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Development and validation of a semi-supervised
deep learning model for automatic
retinopathy of prematurity staging

Wei Feng,1,2,5 Qiujing Huang,3,4,5,* Tong Ma,1 Lie Ju,1,2 Zongyuan Ge,2 Yuzhong Chen,1 and Peiquan Zhao3,6,*

SUMMARY

Retinopathy of prematurity (ROP) is currently one of the leading causes of infant blindness worldwide.
Recently significant progress has been made in deep learning-based computer-aided diagnostic methods.
However, deep learning often requires a large amount of annotated data for model optimization, but this
requires long hours of effort by experienced doctors in clinical scenarios. In contrast, a large number of
unlabeled images are relatively easy to obtain. In this paper, we propose a new semi-supervised learning
framework to reduce annotation costs for automatic ROP staging. We design two consistency regulariza-
tion strategies, prediction consistency loss and semantic structure consistency loss, which can help the
model mine useful discriminative information from unlabeled data, thus improving the generalization per-
formance of the classification model. Extensive experiments on a real clinical dataset show that the pro-
posed method promises to greatly reduce the labeling requirements in clinical scenarios while achieving
good classification performance.

INTRODUCTION

Retinopathy of prematurity (ROP) is a proliferative disorder of the developing retina in premature infants.1 It continues to be a major cause of

childhood blindness worldwide. The RetCam wide-field digital retinal imaging system (Natus Medical Incorporated, San Carlos, CA, USA) is

currently one of the primary instruments utilized for ROP screening. It has a 130� wide-field lens. After dilation of the pupils, it enables formulti-

directional imaging of the retina. Furthermore, the RetCam system provides image storage and transmission in addition to fundus photog-

raphy, setting the groundwork for telemedicine and artificial intelligence applications. Ophthalmologic examination of preterm infants ne-

cessitates frequent and close monitoring, resulting in a massive workload of manual image reading.2 Clinically, however, there is subjectivity

and diagnostic variation in the diagnosis of ROP stage 1, 2, and 3.3,4 Failure to detect and treat ROP promptly results in late-stage ROP, which

can cause low vision and even blindness. Furthermore, experienced pediatric ophthalmologists are in short supply, with the majority concen-

trated in large cities or large medical centers. Infants with ROP who live in remote areas must travel long distances for referrals, which delays

treatment. Moreover, they may be ineligible for referral in some cases due to poor general health. As a result, telemedicine and computer-

assisted ROP fundus images reading are extremely useful.

In recent years, deep learning techniques havemade breakthroughs in various fields such as computer vision,5,6 natural language process-

ing,7,8 and speech recognition.9,10 In the field of ROP image analysis, many deep learning models have also been proposed for computer-

aided screening and diagnosis. Peng et al.11 proposed a new deep learning model for ROP staging that utilizes parallel feature extraction,

deep feature fusion, and sequential classifiers to extract a richer feature representation. Wang et al.12 proposed a two-stage deep learning

model, Id-Net and Gr-Net, for the ROP recognition and ROP staging tasks, respectively. Lei et al.13 introduced channel attention and spatial

attention mechanisms to improve the performance of ROP detection. However, deep learning methods often require large amounts of an-

notated data for model training. In clinical scenarios, annotating large amounts of data is often time-consuming and laborious, even for expe-

rienced doctors. For the annotation of ROP fundus images, the clinician usually determines the stage of ROP based on the shape and size of

the ridge in the ROP fundus images. In this way, a stage 4 or 5 ROP fundus image is easily distinguished, whereas a normal fundus image, a

stage 1 ROP image, or a stage 2 ROP image may be misinterpreted by the clinician because it is in the early stages of the disease and the

disease is not very distinct, thus increasing the burden on the clinician. Instead, we often have access to large amounts of unlabeled data,

which are relatively easy to obtain and may be beneficial to the classification performance of the model.
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Semi-supervised learning is proposed to minimize the need for annotation as data annotation is time-consuming and laborious.

Given a small amount of labeled data, semi-supervised learning improves the classification performance of the model by utilizing a

large amount of unlabeled data.14,15 The current state-of-the-art semi-supervised learning strategy is consistency regularization, which

does not rely on data labels and improves the classification performance of the model by constraining the consistency of model pre-

dictions under different perturbations of the data.16–18 There has been some research work on the use of semi-supervised learning for

medical image analysis tasks.19–21 For example, Zhao et al.22 proposed a two-stage cascade network for cup-to-disc ratio estimation

based on semi-supervised learning. Adal et al.23 proposed a semi-supervised learning method using a small number of manual markers

and a large number of unlabeled fundus images for the automatic detection of microaneurysms (MAs). Liu et al.24 proposed a semi-

supervised conditional generative adversarial nets (GANs) for the joint segmentation of optic cup and disc. Liu et al.25 proposed a

semi-supervised deep learning model using relationship information among different samples to improve the classification performance

of the model and achieved promising performance on skin disease classification and thorax disease classification. However, there are

still few studies on semi-supervised methods for ROP fundus images classification, and, in addition, these methods do not take into

account the semantic structure correlation between different ROP stages. In this paper, we propose a semi-supervised deep learning

method for ROP staging that can make use of a small amount of labeled data and a large amount of unlabeled data to alleviate the

annotation cost of doctors and improve the classification performance of the model. Specifically, firstly, inspired by the consistency reg-

ularization technique in semi-supervised learning, we argue that the predictions of the model should not be affected by the small per-

turbations imposed on the data. We therefore propose a prediction consistency loss, which forces the model to produce consistent

prediction outputs for the original data under different perturbations, thus improving the generalization performance of the model.

In addition, considering that there is some correlation between different stages of ROP, for example, as shown in Figure 1, stage 1

ROP tends to manifest as a white demarcation line between vascular and non-vascular regions in the posterior pole of the retina. Stage

2 shows a further widening and elevation of the demarcation line and a crestal bulge. In stage 3, the crestal bulge becomes more

pronounced and is accompanied by neovascularization. Stages 4 and 5 often show a further retinal detachment, necessitating ocular

ultrasonography. Some semantic structure correlation between the different stages of ROP can be found, which may be useful for

the classification performance of the model. We therefore propose a semantic structure consistency loss that forces the semantic struc-

ture relationships to remain consistent under different perturbations, thus further extracting rich semantic information from the unla-

beled data to enhance the classification performance.

RESULTS

Construction of the semi-supervised model for ROP image classification

Figure 2 depicts our proposed semi-supervised deep learning classification model for ROP fundus images classification. The model structure is

similar to the popular semi-supervised classification model mean teacher,15 containing a student model and a teacher model, which are identical

in structure. The parameters of the teacher model are optimized by exponential moving average algorithm on the parameters of the student

model.15 The parameters of the student model are optimized by supervised cross-entropy loss on labeled data and consistency loss on unlabeled

data. The consistency loss is calculated from the output of the student model and the output of the teacher model. It consists of prediction consis-

tency loss and semantic structure consistency loss. The prediction consistency loss enhances the generalization performance of the model by

encouraging the twomodels tomaintain the same prediction output for the same input imagewith different data augmentation tomine the infor-

mation in the unlabeled image. In addition, there is some semantic relevancebetweendifferent stages of the ROP, and this semantic relevancemay

help improve model classification performance. We use semantic structure consistency loss to further encourage the model to maintain the same

semantic structure for the fundus images after data augmentation to furthermineuseful information from theunlabeled images to help improve the

classification performance.

Calculation of consistency loss

The prediction consistency loss can be formulated as

Figure 1. Normal fundus images and ROP fundus images of different stages

(A) Normal fundus.

(B) ROP stage1.

(C) ROP stage2.

(D) ROP stage3.

(E) ROP stage4.

(F) ROP stage5.
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Lc =
1

Nl+Nu

XNl+Nu

i = 1

ðEðxiÞ < mÞkfsðxi; qs; tsÞ � ftðxi; qt ; ttÞk22 (Equation 1)

where ts and tt represent the randomperturbations imposed on the original fundus images, fs and ft denote the student and teachermodels,

and qs and qt denote the weights of the student and teacher models, respectively. Nl and Nu are the numbers of labeled images and unla-

beled images, respectively. EðxiÞ represents the entropy of the teacher model’s prediction for sample xi , and m is the threshold. Here, since

themodel is less stable during the early training period, in order to allow themodel to gradually learn frommeaningful and reliable targets, we

consider only those samples that are reliable. We compute the information entropy of the teacher model’s predictions for each sample and

filter out those with high entropy (uncertain, noisy samples).

For the calculation of semantic structure consistency loss, we first feed a batch of fundus images into the classificationmodel and obtain its

deep feature representation S˛RB3D3H3W , where B represents the batch size. D is the number of feature channels. H andW represents the

spatial dimension of the deep feature.

We then reshape the deep feature toQ˛RB3HWD . We compute the case-wise gram matrix26 between the samples in the batchG = Q,

QT , where Gi;j represents the similarity between sample i and sample j. Intuitively, it can reflect the semantic structure correlation between

samples in the current batch. We then normalize each row of the semantic structure correlation matrix G: P =
h

Q1

kQ1k2;.; QB

kQBk2

iT
.

We calculate the semantic structure correlationmatrix for the studentmodel and the teachermodel separately, and the semantic structure

consistency loss can be expressed as

Ls =
1

B

XB
i = 1

��Psðxi; qs; tsÞ � Ptðxi ; qt ; ttÞ
��2

2
(Equation 2)

where Ps and Pt represent the semantic structure correlation matrices of the student and teacher models, respectively.

Finally, we can obtain the overall training loss of our proposed semi-supervised classification model:

Ltotal = Lce + lðLc + LsÞ (Equation 3)

where Lce represents the classification cross-entropy loss computed on a small amount of labeled data, and l is balance coefficient controlling

the weights of the two consistency losses.

Figure 2. Illustration of the framework of the proposed semi-supervised deep learning classification model

Labeled and unlabeled fundus images are input to the model. The student model was optimized based on supervised loss on labeled data and prediction

consistency loss and semantic structure consistency loss on all data. The teacher model was optimized based on an exponential moving average (EMA)

algorithm. We used the student model for inference in the testing phase.
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Dataset description

We used fundus images from 473 infants at Xinhua Hospital as the training set, with a sex ratio of 1.2:1 (male:female). The mean gestational age

was 29.86G 2.47 weeks, and the mean birth weight was 1379.95G 412.95 grams. The dataset contained 4,796 fundus images, of which 3,171

were normal, 744 were stage 1 ROP, 426 were stage 2 ROP, and 455 were stage 3 ROP. To evaluate the performance of the model, we used

fundus images of 62 infants, also collected from Xinhua Hospital, as the test set, with a sex ratio of 1.4:1 (male:female). The mean gestational

age was 29.29 G 2.94 weeks, and the mean birth weight was 1381.77 G 451.75 grams. The dataset contained 386 fundus images, of which

92 were normal, 67 were stage 1 ROP, 154 were stage 2 ROP, and 73 were stage 3 ROP. The image data were collected and analyzed with

the approval of the Xinhua Hospital Ethics Committee and in compliance with the tenets of the Declaration of Helsinki. Detailed statistics of

the dataset are shown in Table 1.

Experimental setup and implementation details

We resized all fundus images into 2243 224 as input to the classificationmodel.We used ResNet50 as our network backbone and initialized it

with the pre-trained weights from the ImageNet dataset. The student model and the teacher model have the same structure. We use area

under the receiver operating characteristic curve (AUC), Accuracy, Sensitivity, and Specificity as evaluation metrics to evaluate the perfor-

mance of different algorithms. We used Python and PyTorch to conduct the experiments. All experiments were run on two NVIDIA 3090

Ti GPUs. We trained a total of 200 epochs using the Stochastic Gradient Descent (SGD) optimizer, with a learning rate set to 1e-4 and a batch

size of 128, containing 32 labeled samples and 96 unlabeled samples. For random perturbations we use random horizontal/vertical flipping,

random rotation, and color jittering. In addition we add a dropout layer before the global pooling layer of the ResNet50 network and set the

dropout rate to 0.2. The threshold m is set to 0.9. The balancing coefficient l is set to 1. We use a Gaussian warm-up function lt =

1 � eð� 5ð1� t=TÞ2Þ to control the two consistency losses, which gradually increase from 0 to 1 in the first T epochs and then fixed. This approach

avoids the model being dominated by the two consistency losses at the beginning of training, where the model’s predictions are unreliable

and therefore not conducive to consistent training.

ROP staging results

We first trained the model using 30% (1,438) of the labeled fundus images in the training set, with the remaining 70% (3,358) fundus images

being unlabeled. Model performance with only 30% (1438) labeled fundus images (without 70% unlabeled images) as the training set is also

presented as the lower bound (baseline_0.3) for comparison. As can be seen from Table 2, when only 30% of the training data are used for

model training, the classification performance of themodel is poor, with an averageAUCof 0.8226, an averageAccuracy of 0.7590, an average

Table 1. Characteristics of the training and test dataset

No. of images Training dataset Test dataset

Normal 3,171 92

Stage 1 744 67

Stage 2 426 154

Stage 3 455 73

Total 4,796 386

Table 2. Classification performance of different algorithms on the test set

Method Class

Metrics

AUC Accuracy Sensitivity Specificity

Baseline_0.3 Normal 0.9918 0.9378 0.9783 0.9252

Ours 0.9996 0.9715 1.0000 0.9626

Baseline_0.3 ROP stage 1 0.7679 0.7280 0.5821 0.7586

Ours 0.8402 0.7202 0.8507 0.6928

Baseline_0.3 ROP stage 2 0.7185 0.6632 0.6429 0.6767

Ours 0.7655 0.6839 0.5844 0.7500

Baseline_0.3 ROP stage 3 0.8126 0.7073 0.8219 0.6805

Ours 0.8470 0.7824 0.7123 0.7987

Baseline_0.3 Average 0.8226 0.7590 0.7562 0.7602

Ours 0.8630 0.7895 0.7868 0.8010

Bold in the tables represent better performance results.
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Sensitivity of 0.7562, and an average Specificity of 0.7602. Our approach forces the model to be consistent not only in its predictions for in-

dividual samples but also in its semantic structure between samples, thus achieving better classification performance with an average AUC

improvement of 4.04%, an average Accuracy improvement of 3.05%, an average Sensitivity improvement of 3.06%, and an average Specificity

improvement of 4.08%. As can be seen from the receiver operating characteristic curves in Figure 3 and the confusion matrix in Figure 4, our

approach achieves performance gains in all categories, which further validates the superiority of our approach.

Effect of different proportions of labeled data

Tofurtherexamine theclassificationperformanceofourproposedsemi-superviseddeep learningclassificationmodelwithdifferentproportionsof

labeled data, we re-run the experiment by varying the number of labeled samples. We also report themodel performance under full supervision,

i.e., 100% (4,796) of the labeled fundus images as the training set, as an upper bound (Oracle) for the comparison. Baseline_0.05, Baseline_0.1,

Baseline_0.15, Baseline_0.2, Baseline_0.3, and Baseline_0.5 denote that only 5%, 10%, 15%, 20%, 30%, and 50% of the labeled data were used,

respectively, and none of them used unlabeled data in the training process. As shown in Table 3, the performance of the model improves as

the sample of labeled training data increases. Furthermore, it can be found that, when we use 50% of the labeled data, the performance of the

proposed algorithm is already close to that of fully supervised (using 100% of the labeled data). This suggests that the proposed method can

make full useof unlabeleddata to improve the classificationperformanceof themodel and significantly reduce the labelingburdenon thedoctors.

Visualization of the evolution of the semantic structure correlation matrix

To further understand the behavior of the proposed semantic structure consistency loss in semi-supervised deep learning classification

methods, we visualized the semantic structure correlation matrices for different epochs. As shown in Figure 5, in the early stage of training,

the correlations between samples are not well presented as themodel has not yet converged, and the semantic structure correlationmatrices

of the student and teacher models under different perturbations show large differences. As training proceeded, the semantic correlations

Figure 3. Receiver operating characteristic curves for different methods

(A) Baseline_0.3, (B) ours.

Figure 4. Confusion matrix of different methods

(A) Baseline 0.3.

(B) Ours.
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between the samples became clearer and the differences between the semantic structure correlation matrices of the student and teacher

models became smaller due to the constraint of semantic structure correlation consistency loss, thus allowing the model to learn a more

robust and discriminative feature representation, which explains the improved performance of the proposed method.

Heatmap visualization

To more visually demonstrate which regions of the image our method uses for prediction, we visualize the heatmap using Class Activation

Mapping (CAM) techniques. As shown in Figure 6, it can be seen that our method mainly uses the features of the ridge region in the ROP

image to determine which stage of ROP the image belongs to, which is consistent with the clinical experience of doctors in determiningwhich

stage the ROP image belongs to.

DISCUSSION

ROP is a retinal disease that affects premature newborns and causes blindness worldwide. Automated screening and diagnosis of ROP help

doctors to give appropriate treatment plans in a timely and appropriatemanner. A number of deep learning algorithms have been proposed,

and significant progress has been made in order to implement automated ROP detection in real-life scenarios. For example, Tong et al.27

used deep learning to perform automatic assessment of ROP severity and also to detect the presence of plus disease; the accuracy of its

classification of ROP severity was 0.903. Mulay et al.28 used a Mask region-based convolutional neural network (R-CNN)29 model based on

deep convolution neural networks to detect the important disease landmark ridge in ROP images, thus helping to better diagnose and screen

for ROP early, and their model reached detection accuracy of 0.88. However, for real-world automatic ROP staging, obtaining large amounts

of labeled data is often very difficult, which limits the application of deep learning models. This is mainly due to the following reasons. Firstly,

the disease features of ROP are not very obvious at the beginning and the ROP images are usually acquired with low contrast, which leads to a

lot of time and effort required by the doctor for annotation. Secondly, it is difficult to collect a large amount of ROP image data because the

number of ROP patients is relatively small compared with other common disease. In this paper, we propose a new semi-supervised deep

learning framework that aims to improve the classification performance of the model for ROP staging using a small amount of labeled

data and a large amount of unlabeled data. We base our approach on a consistency regularization strategy, which encourages the model

to be consistent in its predictions for data after different perturbations tomake efficient use of the large amount of unlabeled data. In addition,

we also consider that the disease evolution relationship between different ROP stagesmay be useful for classification performance and there-

fore further propose a semantic structure correlation consistency loss to encourage consistency in semantic structure across samples. Our

approach was able to significantly reduce the annotation burden on doctors. As can be seen in Table 3, our approach achieves near fully su-

pervised performance using only 50% of the data, which validates the effectiveness of the proposed approach. In addition, it is evident from

the confusion matrix and receiver operating characteristic curves that our method performs better on all categories. The heatmap also dem-

onstrates that our method does make judgments based on the shape and size of the important ROP-related disease feature ridge. Our

method can be used not only for ROP staging but also for other computer-aidedmedical image analysis tasks and thus has significant clinical

applications.

Table 3. Classification performance of the model on the test set using different proportions of labeled data

Method

Percentage Metrics

Labeled Unlabeled AUC Accuracy Sensitivity Specificity

Oracle 100% 0% 0.8869 0.8225 0.7801 0.8359

Baseline_0.05 5% 95% 0.8027 0.6716 0.8301 0.6165

Ours 5% 95% 0.8188 0.7442 0.8341 0.6919

Baseline_0.1 10% 90% 0.7908 0.6988 0.7529 0.6787

Ours 10% 90% 0.8059 0.7247 0.7550 0.7086

Baseline_0.15 15% 85% 0.7960 0.6696 0.7902 0.5981

Ours 15% 85% 0.8345 0.7655 0.7687 0.7622

Baseline_0.2 20% 80% 0.8173 0.7169 0.8470 0.6497

Ours 20% 80% 0.8283 0.7739 0.7686 0.7740

Baseline_0.3 30% 70% 0.8226 0.7591 0.7562 0.7602

Ours 30% 70% 0.8630 0.7895 0.7868 0.8010

Baseline_0.5 50% 50% 0.8487 0.7979 0.7581 0.8016

Ours 50% 50% 0.8751 0.8128 0.7754 0.8231

Bold in the tables represent better performance results.
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There are several limitations of our work. Limited by the data source, our model has not been tested for performance on the ROP fundus

image dataset from a large range of healthcare institutions. In addition, quality control of our dataset is done by experienced professionals.

However, there may be some ROP images of poor quality in large-scale screening scenarios, which may affect the performance of the model.

Conclusion

In this paper, we propose a semi-supervised deep learning classification model for ROP staging.We propose two types of consistency loss to

efficiently exploit unlabeled data, which can substantially reduce the annotation burden on doctors and require them to annotate only part of

the data to achieve near fully supervised performance.We experimentally validate the effectiveness of the proposed algorithm. Future work is

needed to validate the performance of the proposed algorithm on a larger medical clinical dataset.
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Ethical statement

The authors are accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of thework are

appropriately investigated and resolved. The image data were collected and analyzed with the approval of NCH and in compliance with the

tenets of the Declaration of Helsinki.

METHOD DETAILS

Patient cohorts

The training dataset incorporated fundus images from 473 infants at Xinhua Hospital, maintaining a gender ratio of 1.2:1 (male: female). On

average, the gestational age was (29.86 G 2.47) weeks, and the mean birth weight was (1379.95 G 412.95) grams. Within this dataset, there

were 4796 fundus images, consisting of 3171 normal cases, 744 instances of stage 1 ROP, 426 instances of stage 2 ROP, and 455 instances of

stage 3 ROP. For evaluating themodel’s performance, a separate test set was created using fundus images from 62 infants, also sourced from

Xinhua Hospital. The gender ratio in the test set was 1.4:1 (male: female), with an average gestational age of (29.29G 2.94) weeks and amean

birth weight of (1381.77 G 451.75) grams. This test set comprised 386 fundus images, including 92 normal cases, 67 stage 1 ROP cases, 154

stage 2 ROP cases, and 73 stage 3 ROP cases.

Semi-supervised deep learning classification model

In the realm of medical imaging, annotating medical images is an arduous and time-consuming task. The intricacies of medical conditions,

structures, and anomalies require meticulous labeling, often demanding significant expertise from skilled professionals. The exhaustive na-

ture of this annotation process poses a considerable challenge, as it necessitates a substantial investment of time and human resources.

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

Resnet He et al.30 (2016) https://doi.org/10.48550/arXiv.1512.03385

Mean teacher Tarvainen et al.15 (2017) https://doi.org/10.48550/arXiv.1703.01780

Matplotlib Version 3.3.1 https://matplotlib.org/3.3.1/

Scikit-learn Version 0.23.2 https://scikit-learn.org/stable/whats_new/

v0.23

Python Version 3.80 https://www.python.org/downloads/release/

python-380/

PyTorch Version 1.11.0 https://download.pytorch.org/whl/torch/

Semi-supervised deep learning

classification model

This study Please request from lead contact (hqj1010@

126.com) for non-commercial, research

purposes
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Moreover, the development and training of deep learning models for medical image analysis heavily rely on vast amounts of meticulously

annotated data. The hunger for labeled datasets is insatiable in the pursuit of creating robust and accurate models. The scarcity of annotated

medical images, coupled with the intricate nature of medical phenomena, exacerbates the already formidable challenge of obtaining the

requisite labeled data for effective model training.

To alleviate the annotation requirements and improve the ROP classification performance, we propose a semi-supervised learning-based

classification framework. Our proposed semi-supervised deep learning classification model shares similarities with the well-known semi-su-

pervised classification model, Mean Teacher. It comprises a student model and a teacher model, both identical in structure. The teacher

model’s parameters are optimized using the exponential moving average algorithm applied to the parameters of the studentmodel. To opti-

mize the student model’s parameters, we employ supervised cross-entropy loss on labeled data and consistency loss on unlabeled data. The

consistency loss is computed based on the outputs of both the student and teacher models and includes prediction consistency loss and

semantic structure consistency loss. Prediction consistency loss enhances model generalization by ensuring both models yield the same pre-

dictions for the same input imagewith different data augmentations, extracting information from unlabeled images.We employ various tech-

niques for introducing random perturbations in the data, including random horizontal/vertical flipping, random rotation, and color jittering.

Additionally, a dropout layer with a dropout rate of 0.2 is incorporated before the global pooling layer of the ResNet50 network. Additionally,

considering the semantic relevance between different stages of the ROP, we leverage semantic structure consistency loss to encourage the

model to maintain consistent semantic structures for fundus images after data augmentation. This further extracts valuable information from

unlabeled images, contributing to improved classification performance. We compute the case-wise grammatrix between samples, which re-

flects the semantic structural relationships between different samples. To standardize the input, all fundus images are resized to 2243 224 for

input to the classification model. Resnet50 serves as our network backbone, initialized with pretrained weights from the ImageNet dataset.

Both the student and teacher models share an identical ResNet50 structure. The experiments were conducted using Python (3.8), PyTorch

(1.11.0) and scikit-learn (0.23.2), and all experiments were executed on two Nvidia 3090 Ti GPUs.

QUANTIFICATION AND STATISTICAL ANALYSIS

Weevaluate the performance of the proposed semi-supervised classification framework on the test set data fromXinhuaHospital.We employ

AUC (Area Under the Curve), Accuracy, Sensitivity, and Specificity as the evaluation metrics to assess the performance of diverse algorithms.

For heatmap visualization, we use the CAM technique, which helps us to understand on which features in the image the model is based to

make predictions.
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