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Abstract

Spondyloarthritis (SpA) comprises a group of chronic inflammatory diseases with overlapping clinical,

genetic and pathophysiological features including back pain, peripheral arthritis, psoriasis, enthesitis

and dactylitis. Several cytokines are involved in the pathogenesis of SpA, variously contributing to

each clinical manifestation. Many SpA-associated cytokines, including IL-23, IL-17, IL-6, type I/II inter-

feron and tumour necrosis factor signal directly or indirectly via the Janus kinase (JAK)–signal trans-

ducer and activator of transcription pathway. JAK signalling also regulates development and maturation

of cells of the innate and adaptive immune systems. Accordingly, disruption of this signalling pathway

by small molecule oral JAK inhibitors can inhibit signalling implicated in SpA pathogenesis. Herein we

discuss the role of JAK signalling in the pathogenesis of SpA and summarize the safety and efficacy

of JAK inhibition by reference to relevant SpA clinical trials.
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Introduction

Spondyloarthritis (SpA) comprises a group of chronic

inflammatory diseases with overlapping clinical, genetic

and pathophysiological features that can include spinal

inflammation, peripheral arthritis, enthesitis, dactylitis,

skin and nail disease, uveitis and IBD [1, 2]. SpA can

manifest as predominantly axial SpA (involving mainly

the axial joints) or as predominantly peripheral SpA

(affecting the peripheral joints, entheses, skin and nails).

Axial SpA includes both ankylosing spondylitis (AS, i.e.

radiographic axial SpA) and non-radiographic axial SpA

[3–5] while peripheral SpA captures a number of SpA

subsets, the most common of which is PsA [2, 3, 6].

Other SpA subsets include reactive arthritis and SpA

related to IBD [1, 2]. The extra-articular manifestations

of SpA, including IBD, anterior uveitis and psoriasis,

may profoundly influence disease progression and ther-

apy, and are a key consideration for SpA diagnosis and

management.

In such a heterogeneous group of diseases, treatment

selection reflects the dominant clinical manifestations.

For active axial SpA and axial symptoms in PsA, physic-

al therapy along with non-steroidal anti-inflammatory
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drugs (NSAIDs) is recommended as first-line treatment

[4, 5]. On failure to control axial disease, most guidelines

recommend that patients should progress to treatment

with a biologic DMARD (bDMARD) such as a TNF or

IL-17A inhibitor. For PsA with predominantly peripheral

manifestations, treatment options can include non-

biologic DMARDs such as methotrexate; bDMARDs

such as TNF inhibitors, IL-17A inhibitors, IL-12/23 inhibi-

tors, IL-23 (p19) inhibitors and abatacept; and oral small

molecule inhibitors such as apremilast [7–9], with the

recommended treatment based on the predominant

manifestations and severity of disease. Currently, only

TNF and IL-17A inhibitors are effective across both axial

and peripheral SpA, and IL-17A inhibitors may not be

appropriate in patients with non-musculoskeletal mani-

festations such as active IBD or active uveitis [7, 8].

There is therefore a need for new therapies that can

effectively control the various manifestations of SpA,

with JAK inhibitors recently being approved for active

PsA and AS.

Despite the availability of bDMARDs, many patients

fail to gain or maintain stringent treatment targets of low

disease activity (which lacks an agreed definition) or

inactive disease in SpA [10–14], highlighting an unmet

need. Janus kinase (JAK) inhibitors are an emerging

class of oral small molecule treatments that have

demonstrated efficacy in SpA [15–21], with several mol-

ecules now approved or in late-phase clinical develop-

ment. The aim of this review is to summarize the role of

JAK–signal transducer and activator of transcription

(STAT) signalling in the pathogenesis of SpA and review

the evidence from clinical trials of JAK inhibitors in

patients with SpA.

Disease pathogenesis of SpA

The exact aetiology and pathogenesis of SpA, particu-

larly axial SpA, remain unknown. SpA likely arises from

interaction between environmental and genetic compo-

nents that elicit a chronic inflammatory response involv-

ing the innate and adaptive immune systems, interacting

with exaggerated tissue damage repair [22–24].

There are several theories as to the triggering event(s),

including mechanical stress at entheses, infection and

dysbiosis in the gastrointestinal microbiome [23, 25–30].

Several alleles in the major histocompatibility complex

may play a contributory role in the pathogenesis of SpA,

although HLA-B27 has the strongest association across

different SpA phenotypes [23, 31, 32]. Carriage of the

HLA-B27 gene occurs with greater frequency in patients

with SpA (AS: �90% of patients express HLA-B27;

reactive arthritis: 60–90%; PsA or IBD: 50–60%) than in

the general population (<8%) [23, 33, 34]. Other genetic

risk factors have been demonstrated, with IL23R, IL12B,

IL1 and TNF polymorphisms associated with the devel-

opment of AS and PsA, along with RUNX3, ERAP1 and

TBX21 polymorphisms [35–41]. A genome-wide associ-

ation study has also implicated the IFIH1 locus as being

associated with PsA [42]. Gain-of-function mutations in

the IFIH1 gene have subsequently been shown to

be associated with a range of neuroinflammatory

phenotypes, including enhanced JAK–STAT pathway

activation [43].

Entheses are the insertion sites of tendons and liga-

ments to bone surfaces and are areas of high mechanic-

al stress. In the absence of disease, a high number of

transcortical microvessels (TCVs) enable communication

between bone marrow and entheses [44]. However,

under repeated biomechanical stress, vasodilation of

TCVs occurs, which facilitates the efflux of innate im-

mune cells from the peri-entheseal bone marrow directly

into the enthesis [45–47]. In SpA, this mechanical stress

is thought to be a driver for entheseal inflammation, and

subsequent formation of enthesophytes and new bone

formation [46, 48]. Differences may exist in how enthesi-

tis manifests across SpA phenotypes; for example,

enthesitis in PsA is characterized generally by more

entheseal soft tissue inflammation or synovio-entheseal

complex disease, whereas enthesitis in axial SpA is

characterized more by peri-entheseal osteitis in the

spine, which may suggest different immunopathogene-

ses for axial and peripheral disease, influenced by

anatomical differences [47]. The sacroiliac joint and

entheses both have fibrocartilage and the complex

compression and shear forces transmitted to the

bone at both sites may result in the commonality of

pathology [49].

The immunopathogenesis of SpA is complex and

involves immune cells of the innate immune system

such as macrophages, innate lymphoid cells (ILCs) and

dendritic cells as well as cells of the adaptive immune

system including various subsets of T cells [50]. CD4þ

and CD8þ T cells are known to be present in the

enthesis, which is a key site of SpA pathogenesis [51].

In addition, several different cytokines are involved in

the pathogenesis of SpA, as shown by inhibitors of TNF,

IL-17A, IL-12/23 (p40) and IL-23 (p19), demonstrating ef-

ficacy in the treatment of axial SpA and/or PsA [7–9].

These cytokines are directly and indirectly affected by

JAK molecules, and important distinctions are emerging

with regard to which cytokines drive distinct clinical

manifestations of SpA; treatment should therefore be

tailored to the dominant domains in the individual

patient [7–9]. A treatment option that targets multiple

cytokines involved in SpA pathogenesis could therefore

be a useful option in reducing inflammation across mul-

tiple disease manifestations.

Gut inflammation in patients with SpA is common,

particularly in axial SpA, with an estimated 6–14% of

patients with AS and 4% of patients with PsA having

IBD, which is significantly more frequent than in the

general population [52, 53]. In addition, microscopic,

sub-clinical bowel inflammation has been found in ap-

proximately one-half of patients with SpA [54, 55].

Conversely, the prevalence of SpA in patients with IBD

appears to be around 20% [56–58]. As a result, there

has been much interest in the role of the microbiome in

the development of SpA [59–62]. The gut microbiota
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influences the balance between T cell subtypes (Th1,

Th2, Th9, Th17 and regulatory T cells), which are essen-

tial in host defence against infection [63–65]. Dysbiosis

and impairment of gut barrier function allow pathogenic

bacteria to invade the gut lumen and promote overacti-

vation of innate and adaptive immune responses,

leading to an excess production of proinflammatory

cytokines (TNF, IL-1, IL-23, IL-17A and IL-17F), which

may contribute to the pathogenesis of SpA.

The JAK–STAT pathway

Cytokines signal through several different intracellular

pathways, one of which is the JAK–STAT pathway [66–

68]. In particular, cytokines that bind to type I/II cytokine

receptors mediate their effects through activation of the

JAK–STAT pathway [69, 70]. There are four members of

the JAK family—JAK1, JAK2, JAK3 and tyrosine kinase

2 (TYK2)—and each cytokine/growth factor receptor is

associated with a pair of JAK family members required

for downstream signalling [69, 71]. There are seven

members of the STAT family, STAT1, STAT2, STAT3,

STAT4, STAT5A, STAT5B and STAT6, and through the

activation of specific STAT family members by the JAK

pairs associated with a particular receptor, transcription

of specific genes is regulated.

Upon binding of cytokines to these receptors, JAK

molecules (which are associated with the intracellular

portion of the receptor) phosphorylate both themselves

and the receptors [72]. STAT molecules are then able to

bind to phosphorylated tyrosine residues on the recep-

tors where they too are phosphorylated by JAKs. Once

phosphorylated, STAT molecules dissociate from the

receptors and can form homo- or heterodimers before

migrating to the nucleus, where they regulate the

expression of target genes [69, 71]. Regulation of gene

expression involves recruitment of co-activators by the

STAT dimers. These co-activators interact with the his-

tone proteins with which nuclear DNA is associated,

weakening the interactions between the histones and

the DNA and making specific regions of the DNA more

accessible to STATs and the nuclear transcriptional ma-

chinery [73, 74]. STAT molecules do not remain in an

activated state but become dephosphorylated, with a

half-life estimated in the region of 15–30 min, after which

they dissociate from the DNA and are exported from the

nucleus [75].

Each pair of JAK molecules can be associated with

the regulation of different biological processes (Fig. 1).

JAK1, in combination with JAK3, is involved in the sig-

nalling of common gamma chain cytokines such as IL-2,

IL-4, IL-7, IL-9, IL-15 and IL-21 [69, 71]. These cytokines

are involved in the growth/maturation of lymphoid cells

and differentiation/homeostasis of T and natural killer

cells [21, 50, 51, 76–78] (Fig. 1). IL-7, in particular,

modulates ILCs, which are implicated in the patho-

physiology of SpA [79]. JAK1 in combination with JAK2

and/or TYK regulates key proinflammatory cytokines

such as IFN-c and IL-6; IL-6 is also involved in ILC

activation (Fig. 1) [21, 67, 80–83]. JAK2 and TYK2

regulate the signalling of IL-12 and IL-23, the latter of

which can be produced by spinal entheseal soft tissue

and adjacent bone anchorage sites, with these

cytokines playing a key role in the differentiation of

CD4þ Th1 and Th17 cells, respectively [84]. Finally,

JAK2 homodimers regulate signalling downstream of

erythropoietin and thrombopoietin and therefore play

a role in erythropoiesis, and may be involved in regulat-

ing myelopoiesis [81, 82]. JAK2 homodimers also

signal downstream of granulocyte-macrophage colony-

stimulating factor (GM-CSF), a cytokine that has

recently been linked with the pathogenesis of SpA [85].

FIG. 1 JAK–STAT pathways mediate signalling for multiple cytokines, including those implicated in the pathogenesis

of SpA [69–73]
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JAK inhibition is therefore likely to affect multiple cyto-

kines involved in the pathogenesis of SpA.

In addition to direct inhibition of cytokine signalling,

JAK inhibition can also have indirect effects on the pro-

duction of key cytokines involved in the pathogenesis of

SpA, including cytokines involved in triggering and sus-

taining the immune response (Fig. 2). As noted above,

IL-23 signals through JAK2–TYK2 and is involved in the

proliferation and differentiation of CD4þ Th17 cells,

which produce IL-17A [92–94]. In addition, IL-7 signals

through JAK1–JAK3 and induces mucosa-associated in-

variant T cells to produce IL-17A [95]. Consequently,

JAK inhibition may lead to indirect downstream inhibition

of IL-17A production [21, 96]. IL-17A plays a key role in

a number of clinical manifestations of SpA, as reflected

by the efficacy of IL-17A inhibitors in both PsA and AS

[5, 7, 9]. Interestingly, inhibition of IL-23 does not appear

to be effective in the treatment of AS, which may be

linked to IL-17 production that is independent of IL-23

and associated JAK pathway signalling [76, 97].

IL-12 also signals via JAK2–TYK2 (Fig. 1), and along

with IFN-c (via JAK1–JAK2) is essential for the produc-

tion of TNF by macrophages [21]. TNF is another key

cytokine in the pathogenesis of SpA and is involved

across disease manifestations. Although TNF is not dir-

ectly affected by JAK inhibition, blockade of JAK2–TYK2

or JAK1–JAK2 will ultimately modulate its production

due to inhibition of IL-12 and IFN-c production [21].

Recently plasmacytoid dendritic cells have been

described at the human spinal enthesis that have indu-

cible TNF and type 1 interferon protein production,

which can be inhibited with the JAK inhibitor tofacitinib

[98]. Finally, the synergistic activities of cytokines mean

that inhibition of JAK-dependent cytokine receptors will

reduce the potential cellular effect of other non-JAK-

mediated effects (e.g. those mediated via IL-17 receptor

A, IL-1 receptor or TNF receptor signalling).

Inhibition of the JAK–STAT pathway

Although bDMARDs demonstrate efficacy through

blockade of individual cytokines (IL-23, IL-17A and TNF)

[4, 5, 7–9], JAK inhibition is able to directly or indirectly

block multiple cytokines involved in the pathogenesis of

SpA (Fig. 2). There are four JAK inhibitors that are

currently approved or are in late-phase development

for SpA indications (Tables 1 and 2), each of which has

differing levels of selectivity across the JAKs. One add-

itional JAK inhibitor, baricitinib, is approved for the treat-

ment of RA but is not currently in clinical development

for SpA.

The selectivity of these JAK inhibitors has been

assessed in various in vitro analyses. These include bio-

chemical assays using recombinant JAK molecules and

cellular assays in which cell lines or ex vivo preparations

(e.g. human whole blood) are treated with JAK inhibitors

and then stimulated with cytokines to assess the ability

of JAK inhibitors to prevent STAT phosphorylation []. In

these cellular assays, tofacitinib demonstrated preferen-

tial inhibition of JAK1 and JAK3, with 5- to 100-fold se-

lectivity over JAK2 [103]. Filgotinib demonstrated a �30-

fold selectivity for JAK1- over JAK2-dependent signal-

ling in cellular and whole blood assays [104].

Upadacitinib (UPA) was designed to have a greater se-

lectivity for JAK1 vs JAK2, JAK3 and TYK2, demonstrat-

ing �60-fold selectivity for JAK1 over JAK2 and >100-

fold selectivity over JAK3 in cellular assays [105]. Finally,

deucravacitinib is a potent inhibitor of TYK2 that has

FIG. 2 JAK-dependent cytokines (directly and indirectly) mediate pathogenic pathways in SpA [50, 86–91]
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minimal or no activity against JAK1, JAK2 and JAK3

[106, 107]. A number of additional JAK/TYK inhibitors

are currently in early development, but no clinical data

have been published to date.

Importantly, some analyses do not show the relative

selectivity of different JAK inhibitors, and results may

vary depending on the assay that is used [83, 108]. In

addition, the assays may not reflect the physiological

concentrations and effects of JAK inhibitors in humans

[108, 109]. Besides their selectivity profile, several not-

able further differences exist between JAK inhibitors,

such as chemical structure, inhibition potencies, metab-

olism and excretion profiles. These variables indicate

that the clinical profiles of JAK inhibitors are likely to

have meaningful clinical differences.

Biomarker studies in vivo may inform precise and rele-

vant in vivo effects. In keeping with the mode of action

of JAK inhibitors, biomarker analyses have shown that

UPA 15 mg once daily exerts broad direct inhibitory ac-

tivity on multiple JAK1-dependent (IFN-a/b, IFN-c, IL-6,

IL-2, IL-5 and IL-7) pathways, indirectly on several

JAK1-independent (IL-1, IL-23, IL-17, IL-18 and TNF)

pathways, and other JAK-dependent cytokines such as

GM-CSF [83] resulting in the inhibition of key functional

pathways, such as leucocyte activation and mobility, in-

flammatory response and damage to connective tissue

(Figs 1 and 2) [110]. Filgotinib has also been shown to

reduce circulating proinflammatory cytokines and che-

mokines, adhesion molecules and markers of matrix

remodelling associated with PsA [111] and AS [112]. In

addition, preclinical models have demonstrated the

beneficial impact of JAK–STAT blockade on the mani-

festations of SpA [113, 114] including via a TNF-

independent mechanism [113]. These studies provided

further evidence that JAK inhibition of multiple cytokines

is a viable treatment approach in SpA and supported

the initiation of several large-scale clinical trial pro-

grammes of JAK inhibitors in SpA.

JAK inhibitors in SpA: Efficacy

Three JAK inhibitors, tofacitinib, filgotinib and UPA, have

been evaluated in patients with AS (Table 1) [16–18, 99].

Each of these studies was performed in patients with an

inadequate response/intolerance to NSAIDs and eval-

uated one dose of the active treatment vs placebo for

12–16 weeks. All studies achieved their primary end-

points as well as key secondary endpoints, which

included clinical outcomes such as ASAS20, ASAS40

and BASDAI50 responses as well as improvement in

quality of life and reduction of inflammation on magnetic

resonance imaging [16–18, 99]. Further studies of JAK

inhibitors in axial SpA are ongoing, including a phase 3

programme of UPA in axial SpA (NCT04169373;

SELECT-AXIS 2), which studies patients with AS with in-

adequate response to prior bDMARD therapy as well as

patients with non-radiographic axial SpA. The efficacy

and safety of SHR0302 (a JAK1 inhibitor) are also being

evaluated in patients with AS in a phase 2/3 study

(NCT04481139).

Several JAK inhibitors have been evaluated for the

treatment of PsA including tofacitinib, UPA and filgotinib.

Tofacitinib has been assessed in two phase 3 studies,

OPAL Broaden [19] and OPAL Beyond [20] (Table 2).

OPAL Broaden and OPAL Beyond enrolled patients with

an inadequate response to conventional synthetic

DMARDs (csDMARDs) and TNF inhibitors, respectively,

and OPAL Broaden also included an active comparator

TABLE 1 Summary of key trials of JAK inhibitors in development in AS

Upadacitinib
(SELECT-AXIS 1) [16]

Tofacitinib [99] Tofacitinib [17] Filgotinib
(TORTUGA) [18]

Phase 2/3 2 3 2
Population NSAID-IR NSAID-IR NSAID-IR NSAID-IR
Treatment arms UPA 15 mg QD

Placebo
TOFA 2, 5 or 10 mg

BID
Placebo

TOFA 5 mg BID
Placebo

FILG 200 mg QD
Placebo

Primary study
duration

14 weeks 12 weeks 16 weeks 12 weeks

Number of patients
randomized

187 207 269 116

Primary endpoint ASAS40 response at
week 14

ASAS20 response at
week 12 (predicted
by Emax model)

ASAS20 at week 16 DASDAS at week 12

Results from primary
endpoint(s)

UPA 15 mg vs placebo:
52% vs 26%,
P¼0.0003

TOFA 2, 5, 10 mg vs
placebo: 56%, 63%,
67% vs 40%

TOFA 5 mg vs placebo:
56% vs 29%,
P<0.0001

FILG 200 mg vs pla-
cebo: –1.47 vs –0.57,
P<0.0001

ASAS20: improvement of �20% and �1 unit improvement from baseline on a scale of 0–10 in �3 of the following four
domains (with no deterioration in the remaining domain): patient global assessment; pain assessment, function (BASDAI);

and inflammation (questions 5 and 6 of BASDAI); ASAS40: improvement of �40% and �2 units improvement from baseline
on a scale of 0–10 in �3 of the four domains (with no deterioration in the remaining domain); ASDAS: AS Disease Activity
Score; BID: twice daily; FILG: filgotinib; IR: inadequate responder; JAK: Janus kinase; TOFA: tofacitinib; UPA: upadacitinib.
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arm of adalimumab (ADA) 40 mg every other week

(although it was not powered to assess superiority or

non-inferiority of tofacitinib vs ADA). Both studies met

their primary endpoints (American College of

Rheumatology 20% improvement [ACR20] for OPAL

Beyond and both ACR20 and change in Health

Assessment Questionnaire-Disability Index for OPAL

Broaden) with improvements also observed in several

key PsA domains such as psoriasis, enthesitis and dac-

tylitis [19, 20].

UPA has been assessed in two phase 3 trials in

patients with PsA: SELECT-PsA 1 in patients with an in-

adequate response to non-biologic DMARDs [101] and

SELECT-PsA 2 in patients with an inadequate response

to bDMARDs [15] (Table 2). SELECT-PsA 1 included an

ADA active comparator arm, with non-inferiority and su-

periority of UPA vs ADA included as ranked endpoints.

Both trials met their primary endpoints (ACR20 at week

12) as well as showing improvements in psoriasis, dac-

tylitis, enthesitis and quality of life endpoints. In

SELECT-PsA 1, UPA inhibited radiographic progression

(as assessed by Modified PsA Sharp/van der Heijde

Score) vs placebo at week 24. Notably, both UPA doses

were shown to be non-inferior to ADA for ACR20

response at week 12 in SELECT-PsA 1, and the UPA

30 mg dose demonstrated superiority.

Filgotinib has been assessed in a phase 2 study in

patients with PsA and an inadequate response/intoler-

ance to csDMARDs [102]. The study met its primary

endpoint of ACR20 at week 16, and significant improve-

ments were observed in signs and symptoms of PsA,

including peripheral arthritis, psoriasis, enthesitis and

patient-reported outcomes. Two phase 3 trials of filgoti-

nib in PsA (PENGUIN 1 [NCT04115748] and PENGUIN 2

[NCT04115839]) have been terminated due to toxicity

concerns.

Finally, deucravacitinib was assessed in a 16-week

phase 2 trial in patients with PsA who had an inad-

equate response to �1 non-steroidal anti-inflammatory

drug, corticosteroid and/or csDMARD [100]. The study

met its primary endpoint of a dose–response relation-

ship with deucravacitinib 6 mg and 12 mg for ACR20,

and improvement in key secondary endpoints such as

quality of life measures and enthesitis. This agent has

also demonstrated efficacy in the treatment of psoriasis

in a phase 3 trial, consistent with a mechanism of action

involving TYK2 pathway inhibition, including IL-23-

mediated signalling [100].

JAK inhibitors in SpA: Safety

As described above, JAK inhibitors block signalling initi-

ated by multiple cytokines that mediate a variety of bio-

logical effects. Across the studies of JAK inhibitors in

patients with AS and PsA, no new safety risks were

identified with UPA, tofacitinib or filgotinib, with safety

data consistent with the respective phase 3 RA studies

[115–124]. Cross-indication safety overview of various

agents in patients with RA, AS and PsA have

consistently shown numerically lower rates of safety

events among patients with PsA and AS, compared with

that among patients with RA [125–127]. It has been pro-

posed that this apparently lower rate may be a result of

fundamental differences between patient cohorts; for ex-

ample, patients with SpA are typically younger and have

fewer comorbidities than patients with RA, and patients

with AS typically require less immunosuppressant ther-

apy than patients with RA [128, 129].

Adverse events of interest in patients receiving JAK

inhibitors include infections (particularly herpes zoster),

venous thromboembolism and laboratory abnormalities

[130–133]. Similar to studies in RA, cases of herpes zos-

ter have been observed in patients with SpA treated

with JAK inhibitors, although the majority were non-

serious and involved a single dermatome [15, 20, 101].

A small number of venous thromboembolism cases

have also been observed in patients with SpA receiving

JAK inhibitors [15, 101].

Finally, it should be noted that long-term safety data

of JAK inhibitors in SpA are currently lacking, and there-

fore only limited safety conclusions can be drawn for

events with longer latency or rare events based on the

relatively short placebo-controlled periods of the clinical

trials. However, longer-term open-label extension stud-

ies of JAK inhibitors in SpA are ongoing and should pro-

vide further clarity on this issue, particularly in patients

with comorbidities that are common in SpA, such as

type 2 diabetes, hypertension and dyslipidaemia.

Conclusions

The pathogenesis of SpA is complex and, although not

fully understood, is thought to involve both environmen-

tal and genetic factors that together elicit a chronic in-

flammatory response involving the innate and adaptive

immune systems. Several cytokines that have been

implicated in the pathogenesis of SpA signal via the

JAK–STAT pathway, supporting rational therapeutic

intervention with JAK inhibitors. Although some

bDMARDs have demonstrated efficacy through the

blockade of individual cytokines, JAK inhibition may pro-

vide a more robust effect by blocking multiple cytokines

and their downstream effects. Clinical trials of JAK inhib-

itors in patients with AS and PsA have shown improve-

ments across multiple clinical domains of SpA (i.e. axial,

peripheral, enthesitis, psoriasis) with an acceptable

safety profile consistent with that observed in other

indications such as RA. JAK inhibitors are therefore like-

ly to become an important part of the overall treatment

paradigm for SpA.
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