that, the uptake efficacy of exosomes and EMs by
recipient cells, such as dermal fibroblasts, was also evaluated.
We labeled the hUMSCmembrane with CM-DiI in red and then
introduced it into polycarbonate filters with pores to produce
EMs. At the same time, the exosomes were also labeled with
CM-DiI. Exosomes and EMs were incubated with the human

dermis-immortalized fibroblast cell line hDF-a for 24 h
separately (Zhang et al., 2016). After Hoechst staining of the
nuclei in blue, the TEMmerging graphics showed that these two
kinds of nanoparticles could be internalized into the cells
(Figure 1E). The obtained results indicate that hDF-a has
effective internalization capabilities for both hUMSC-Exos
and EMs.

Human Umbilical Mesenchymal Stem
Cell-Derived Exosome Mimetics Can
Promote Proliferation and Migration of
Human Dermal Fibroblasts-a In Vitro
Next, the regulation of hDF-a behavior by exosomes and EMs
was evaluated. The EdU incorporation assay and CCK-8 assays
were used to evaluate hDF-a proliferation ability, and the
scratch test was used to evaluate hDF-a migration ability (Liu
et al., 2018). With increasing concentrations of exosomes and
EMs, the number of EdU-probe-labeled proliferating cells per
field was gradually increased in a dose-dependent manner
compared to the exosome group and control group
(Figure 2A). Moreover, the EMs group showed higher
proliferative capability than the exosome group at a certain
concentration (Figure 2B). After 4 h of incubation, as shown by
the OD values at 450 nm, the results of the CCK-8 assays
(Figure 2C) also showed the same tendency as the EdU
incorporation assays. This result indicated that the
proliferation-promoting effects of exosomes and EMs on
hDF-a were equal at the same concentration.

We also applied the scratch assay to verify the migration of
hDF-a cells in vitro after hUMSC-derived exosome or EM
treatments, and the result indicated that exosomes and EMs
could promote the migration of hDF-a (Figure 2D). The
quantitative analysis by ImageJ suggested that the percentage
of migration area (%) of EMs was slightly smaller than that of
exosomes (Figure 2E). In this part, the promoting effects of
exosomes and EMs on the proliferation and migration of
fibroblasts were tested, and EMs showed equal effects
compared with exosomes.

Human Umbilical Mesenchymal Stem
Cell-Derived Exosome Mimetics Loaded on
GelMA Accelerate Wound Healing In Vivo
The effects of exosomes and EMs on wound healing were
subsequently evaluated. hUMSC-derived exosomes and EMs
were labeled with CM-DiI and then loaded on GelMA.
Exosomes and EMs were both evenly incorporated into
GelMA (Supplementary Figure S1). In addition, we
investigated whether the hUMSC-derived EM-loaded GelMA
hydrogel could improve the closure and tissue repair of full-
thickness skin wounds (Supplementary Figure S2). Figure 3A
shows optical images of the wound healing on days 4, 7, and 14
after surgery. While the wound sizes in all five groups decreased
with time, especially on day 4 after injury, the wound sizes in the
GelMA-EMs group were clearly smaller than those in the
GelMA-Exos group, and the wounds had almost closed by
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14 days. In addition, the EMs group had a repair effect similar to
that of the exosomes group. The exosomes group showed a better
repair effect than the control group as previously described.
Quantification of the wound sizes confirmed the
aforementioned results (Figure 3B).

Hematoxylin and eosin (H&E) staining showed the histologic
changes of the wounds at day 7 (Figure 3C). The yellow dotted
lines indicate the boundary of the wound site. Compared to the
control group, we can see that the GelMA-EMs group showed a
reduced inflammatory response, and the granulation tissues were
restored much more quickly. The area of granulation tissues in
random sights differs remarkably. The newly formed epidermis

was nearly intact and stretched under hydrogel residues in the
GelMA-Exos and GelMA-EMs groups. The thickness
(Figure 3D) of the neo-epithelium of GelMA-EMs was
significantly increased. The vessel numbers in random
0.04 mm2

fields (Figure 3E) indicate that the wound bed of
the experimental groups has higher angiogenesis activity than
that of the control group. It is known that the fibroblasts showed
higher proliferation activity 7 days after injury. Afterward,
macroscopic images of Masson’s trichrome staining were
applied to evaluate the deposition and maturation of collagen
on day 7 (Figure 3F). Ki67 immunohistochemistry was used to
investigate cell proliferation (Yang et al., 2020). Compared to the

FIGURE 2 | The effect of hUMSC-derived exosomes and EMs on the proliferation and migration of hDF-a cells in vitro (CN = control, E5 = exosome 5 μg/ml, E20 =
exosome 20 μg/ml, E50 = exosome 50 μg/ml, EM5 = EMs 5 μg/ml, EM20 = EMs 20 μg/ml, EM50 = EMs 50 μg/ml). (A) hUMSC-derived exosomes and EMs promoted
proliferation of hDF-a by EdU incorporation assays. Cell nuclei were stained blue. After the images are merged, proliferating cells were counterstained purple with an EdU
probe. (B)Quantitative analysis of the EdU incorporation assays (n = 4, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001). (C) hUMSC-derived exosomes and EMs
promoted the proliferation of hDF-a cells as shown in CCK-8 assays. (n = 4, *p < 0.05, **p < 0.01) (D) A scratch assay verified the migration of hDF-a cells in vitro by
hUMSC-derived exosomes and EMs. (E) Quantitative analysis of scratch assays (n = 4, *p < 0.05, **p < 0.01, ****p < 0.0001).
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other four groups, the experimental groups showed stronger
positive staining of Ki67 (Supplementary Figure S3),
suggesting that both exosomes and EMs could facilitate cell

proliferation during the healing period (Supplementary Figure
S3), thereby accelerating granulation tissue formation and
enhancing collagen deposition. The in vivo experiments

FIGURE 3 | The effect of hUMSC-derived exosome mimetics on skin wound healing in vivo. Representative images (A) and quantification (B) of full-thickness
cutaneous wound sizes showed that the hUMSC-derived exosome mimetics loaded on GelMA could accelerate the wound healing process. The data are shown as the
mean ± SD. The significant difference between the untreated and hydrogel-treated groups was analyzed by the t-test (n = 6, *p < 0.05, **p < 0.01, ***p < 0.001, ****p <
0.0001). Epidermis thickness (C) and vessel numbers (D) per random field were analyzed by the t-test. (n = 4, *p < 0.05, **p < 0.01) H&E staining (E) of the wound
sites is shown. The yellow dotted lines indicate the boundary of the wound sites. The blue arrows indicate granulation tissues. The yellow arrows indicate inflammatory
neutrophils. The red arrows label the newly formed epidermis. (F) Masson’s trichrome staining and ki67 immunohistochemistry staining of wound sites.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org May 2022 | Volume 10 | Article 8665057

Zhu et al. Exosome Mimetic Accelerates Wound Repair

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


showed that GelMA-loaded EMs could promote skin wound
healing, and these results provide promising prospects for
clinical application.

Proteomic Profiling Reveals a Distinct
Protein Landscape Between Exosome
Mimetics and Exosomes
The aforementioned data show that compared with hUMSC-
derived exosomes, hUMSC-derived EMs have a similar
efficiency in wound healing and even better efficiency under
some circumstances. To determine the molecular difference
between exosomes and hUMSC-derived EMs, we carried out
label-free mass spectrometry-based proteomics. Proteomic
profiling identified 2,469 proteins in exosomes and 3,427
proteins in EMs from a total of 3,673 proteins. A number of
proteins (2,223) were commonly found in both samples
(Figure 4A). The differentially enriched protein between
samples was examined by the t-test and p values, indicating that
1,666 proteins were significantly differentially enriched (FC > 1.5,
p < 0.05). A volcano plot was generated to visualize the differential

enrichment between the two groups, as shown in Figure 4B. Next,
the upregulated proteins in hUMSC-derived EMs were further
analyzed based on the Gene Ontology (GO) and the Kyoto
Encyclopedia of Genes and Genomes (KEGG) databases (http://
eggnog5.embl.de) (Huerta-Cepas et al., 2019). Subcellular analysis
of upregulated proteins in hUMSC-derived EMs was performed
(Figure 4C). Interestingly, in addition to the extracellular matrix,
cytoskeleton, and cell membrane, many proteins were localized in
the mitochondria. Furthermore, the results of enrichment analysis
of the KEGG signaling pathway showed that EM proteins were
enriched in oxidative phosphorylation- and tricarboxylic acid cycle
(TCA cycle)-related pathways (Figure 4D). Subsequent analysis of
the proteomic data revealed that EMs-upregulated proteins are
mainly concentrated in the enzymes related tomaterial metabolism
in the TCA cycle and the respiratory chain complex (Figure 4E,
red) (Fernie et al., 2004). Taken together, we showed that
distinguishable protein profiles between EMs and exosomes are
upregulated, especially in the mitochondria and oxidative
phosphorylation. Protein profiling also revealed that EMs may
promote wound healing by enhancing the oxidative
phosphorylation of cells in the wound.

FIGURE 4 | Proteomic profiling reveals a distinct protein landscape between EMs and exosomes. (A) Venn diagram showing the number of identified proteins of
hUMSC-derived exosomes and EMs (n = 3). (B) Volcano plots are useful to visualize differentially enriched protein patterns among hUMSC-derived EMs and exosomes
(the quantitative difference in enriched protein between EMs to exosomes using p-value > 0.05, FC ≥ 1.5). (C) Subcellular analysis of differentially enriched protein
annotations between EMs and exosomes. (D) KEGG enrichment analysis of differentially enriched proteins annotations between EMs and exosomes. (E)
Upregulated protein enriched in mitochondrial oxidative phosphorylation and the TCA cycle.
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DISCUSSION

Delayed wound healing remains an intractable affair for patients,
families, and society. Recent studies of hUMSC-derived exosomes
showed that, in addition to their cell communication function, they
also play an important role in transferring therapeutic factors. The
benefit of exosomes is that they have quantities of bioactive
substances and lower immunological responses than the cells
(Chen et al., 2018; Tao et al., 2018; Henriques-Antunes et al.,
2019). The application of exosome-based cell-free therapy in
wound healing and tissue regeneration attracts our attention.
However, exosome-based therapy is still limited by their
heterogeneity, therapeutic loading, large-scale manufacturing
restrictions, and low yield for extraction and purification
(Gurunathan et al., 2019). Recently, engineering nanoparticles are
said to be obtained by polycarbonate filters with pores, microfluidic
devices, supramolecular chemistry, and hybridization (Nasiri Kenari
et al., 2020; Li et al., 2021). New studies have shown that EMs, as a
kind of engineered nanoparticle, demonstrate reproducibility in the
protocol, cost-effectiveness, higher yield production rates, and can
simulate complex biological components (Ilahibaks et al., 2019; Li
et al., 2021). Furthermore, Fan and his colleagues showed that
hUMSC-derived EMs could promote bone regeneration (Fan
et al., 2020). Therefore, we wondered whether the EMs could
promote skin wound healing and tissue regeneration and whether
there was a difference between extruded exosome mimetics and
natural exosomes.

In this study, hUMSC-derived EMs were achieved by taking
hUMSCs through polycarbonate filters with hUMSC-derived
exosomes as their controls. As described in the results, we
found that hUMSC-derived exosomes and EMs shared a
similar appearance, indicating that EMs could potentially
take advantage of nanoparticle properties such as
biocompatibility, biological stability, and plasma protein
interactions. Because EMs were eventually extruded by
filters of 200 nm, compared to exosome particle sizes
concentrated at approximately 100 nm, the particle sizes of
EMs were concentrated between 100 and 200 nm. Moreover,
besides the traditional cell membrane markers similar to
exosomes, EMs also enriched some other proteins from
their donor cells, which were shown in our Western
blotting analysis. These proteins were also identified by
mass spectrometry-based proteomics analysis.
Biocompatible markers, such as CD55 and CD59, may help
EMs escape from elimination and prolong the half-life of
circulation.

GelMA hydrogels have been reported as promising
biomaterials to deliver drugs/cells for wound healing and
tissue regeneration because they have inherent advantages,
such as absorbing wound fluid, preventing infection, and
offering gaseous exchange (Pacelli et al., 2015). It could be
easily achieved by conjugating lithium phenyl-2,4,6-
trimethylbenzoylphosphinate (LAP) with GelMA by shielding
it under UV rays (Yue et al., 2015). To increase the local drug
distribution and allow exosomes and EMs to be continuously
released, GelMA could be an ideal biomaterial. We successfully
assembled exosomes and EMs on GelMA and they could be

distributed evenly. Therefore, we proposed that bioactive
hydrogels carrying hUMSC-derived EMs could be a highly
efficient novel method for wound healing and tissue regeneration.

As shown in the results, EMs promoted fibroblast proliferation
and migration in vitro. Surprisingly, EMs have even better biological
activities than exosomes under certain conditions. At the same time,
the results in vivo showed a similar result that the EMs could
promote wound healing as effectively as exosomes, and the GelMA-
EMs group presented the best wound healing efficiency even over
the GelMA-Exos group. The skin wound injury treatment outcomes
were especially diverse regarding wound area shrinkage, tissue
regeneration, and epidermal stretching. The manufacturing of
engineered exosome mimetics, an alternative candidate of
exosomes to mimic exosomes by size, morphology, and function,
has been proposed in this article. The administration of exosomes
and EMs by GelMA has better efficiency than mere subcutaneous
administration. The obtained results suggested that EMs combined
with wound dressing scaffolds could provide a novel cell-free
method for wound healing and tissue regeneration.

Although the benefits of hUMSC-derived EMs address the issues
in wound healing, the proteome cargo of EMs has not been
comprehensively characterized and may potentially have an effect
on recipient tissues and cells (Nasiri Kenari et al., 2019). We
investigated the proteome cargo of EMs and compared it to that
of natural exosomes secreted from the same cell line. A subset of
proteins is highly abundant in hUMSC-derived EMs compared to
well-known exosomal cargo proteins. We further applied GO and
KEGG pathway analyses. There was a noteworthy enrichment of the
mitochondrial-related proteins in EMs compared to exosomes.
Therefore, we evaluated the content of mitochondrial-related
proteins in EMs, and the results showed that there were abundant
mitochondrial-related proteins in EMs (Supplementary Figure S4)
(Driesen et al., 2009). The aforementioned results indicate that the
functional mitochondrial components in hUMSCs may be packaged
into EMs. As it is well known, the mitochondrion is an energy
reservoir for the functional ability and individual activity. Hayakawa
and his colleagues reported that astrocyticmitochondria could provide
entry to adjacent neurons and amplify cell survival signals (Hayakawa
et al., 2016). Many researchers have reported that mitochondrial
transfer from the bone marrow-derived stromal cells could protect
against acute lung injury (Islam et al., 2012), and it is envisaged that
EMs may take effect in the means of MSC mitochondrial transfer to
regulate wound healing and tissue regeneration processes.

CONCLUSION

In this study, the efficiency of EMs in repairing wounds was
verified in vivo and in vitro. The obtained results showed that
compared with hUMSC-derived natural exosomes, hUMSC-
derived exosome mimetics could similarly promote wound
healing by promoting the proliferation and migration of dermal
fibroblasts. Further proteomics data revealed that EMs carry
mitochondrial-related proteins derived from hUMSCs.
Quantities of TCA cycle-related proteins and respiratory chain
complexes are significantly enriched in EMs. The obtained results
suggest that treatment with GelMA-carrying EMs for wound
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healing and tissue regeneration could have promising prospects for
future clinical applications. EMs are promising candidates for
natural cell-derived exosomes.
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