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Abstract: A novel Au nanoparticle (AuNP)-biopolymer coated carbon screen-printed electrode (SPE)
sensor was developed through the co-electrodeposition of Au and chitosan for mercury (Hg) ion
detection. This new sensor showed successful Hg2+ detection in landfill leachate using square
wave anodic stripping voltammetry (SWASV) with an optimized condition: a deposition potential
of −0.6 V, deposition time of 200 s, amplitude of 25 mV, frequency of 60 Hz, and square wave
step voltage of 4 mV. A noticeable peak was observed at +0.58 V associated with the stripping
current of the Hg ion. The sensor exhibited a good sensitivity of ~0.09 µA/µg (~0.02 µA/nM)
and a linear response over the concentration range of 10 to 100 ppb (50–500 nM). The limit of
detection (LOD) was 1.69 ppb, which is significantly lower than the safety limit defined by the
United States Environmental Protection Agency (USEPA). The sensor had an excellent selective
response to Hg2+ in landfill leachate against other interfering cations (e.g., Zn2+, Pb2+, Cd2+, and
Cu2+). Fifteen successive measurements with a stable peak current and a lower relative standard
deviation (RSD = 5.1%) were recorded continuously using the AuNP-biopolymer-coated carbon SPE
sensor, which showed excellent stability, sensitivity and reproducibility and consistent performance
in detecting the Hg2+ ion. It also exhibited a good reliability and performance in measuring heavy
metals in landfill leachate.

Keywords: Au nanoparticle; biopolymer; co-electrode position; landfill leachate; square wave anodic
stripping voltammetry (SWASV)

1. Introduction

Mercury (Hg) pollution caused by industrial activity has been attracting global at-
tention for decades [1–3]. Mercury occurs in many forms in aqueous solution depending
on oxidation and reduction conditions [4]. The main forms of Hg exposure in the general
population include methylmercury (MeHg) from seafood, inorganic mercury (I–Hg) from
food, and mercury vapor (Hg0) from dental amalgam fillings [5]. Most Hg occurs in organic
and inorganic forms of divalent mercury and Hg0, as a form of Hg dissolved in an aqueous
phase [6]. Once Hg has reached surface waters or soils, microorganisms convert it to MeHg,
a substance that can be absorbed quickly by most organisms including marine life. MeHg,
upon consumption, can cause negative health effects (i.e., nerve, kidney and intestinal
damage; stomach disruption; reproductive failure; and DNA alteration) [7]. Inorganic
mercury, Hg0 and Hg2+, is released into the environment from a variety of anthropogenic
and natural sources. In particular, Hg2+ ions are one of the largest hazardous Hg pollutants
in aquatic ecosystems [8]. Furthermore, Hg2+ is not readily biodegradable and is prone
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to bioaccumulation and biomagnification across trophic levels. Exposure to Hg2+ has
been linked to several diseases; such as Minamata [9], acrodynia [10], cardiac [11] and
neurological disorders, [12] and several developmental illnesses.

Surface water and groundwater are often polluted by untreated sewage water, in-
dustrial waste, gasoline, medical waste, electroplated steel and electronic parts. Since Hg
accumulates in the ecosystem during tropospheric cycling, it is essential to regulate the
presence of Hg2+ in drinking water and environmental systems. The United States Environ-
mental Protection Agency (USEPA) has mandated an upper limit of 2 ppb (10 nM) of Hg2+

in drinking water [3], so monitoring of very low concentrations of Hg in the early stages
of pollution is required to assess hidden risks. Various analytical methods such as atomic
absorption spectrophotometry (AAS) [13], atomic fluorescence spectrometry (AFS) [14],
inductively coupled plasma mass spectrometry (ICP-MS) [15], and X-ray fluorescence
spectrometry [16] have been developed for detecting Hg. These are generally combined
with cold vapor generation and amalgamation techniques to separate and pre-concentrate
Hg to achieve a high sensitivity [17,18]. However, the complicated pretreatment requires a
variety of different reagents and numerous preparation steps. Electrochemical techniques
are very effective in detecting low concentrations of mercury because metal ions can be
rapidly pre-concentrated on the electrode surface using methods such as anodic stripping
voltammetry (ASV) [19]. In addition, modifying electrodes can offer ease of operation
and low-cost and portable instrumentation [20]. The sensitivity and selectivity of Hg
electrochemical sensors have been greatly improved by nanostructured electrodes, which
provide a large surface area and intriguing properties [21–23].

Gold nanostructures have attracted great research interest in the voltammetric de-
tection of mercury because of their high affinity [24], good catalytic ability [25], high
adsorption capacities [26], and excellent mass transport [27,28]. Among the many methods
to prepare AuNPs, the reduction of chloroauric acid (HAuCl4) is the most popular [29], but
recently, the use of polymers to synthesize AuNPs has been reported. For example, AuNPs
were prepared in the presence of chitosan [21,22] and its derivative carboxymethylated
chitosan [24]. Chitosan is recognized as a low-cost promising supplement to AuNPs and
other metal film electrodes due to its relatively high mechanical strength, good adhesion to
traditional electrochemical surfaces, high water permeability, biocompatibility and [30,31]
ability to form stable chelates with transition metal ions [32]. However, the application of
chitosan-coated AuNPs has been limited to specific applications due to their tendency to
agglomerate and precipitate; therefore coupling with a suitable supporting substrate may
increase their viability in preparation of metal composite sensors [33].

In this study, we demonstrated direct Hg2+ detection in real landfill leachate samples
using a AuNP-biopolymer-coated carbon SPE sensor. AuNP and the biopolymer (chitosan)
were coated onto a carbon SPE sensor by electrodeposition and gave enhanced sensing
performance for Hg2+ detection through an increase in both electrochemical sensitivity
and stability. Using the new sensor, systematic batch experiments were performed to
determine the optimal deposition time amplitude and frequency for detecting Hg2+ ions
using square wave anodic stripping voltammetry (SWASV). The sensor performance
for th eon-site monitoring of Hg2+ including calibration curves, potential interference,
repeatability, recovery, and limit of detection (LOD) was then fully evaluated in a landfill
leachate matrix. This study was the first to investigate direct electrochemical Hg2+ detection
in a real wastewater sample.

2. Materials and Methods
2.1. AuNP-Chitosan Electrode Sensor Fabrication

AuNP-chitosan composite film was electrochemically deposited on a carbon screen-
printed electrode (SPE) (RRPE1001C, Pine Research Instrumentation, Durham, NC, USA)
as a working electrode. The nanocomposite solution contained chloroauric acid (HAuCl4)
and chitosan, based on the optimization ratio of chitosan to sensor performance used in a
previous study [34]. The schematic illustration of the electrodeposition of the composite
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material is presented in Figure S1. The AuNP and biopolymer nanocomposite was mixed
at a 1:1 ratio (12 mg chitosan in 10 mL DI solution and 0.01 M HAuCl4 solution), which was
stirred for 24 h at 60 ◦C to achieve complete mixing. Then, 3 µL of the solution was dropped
onto the surface of the carbon SPE sensor and completely deposited by electrodeposition
at 6.4 mA/cm2 DC for 1 h. The electrodeposition was repeated three times to achieve
sufficient deposition of AuNPs. The fabricated sensor was cleaned with DI water, dried at
room temperature, and stored under ambient conditions before use.

2.2. Structure Characterization of AuNP-Biopolymer Composite

The surface structures of the fabricated SPE sensors were obtained using an Ultra 55
scanning electron microscope (SEM) (ZEISS, Oberkochen, Germany). Elemental mapping
of the surface was achieved through energy-dispersive X-ray spectroscopy (EDS) using a
Noran System 7 EDS with a silicon drift X-ray detector (Thermo Scientific™, Waltham, MA,
USA). To characterize the surface chemical and oxidation states, X-ray photoelectron spec-
troscopy (XPS) was performed by a Thermo Scientific ESCALAB Xi+ X-ray Photoelectron
Spectrometer Microprobe (Thermo Scientific™, Waltham, MA, USA) with a twin-crystal,
micro-focusing monochromator and an Al anode. The XPS analysis chamber during
measurement was held at a pressure below 1.0 × 10−7 torr. Electrochemical impedance
spectroscopy (EIS) spectra were measured using a PalmSens 3 EIS potentiostat (PalmSens
Compact Electrochemical Interfaces, Houten, The Netherlands) under the three-electrode
system in 10 mM potassium ferricyanide (K3Fe(CN)6) solution at the frequency range 5 Hz
to 50 kHz.

2.3. Chemicals and Sample Preparation

Analytical grade sodium acetate was obtained from Sigma-Aldrich (St. Louis, MO,
USA) and used without further purification. To characterize the developed sensor for Hg
detection, a 0.1 M acetate buffer solution (AcB) at pH 3.0 was used. We used a stock Hg
solution (1 mg/mL in nitric acid, 7487-94-7, Sigma-Aldrich, St. Louis, MO, USA) ranging
from 2 to 20 ppb in the electrolyte (i.e., acetate buffer). For the sensor evaluation in real
wastewater, landfill leachate samples were obtained from a local landfill (Orange county
landfill, Orlando, FL, USA). The characterization of the landfill leachate samples is shown
in Table S1. Test water samples were prepared by spiking precalculated amounts of Hg2+

ranging from 10 to 100 ppb into the landfill leachate and the sensor performance of mercury
detection was evaluated for various mercury concentrations. To adjust pH to 3, 0.1 M HCl
was added to the landfill leachate sample. The samples were kept in room conditions of
23 ◦C with a relative humidity of 45%. The prepared Hg2+ test solutions were validated
using a single quadrupole ICP-MS (iCAP-RQ, Thermo Scientific, Waltham, MA, USA).

2.4. Sensor Characterization and Electrochemical Mercury Detection

A 20 mL electrochemical cell (Compact Voltammetry Cell-Starter Kit, Pine Research
Instrumentation, Durham, NC, USA) with an effective volume of 10 mL was used for
Hg2+ detection, and each series was measured by a three-electrode system consisting
of an AuNP-chitosan working electrode, carbon counter electrode (RRPE1001C, Pine
Research Instrumentation, Durham, NC, USA), and Ag/AgCl reference electrode (MI-
401, Microelectrodes, Inc., Bedford, NH, USA). We used a PalmSens 3 EIS (PalmSens
Compact Electrochemical Interfaces, Houten, The Netherlands) as a potentiostat for all
tests (Figure 1). Mercury detection using the developed AuNP-biopolymer SPE sensor was
characterized using SWASV and CV. First, CV was performed at a scan rate of 50 mV/s in
0.1 M AcB (pH 3.0) with Hg2+ (50 ppb) to determine the potential window of the AuNP-
biopolymer SPE sensor for Hg2+ detection and the potential where the Hg2+ stripping peak
appears. For the Hg2+ measurement using SWASV, Hg2+ was electrochemically deposited
on the working electrode at −0.8 V at pH 3.0 of 0.1 M AcB for 100 s, and the reduced Hg2+

was then stripped according to predetermined parameters (4 mV step potential, 25 mV
amplitude, and 20 Hz frequency). For sequential measurements, the working electrode was
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cleaned at +0.8 V for 60 s to remove remnants of Hg2+ ion before the next measurement.
All tests were conducted in triplicate with a value of mean ± standard deviation (SD). The
LOD was calculated based on three times the signal-to-noise (S/N ratio of 3) using the
Equation (1): CL = kSB/b [35], where CL signifies the detection limit, SB represents the
standard deviation of blank signals, k is a parameter with a value of 3, and b is the value of
the calibration curve slope.
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Figure 1. Measurement setup schematic for testing an AuNP-biopolymer-coated carbon SPE.

3. Results and Discussion
3.1. Characterization and Modification of AuNP-Biopolymer Nanostructure

The surface analysis by SEM showed that the electrode surface was covered with gold
nano-urchins (AuNPs) as well as some small AuNPs, as seen in Figure 2. The AuNPs were
on the order of 1 µm in diameter, with many spines on the surface of each urchin-like
particle. The AuNPs shown on the electrode surface were in the tens of nanometers in
diameter. Elemental analysis with energy-dispersive X-ray spectroscopy (EDS) mapping
confirmed that the location of the Au signal was concentrated in these structures on the
electrode surface. The EDS spectra (Figure S2) showed prominent characteristic X-ray
peaks from C Kα and Au M emissions. In addition to the increased surface area, the
Au urchin-like structures were expected to have improved performance through several
mechanisms. For example, a greater portion of this exposed surface is likely composed of
high-index facets. These have been shown to increase catalytic performance [36,37] and
with Miller indices (hkl) (where at least one value is greater than 1) have a greater number
of low-coordinated atoms on the surface [38]. These facets have higher surface energy,
and as a result, the deposition takes place preferentially on these facets during particle
growth. Co-electrodeposition of Au and chitosan successfully generated these urchin-like
structures in addition to the free AuNPs on the surface of the SPE sensor.
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The surface chemical state was determined by XPS, as shown in Figure 3. Deconvolu-
tion of the C 1s and N 1s core-level peaks confirmed the surface adhesion of the biopolymer.
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The C–C peak at 284.7 eV was the dominant peak in the sample, with a signal contribution
from both the chitosan polymer and the exposed regions of the carbon electrode. Decon-
volution analysis shows a C–N peak at 286.4 eV and a C–O peak at 287.2 eV, which are
consistent with the structure of chitosan. The peak at 289.1 eV, consistent with C=O moiety,
suggests some acetylated portions of the chitosan chain or residual carbon monoxide gas.
Due to the low signal/noise ratio in the N 1s region, the deconvolution of the N 1s band is
less certain; deconvolution may indicate an amide moiety peak at 400.0 eV, with −NH2
and −NH3 peaks at 399.3 eV and 400.7 eV, respectively, confirming a deacetylated chitosan
biopolymer on the surface. Au 4f peaks were located at 84.5 eV (4f7/2) and 88.3 eV (4f5/2),
with full width at half maxima (FWHM) of 0.80 eV and 0.76, respectively. The peak and
FWHM are consistent with metallic Au [39].
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3.2. AuNP-Biopolymer-Coated Carbon SPE Sensor Characterization

The electron transfer properties of the developed AuNP-biopolymer-coated carbon
SPE sensor were studied by electrochemical impedance spectra (EIS) (Figure 4a). A carbon
SPE sensor coated only with chitosan, one coated only with AuNPs, a bare carbon SPE
sensor, and a bare gold SPE sensor were also prepared and compared for reference purposes.
The charge transfer resistance for the chitosan-coated carbon SPE sensor (398 Ω) was higher
compared to that of the bare carbon SPE sensor (228 Ω) and the bare gold SPE sensor
(70 Ω), indicating that the chitosan only-coated carbon SPE sensor had hindered charge
transfer from the redox probe of [Fe(CN)6]3−/4− to the surface of the fabricated electrode.
In contrast, the Nyquist plots of the AuNP-coated SPE sensors (i.e., AuNP-coated carbon
SPE sensor and AuNP-biopolymer-coated carbon SPE sensor) displayed an almost straight
line, showing a very fast charge transport process due to direct electron transfer. This
implied that the presence of AuNP nanocomposites enabled the enhancement of electron
transfer kinetics suitable for achieving a superior sensor response. The value of the charge
transfer resistance also depended on the dielectric properties at the electrode/electrolyte
interface [40].
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To investigate sensor characteristics for the oxidation and reduction of Hg2+ by varying
potentials, CV was performed in 0.1 M AcB with a 50 ppb Hg2+ concentration (Figure 4b).
The corresponding redox peaks current was gradually increased in the following order:
chitosan-coated carbon SPE sensor, AuNP coated carbon SPE sensor, and AuNP-chitosan-
coated carbon SPE sensor. The highest redox peak current was obtained with the AuNP-
chitosan-coated carbon SPE sensor, which was attributed to the improvement in electron
transport due to the metallic Au nanoparticles in chitosan. Lower redox peaks were
observed for the bare electrode series (carbon and gold) due to the hindrance of electron
transport because of the absence of the Au NP/chitosan composite on the working electrode.
The observed findings were consistent with the results obtained from the EIS measurements.
These results gave immediate evidence that the modification of the sensing interface
successfully detected Hg2+.

3.3. Optimization of SWASV Parameters for Hg2+ Detection

To achieve high performance in Hg2+ detection, the electrochemical parameters for
SWASV (deposition potential, deposition time, amplitude, and frequency) were optimized
at a fixed Hg2+ concentration of 20 ppb in 0.1 M AcB at pH 3.0. First, the effect of the
deposition potential on Hg2+-stripping peak currents was investigated between −1.0
and −0.2 V with a deposition time of 100 s, the amplitude of 25 mV and a frequency
of 20 Hz [34] (Figure 5a). The current of 4.0 ± 0.1 µA at −0.6 V of deposition potential
was 1.2–1.7 fold higher than other deposition potentials between −0.2 V and −1.0 V. The
resulting SWASV peaks showed the maximum stripping peak current at −0.6 V, indicating
the greatest reduction of Hg2+. At deposition potentials higher than −0.6 V, the current
obtained from stripping Hg2+ decreased as the deposition potential increased, probably
due to the inefficient deposition of Hg2+. On the other hand, at reduction potentials below
−0.6 V, the reduction of Hg2+ was less efficient because the reaction began to compete with
H2 generation, which typically occurs below this potential [41,42]. As such, it could be seen
that the stripping peak current decreased at a deposition potential lower than −0.6 V based
on the CV tests. A similar trend of deposition potential was also obtained by Rahman et al.
(2019) [43]. Thus, a deposition potential of −0.6 V was chosen as an optimum potential for Hg2+.

Deposition time is known to affect the amount of Hg2+ ions [43] deposited on the
AuNP-chitosan electrode, thus influencing the LOD and the overall time needed for the
SWASV technique. The peak current of anodic Hg2+ stripping increased from 10.4 ± 0.6
to 39.7 ± 1.3 µA with a prolonged deposition time at the optimized deposition potential
of −0.6 V (Figure 5b). The peak current for Hg2+ initially increased with deposition
time, then slightly increased after 200 s probably due to Hg2+ saturation on the electrode
surface. Although the sensitivity can be improved with a longer deposition time, surface
saturation at high metal ion concentrations can also reduce the upper detection limit [44].
Correspondingly, the deposition time of 200 s was chosen as optimal for the fast detection
of Hg2+ with high selectivity.

The effects of amplitude and frequency on th current response to Hg2+ were also
investigated (Figure 5c,d). Optimal conditions for amplitude were observed at 25 mV
with the highest peaks at 4.3 ± 0.04 µA. Increasing the amplitude range from 0.05 to 0.1 V
resulted in higher ambient noise with a larger SD (Figure S3c) due to vibrations [45]. For
frequency optimization, the peak heights increased from 20 to 100 Hz, while a higher
frequency showed larger ambient noise after 80 Hz (Figure S3d) because of the frequency
properties of vibration [45]. Therefore, 60 Hz was chosen as the optimal frequency for Hg2+

detection using the AuNP-chitosan SPE sensor. Overall, −0.6 V of deposition potential,
200 s of deposition time, 25 mV amplitude, and 60 Hz of frequency were selected as
optimal SWASV analytical parameters for further evaluation of the sensor performance on
Hg2+ detection.
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3.4. Sensitivity Analysis and Lifetime

Figure 6a shows the SWASV response of AuNP-biopolymer-coated carbon SPE sensor
at various Hg2+ concentrations between 0–20 ppb in 0.1M AcB (pH 3.0) under optimized
parameters. The well-defined sharp anodic stripping peaks for detecting Hg2+ were located
at +0.58 V, and the peak currents were linearly increased with Hg2+ concentrations. The
applied optimal parameter of the AuNP-biopolymer-coated carbon SPE sensor exhibited
improved sensor sensitivity (17× more sensitive than an unoptimized one) with a higher
R2 value (R2 = 0.9914), indicating enhanced sensitivity and stability for Hg2+ detection
(Figure S4a,b). The correlation was Ip = 0.477x + 0.0009, where Ip is the stripping peak
current (µA) and x is Hg2+ concentration (ppb) (Figure 6b). The sensitivity of the sensor
was ~0.1 µA/nM (0.477 µA/µg) according to the slope of the linear curve. The LOD of
the AuNP-biopolymer-coated carbon SPE sensor toward Hg2+ was estimated to be 0.9
ppb according to Equation (1), which is well below the USEPA-defined limit for drinking
water (2 ppb) [3]. The relative standard deviation (RSD) value of 2.27% was evaluated by
replicate measurements (n = 20) of 20 ppb Hg2+ solution (Figure 6c). The linear range was
also 25× larger than that of other SPE sensors (bare gold and bare carbon) (Figure S4d,f).
A comparison between the developed AuNP-biopolymer-coated carbon SPE sensor and
other electrochemical Hg-detecting sensors, based on a gold electrode or AuNPs previously
reported in the literature, is listed in Table 1. The AuNP-biopolymer-coated carbon SPE
sensor had a lower Hg2+ detection range compared to those of previous studies. This
is attributable to the AuNP surface, where free functional groups of amino acids (i.e.,
chitosan) exhibits a strong affinity for Hg2+ between Au and Hg [46]. The sensor also
showed relatively lower RSD and detection limits.
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Figure 6. (a) SWASV replies for Hg2+ determination, (b) plot of the stripping peak current vs Hg2+ concentration, and
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Table 1. Comparison of different types of sensor performance for electrochemical Hg (II) detection.

Electrode Method Linear Range LOD
(nM) RSD (%) Reproducibility

(n)
Sample Condition
(Buffer Solution) Reference

AuNPs/CFME (1) DPASV a 1–250 µM 0.5 3.4 − 0.1 M HCl/pH 1 [47]
np-AuNPs/ITO (2) DPASV 0.5–50 nM 0.15 2.3 7 0.1 M HCl/pH 1 [24]

Au-DMAET-(SWCNT-PABS) (3) SWASV b 20–250 µM 63.4 2.7 10 0.1 M HCl/pH 3 [48]
SWCNT-PhSH/Au (4) SWASV 5–90 nM 3.0 3.8 7 0.1 M HCl/pH 1 [49]

SPGE (5) SWASV 5–30 µM 5.5 4.3 40 0.1 M HCl/pH 2 [50]
AuNPs-GC (6) CV c 0.64–4 µM 0.42 − − 0.01 M HCl/pH 2 [29]

Cys-AuNPs-CILE (7) SWASV 10–20,000 nM 2.3 2.6 5 0.1 M phosphate/pH 7 [51]
AuNP-biopolymer-coated carbon

SPE sensor SWASV 10–100 nM 4.5 2.3 20 0.1 M acetate/pH 3 This study

a DPASV (differential pulse anodic stripping voltammetry); b SWASV (square wave anodic stripping voltammetry); c CV (cyclic voltamme-
try); (1) Gold Nanoparticles (AuNPs)/three-dimensional fibril-like carbon-fiber mat electrode (CFME); (2) Nanoporous gold nanoparticles
(np-AuNPs)/Indium tin oxide (ITO); (3) Au-dimethyl amino ethanethiol (DMAET)-Single-walled carbon nanotube-poly (m-amino ben-
zene sulfonic acid) (SWCNT-PABS); (4) Single-walled carbon nanotube (SWCNTs) with thiophenol/Gold (Au); (5) Screen-printed gold
electrodes (SPGE); (6) Gold nanoparticles–modified glassy carbon (AuNPs-GC); (7) l-cysteine (Cys)-Au nanoparticle-Carbon ionic liquid
electrode (CILE).

3.5. Selectivity Analysis: Interference of Other Heavy Metals in Hg2+ Detection

Metal ions commonly found in water containing Hg2+ are known to compromise the
accuracy of electrochemical measurements [48]. Thus, the influence of competing metal
ions was investigated in two-fold concentrations over the analyte (i.e., 40 ppb) interfering
species (Zn2+, Cd2+, Pb2+, and Cu2+) in 20 ppb Hg2+ in 0.1 M AcB (pH 3.0). Figure 7 shows
a similar range of sensor responses in the presence of these heavy-metal ions. Most of these
(Zn2+, Cd2+, and Pb2+) did not interfere with the detection of Hg2+. A slight decrease in
the current value (~8.7%) was shown in the presence of Cu2+, a major interfering species
because of its close potential to Hg2+ measurement [52]. To further validate this, we
performed an experiment by mixing ions with a fixed concentration of Hg2+ at 20 ppb. No
decrease in peak current or interfering voltammetric peaks was observed in the solution.
The developed AuNP-biopolymer-coated carbon SPE sensor was then applied to the Hg2+

detection in landfill leachate as an example of a practical analytical application.
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Figure 7. Sensor response changes at a fixed Hg2+ concentration (20 ppb) in the presence of other
metal ions (40 ppb) in 0.1 M AcB (pH 3.0). Mix indicates the solution containing Zn2+, Cd2+, Pb2+,
and Cu2+ (40 ppb) along with Hg2+ (20 ppb). The error bars represent the standard deviation for the
mean of the three replicate tests.

3.6. Applications for Landfill Leachate Environment

To evaluate sensor behavior in a real wastewater matrix, landfill leachate samples were
collected on site (Orange County Landfill, Orlando, FL, USA) without pretreatment except
for filtration through 0.45 µm Polyethersulfone (PES) filters. The pH of the landfill leachate
water was ~7.7 and included high heavy-metal and ionic concentration (Table S1). The pH
was adjusted to 3.0 using 0.1 M HCl to have predominant species of Hg2+ in the range of
pH 1–3 [53]. The original landfill leachate sample was directly used for the baseline curve
and electrolyte due to a high NaCl concentration (13,800 µS/cm). Application of the AuNP-
biopolymer-coated carbon SPE sensor in this experiment resulted in well-defined peaks at
+0.6V for a range of Hg2+ concentrations, 0–100 ppb, for the landfill leachate, under which,
the anodic peak potential shifted towards the positive due to the positive electrocatalytic
activity of the Hg2+ ions with the sensor. This phenomenon is common as adsorption
products tend to shift the peak potential positively [54]. Hg2+ sensitivity and the LOD of
AuNP-biopolymer-coated carbon SPE sensor showed 0.089 µA/ppb (R2 = 0.993) and 1.69
ppb, respectively (Figure 8a,b). The reproducibility experiments conducted using landfill
leachate spiked with Hg2+ (50 ppb) achieved 15 stable, successive measurements (Figure 8c)
with an RSD of 5.1%. The concentrations of Hg2+ in the spiked landfill leachate sample
were validated using ICP-MS and compared with the results of our method (Table 2).
The recoveries were in the range of 98–108%, indicating an acceptable performance for
practical applications.
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Table 2. Comparison of Hg2+ detection methods between AuNP-biopolymer-coated carbon SPE
sensor and ICP-MS (n = 3).

Sample

Hg2+ Concentration

Recovery (%)
Add (ppb)

Detection (ppb)

AuNP-
Biopolymer-

Coated Carbon
SPE Sensor

ICP-MS

Landfill leachate 1 15 14.7 ± 1.8 15.2 ± 0.9 98
Landfill leachate 2 20 21.6 ± 3.4 20.6 ± 1.3 107.8
Landfill leachate 3 30 31.5 ± 2.1 30.8 ± 1.4 105

4. Conclusions

We demonstrated direct Hg2+ detection in landfill leachate using a newly developed
AuNP-biopolymer carbon SPE sensor. The combination of the good conductivity of AuNP-
chitosan and its strong adhesion to Hg2+ gave the sensor high sensitivity and selectivity
for Hg2+ determination with a detection limit of 0.9 ppb in 0.1 M AcB. The sensor was
successfully applied to determine Hg2+ in real landfill leachate samples directly with
recovery ranging from 98 to 108%. The LOD and RSD for 15 consecutive measurements of
the fabricated sensor in the landfill leachate samples were 1.69 ppb and 5.1%, respectively.
The minimal interference in the presence of other heavy metal ions was observed in the
detection of Hg2+ ions using the sensor. Overall, the developed AuNP-biopolymer carbon
SPE sensor is expected to demonstrate reliable Hg2+ sensing in wastewater including
landfill leachate.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/mi12060649/s1: Figure S1: Schematic of the AuNP-biopolymer-coated carbon SPE fabrication
process; Figure S2: XPS and SEM-EDS spectra; Figure S3: Effect of deposition potential, deposition
time, amplitude, and frequency on the anodic stripping peak current of Hg2+ using an AuNP-
biopolymer-coated carbon SPE; Figure S4: SWASV and calibration curves of Hg2+ using different
electrodes; Table S1: Heavy-metal ion concentrations in mining wastewater and soil leachate samples
are shown in Table S1; Characterization of landfill leachate.
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