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Background. Shu Gan Jie Yu (SGJY) capsule has a good effect on relieving depressive symptoms in China. However, the
mechanism of action is still unclear. -erefore, systemic pharmacology and molecular docking approaches were used to clarify its
corresponding antidepressant mechanisms. Methods. Traditional Chinese Medicine Database and Analysis Platform (TCMSP),
the Encyclopedia of Traditional Chinese Medicine (ETCM), and Swiss Target Prediction servers were used to screen and predict
the bioactive components of the SGJY capsule and their antidepressive targets. Mild to moderate depression (MMD) related genes
were obtained from GeneCards and DisGeNET databases. A network of bioactive components-therapeutic targets of the SGJY
capsule was established by STRING 11.5 and Cytoscape 3.9.0 software. Gene function and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analyses were performed by utilizing Database for Annotation, Visualization, and
Integrated Discovery (DAVID) platform. Active components were taken to dock with the hypothetical proteins by iGEMDOCK
and SwissDock, and the docking details were visually displayed by UCSF Chimera software.-en, the related research literature of
the SGJY capsule was reviewed, summarized, sorted, and analyzed, including experimental evidence and clinical experience.
Results. Seven active components and 45 intersection targets were included in the study. PPI network had genuinely uncovered the
potential therapeutic targets, such as AKT1, HSP90AA1, ESR1, EGFR, and PTGS2. KEGG pathway analysis showed that the
mechanism of the SGJY capsule on MMD was mainly involved in the PI3K-Akt signaling pathway. Conclusions. In this study, we
have successfully predicted the biochemically active constituents, potential therapeutic targets, and comprehensively predicted the
related drug-gene interaction of the SGJY capsule for treating MMD and provided a basis for subsequent experiments.

1. Introduction

Depression is one of the most disabling disorders world-
wide with poor quality of life. It affects human social
function, and imposes a heavy economic burden on in-
dividuals, families, communities, and countries. Due to the
increasing social pressure and the role of various other
factors, mild to moderate depression (MMD), as an early

stage of depression, shows a trend of younger age [1].
Currently, selective serotonin reuptake inhibitors (SSRIs)
have been widely used in clinical treatment, but their
therapeutic effectiveness is only limited at ∼65% [2]. -us,
more effective drugs with less adverse reactions are ex-
pected to be developed in the future. Nowadays, traditional
natural herbs are usually used to relieve depression and
balance emotions [3].
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Systematic review and meta-analysis have provided ef-
fective evidence that Shu Gan Jie Yu (SGJY) capsule showed
an effective intervention for essential hypertension patients
with insomnia, anxiety or depression in recent years. And it
is widely used in the treatment of MMD. -e SGJY capsule
mainly concludes two Chinese herbs, Acanthopanax senti-
cosus (Rupr. & Maxim.) Harms (ASH) and Hypericum
perforatum L. (HPL).-e antidepressant mechanism of ASH
may be mediated via the central monoaminergic neuro-
transmitter system and cAMP response element-binding
(CREB) protein expression. -erefore, administration of
ASHmay be beneficial for patients with depressive disorders
[4]. HPL, widely known as St. John’s wort, is commonly used
in clinical practice for its antidepressant properties, as well as
anxiolytic its properties[5]. In addition, HPL extract is ef-
fective in treating MMD and is safer than SSRIs [6]. Al-
though the SGJY capsule has achieved good clinical efficacy
in the treatment of MMD, its mechanism of action is still
unclear.

With the rapid development of chemoinformatics and
bioinformatics, systematic pharmacology, a technology
based on computer simulation, has become a developing
interdisciplinary. It applies network pharmacology to in-
dicate the molecular mechanisms of Traditional Chinese
Medicine (TCM), and has been widely used in screening
bioactive components in TCM. In general, systemic phar-
macology technology could evaluate the pharmacological
effects and reveal the underlying relationship among active
components, potential targets, and multiple diseases [7].

In this study, a systemic pharmacology-based strategy
combined with molecular docking approach had been
employed to predict bioactive components, potential gene
targets, and related signal pathways of the SGJY capsule on
depression treatment. -e flowchart of research approach is
shown in Figure 1.

2. Methods

2.1. Screening for Active Components of the SGJY Capsule.
Traditional Chinese Medicine Database and Analysis Plat-
form (TCMSP, https://www.tcmsp-e.com/) and the Ency-
clopedia of Traditional Chinese Medicine (ETCM, https://
www.tcmip.cn/ETCM/index.php/Home/) were used to
screen components of ASH and HPL [8]. -e screening
criteria were set as oral bioavailability (OB) greater than or
equal to 30% and drug-likeness property (DL) greater than
or equal to 0.18 [9]. -e molecular structure was recon-
firmed by PubChem platform (https://pubchem.ncbi.nlm.
nih.gov/) and saved in .mol2 and SMILES format for
further study.

2.2. Potential Targets Prediction. Active components were
submitted to Swiss Target Prediction platform (https://www.
swisstargetprediction.ch/) based on SMILES format with
parameter Probability ≥0.6 in prediction results in order to
obtain high-quality targets [10]. “Homo sapiens” was used as
selected species. After removing duplicate genes, potential
targets related with active components of the SGJY capsule

were obtained. MMD-related targets were collected indi-
vidually from the DisGeNET (https://www.disgenet.org/
home/) and GeneCards (https://www.genecards.org/) da-
tabases with the keywords “psychotic depression, mental
depression, depressive disorder, mild depression, and
moderate depression.” All the targets were standardized in
the UniProt database (https://www.uniprot.org/).

2.3. Network Construction and Gene Analysis.
SGJY-related and MMD-related targets were all imported
into the Venny 2.1 system (https://bioinfogp.cnb.csic.es/
tools/venny/). -e intersection targets were selected as the
potential targets for further analysis. A protein–protein
interaction (PPI) network was constructed by using the
STRING 11.5 platform (https://string-db.org/), “Organism”
was set to “Homo sapiens.” An interaction with medium
confidence (0.4) was collected. -e network was visually
displayed by the Cytoscape 3.9.0 software.-enGO function
and KEGG enrichment analyses were performed with the
DAVID platform (https://david.ncifcrf.gov/tools.jsp). -e
identifier and species were selected as “official_gene_symbol”
and “Homo Sapiens,” respectively. -e enrichment results,
including molecular functional (MF), cell component (CC),
biological process (BP), and KEGG pathway enrichment,
were obtained and visualized by using imageGP platform
(https://www.ehbio.com/ImageGP/index.php/Home/Index/
index.html) as the bubble graph with p value <0.05 [11].

2.4. Molecular Docking. Crystal structures of core proteins
were obtained from the RCSB Protein Data Bank (PDB,
https://www.rcsb.org/) with high resolution and score.
Water molecules were removed from the structure. Potential
candidate components of the SGJY capsule in .mol2 format
were taken as ligands. Molecular docking was mainly
completed by iGEMDOCK 2.1 with default parameters.
Afterward, the most potential protein with associated active
ingredients at the low energy was used to dock on the
SwissDock platform (https://www.swissdock.ch/docking/),
and the results were visually displayed by the UCSF Chimera
1.15 software.

2.5. Literature Collection andAnalysis. Literature search was
performed via PubMed database (https://pubmed.ncbi.nlm.
nih.gov/) with the term “Shu gan jie yu.” All relevant lit-
erature were collected, organized, categorized, and divided
into experimental evidence and clinical practice.

3. Results

3.1. Collection and Screening Bioactive Components of the
SGJY Capsule. Ten active components of the SGJY capsule
were screened out via the TCMSP and ETCM database
with the thresholds of OB≥ 30% and DL≥ 0.18 properties
(Table 1), while ASH and HPL have a common compound
named 3-epi-beta-sitosterol (PubChem CID 12303645).
However, 3-epi-beta-sitosterol, ethyl oleate, and acanthoside
B were excluded because of no gene interaction in the
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network. Finally, 7 bioactive molecules were collected for
further analysis, including betulinic acid, sesamin, kaemp-
ferol, cianidanol, luteolin, (+)-epicatechin, and quercetin.

3.2. Determination of Common Targets. After excluded
duplicate data, 116 candidate targets of main components
were collected, 7041 and 1747 MMD-related targets were
identified from GeneCards and DisGeNET databases,

respectively. 45 intersection targets were shown as a Venn
diagram (Figure 2).

3.3. PPI Network Construction and Analysis. Forty-five in-
tersection genes correlated with MMD were analyzed by the
STRING database, and PPI network was established
(Figure 3(a)). A total of 45 nodes and 70 edges were em-
bodied with the average node degree 8.53 and p value <0.01.
-e most-connected targets were AKT1, HSP90AA1, ESR1,
EGFR, PTGS2, GSK3B, MMP9, MMP2, IGF1R, KDR, APP,
MCL1, PIK3R1, andMAPTwith larger degree (degree> 10),
as shown in Table 2 and Figure 3(b). -e network of herbs-
components-targets was constructed, including 2 herbs, 7
components, and 45 potential targets, in which the blue
hexagons correspond to the putative targets and bioactive
components are in pink (Figure 4).

3.4. Gene Function andKEGGPathway Enrichment Analyses.
To further capture the relationships between the terms,
the DAVID platform was used to perform gene function
and KEGG pathway analyses with p value <0.05. -e
main biological processes contained signal transduction,
negative regulation of apoptotic process, and protein
autophosphorylation (Figure 5(a)). Cellular components
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Figure 1: -e research flowchart of antidepressant mechanism of the SGJY capsule.

Table 1: Basic information of the main active components of the
SGJY capsule.

Herbs PubChem CID Chemical name OB (%) DL

ASH

12303645 3-Epi-beta-sitosterol 36.91 0.75
5363269 Ethyl oleate 32.40 0.19
64971 Betulinic acid 55.38 0.78
72307 Sesamin 56.55 0.83
443024 Acanthoside B 43.35 0.77

HPL

12303645 3-Epi-beta-sitosterol 36.91 0.75
5280863 Kaempferol 41.88 0.24
9064 Cianidanol 54.83 0.24

5280445 Luteolin 36.16 0.25
182232 (+)-Epicatechin 48.96 0.24
5280343 Quercetin 46.43 0.28
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Figure 2: Diagram of overlapping target genes between the SGJY capsule and MMD.
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Figure 3: Continued.
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mainly involved plasma membrane, cytoplasm, and nucleus
(Figure 5(b)). Protein, ATP, and identical protein binding
were the main molecular functions of intersection genes
(Figure 5(c)). -e mechanisms of the SGJY capsule in the
treatment of MMD included PI3K-Akt, Ras, and estrogen
signaling pathways (Figure 5(d)). Among them, the PI3K-
Akt pathway was the most potential signaling pathway.

3.5. Molecular Docking. PPI network construction and gene
analysis indicated that the potential targets of the SGJY
capsule against MMDwere based on their degree. -ey were
selected to dock with 7 active components (betulinic,

cianidanol, (+)-epicatechin, kaempferol, luteolin, quercetin,
and sesamin). Fluoxetine, which was a SSRI and widely used
in clinical practice, was used as a positive control [12]. -e
lowest binding energy shows the most stable combination.
-e value of fitness was used to evaluate the binding level.
-e total energy was regarded as a predicted pose in the
binding site, which included Van Der Waal (VDW), hy-
drogen bonding (H-bond) and electrostatic energy, so
Etotal � EVDW+EH-bond +Eelectrostatic. It was interesting to
note that most compounds had a better bonding ability to
potential targets than fluoxetine, as shown in Figure 6.
Moreover, (+)-epicatechin, kaempferol, luteolin, quercetin,
and sesamin were all closely bound to protein MMP9, and
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Figure 3: PPI network analysis. (a) PPI network of targets constructed using STRING 11.5. Nodes represent proteins. Edges represent PPIs.
(b) -e network constructed by Cytoscape 3.9.0 according to the enrichment degree; the more lines, the more connections.
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Table 2: Potential targets of the SGJY capsule against MMD (degree> 10).

No. UniProt ID Gene names Protein names PDB ID Degree
1 P31749 AKT1 RAC-alpha serine/threonine-protein kinase 7NH5 28
2 P07900 HSP90AA1 Heat shock protein HSP 90-alpha 3O0I 24
3 P03372 ESR1 Estrogen receptor 5FQV 23
4 P00533 EGFR Epidermal growth factor receptor 5GNK 22
5 P35354 PTGS2 Prostaglandin G/H synthase 2 5F19 20
6 P49841 GSK3B Glycogen synthase kinase-3 beta 6Y9S 18
7 P14780 MMP9 Matrix metalloproteinase-9 6ESM 17
8 P08253 MMP2 72 kDa type IV collagenase 3AYU 15
9 P08069 IGF1R Insulin-like growth factor 1 receptor 1P4O 15
10 P35968 KDR Vascular endothelial growth factor receptor 2 6GQQ 13
11 P05067 APP Amyloid-beta precursor protein 4PWQ 13
12 Q07820 MCL1 Induced myeloid leukemia cell differentiation protein Mcl-1 6OQD 13
13 P27986 PIK3R1 Phosphatidylinositol 3-kinase regulatory subunit alpha 2IUG 13
14 P10636 MAPT Microtubule-associated protein tau 6ODG 11
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the density of lines represents the interaction relationship between different protein targets.
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sesamin had the better bonding mode with the MMP9
protein than fluoxetine based on binding energy (Figure 7).

3.6. Literature Collection and Analysis

3.6.1. Experimental Evidence of the SGJY Capsule. Shu Gan
Jie Yu capsule mainly contains two Chinese herbs, Acan-
thopanax senticosus (Rupr. & Maxim.) Harms (ASH) and

Hypericum perforatum L. (HPL). Many evidences show that
ASH and HPL play an important role in the treatment of
MMD.

Jin et al. found that ASH extract significantly elevated the
levels of 5-hydroxytrylamine, norepinephrine, and dopa-
mine in the whole brain of mice and up-regulated the level of
CREB protein. It might exert antidepressant effects via the
central monoaminergic neurotransmitter system and CREB
protein expression [13]. In vitro studies had shown that ASH
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Figure 5: GO enrichment and KEGG pathway analyses. (a) Biological process (BP) terms, (b) cellular component (CC) terms, and (c)
molecular function (MF) terms of GO enrichment analysis (top 10). (d) KEGG pathway enrichment (top 10). -e color of the dot is
displayed in a gradient from red to green according to the ascending order of the p value, while the size is arranged according to the
ascending order of the number of gene counts. -e longitudinal axis represents the name of different terms or pathways, and the transverse
axis shows the percentage of the number of enriched genes to the total number of genes. p value <0.05.
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extract significantly increased the cell viability, suppressed
the apoptosis of PC12 cells, and up-regulated CREB protein
expression. Neuroprotective effect might be one of the acting
mechanisms that accounts for the in vivo antidepressant
activity of ASH [14]. -e induction of HO-1 expression
protected cells against glutamate-induced neuronal cell
death. ASH extract could regulate HO-1 expression through
the p38-CREB pathway and translocation of Nrf2, and
played an important role in the generation of anti-
neuroinflammatory and neuroprotective responses [4].
Moreover, it had beneficial effects on depression behaviors
and restored both altered c-fos expression and hypotha-
lamic-pituitary-adrenal (HPA) activity which associated
with stress, and may be a novel agent for the treatment of
stress-related disorders [15].

HPL, popularly called St. John’s wort, is used as a me-
dicinal plant for MMD, and is more effective than placebo or
some antidepressant drugs. Di Pierro, et al. found that
multifractionated hypericum extract has better clinical
outcomes in subjects with depression without determining
an increased risk of toxicity or reduced tolerability [16]. HPL
could regulate the genes that control HPA axis function and
influence, like conventional antidepressants. -us, at least in
part, it plays stress-induced effects on neuroplasticity and
neurogenesis [17]. For patients with mild to moderate de-
pression, St John’s wort has comparable efficacy and safety
when compared to SSRIs [18]. Most of HPL extracts have
been shown to be significantly more effective than placebo
with at least similar efficacy and better tolerability compared

to standard antidepressant drugs. It is a safe and effective
way to treat MMD over long periods of time with less
adverse effects, and seems especially suitable for a relapse
prevention [19–21].

3.6.2. Clinical Practice of the SGJY Capsule. -e SGJY
capsule is widely used in clinical practice and has achieved
very good clinical results in MMD. Clinical efficacy and
safety of the SGJY capsule in patients with acute myocardial
infarction and depression. Significantly lower adverse event
rate was observed in the Shu Gan Jie Yu group. -e SGJY
capsule has a reliable effect and high safety in patients with
depression [22]. In addition, it is very effective for treatment
of senile depression [23].

-e SGJY capsule is also an effective intervention for
essential hypertension patients with insomnia, anxiety, and
depression [3]. Yao et al. found that the SGJY capsule sig-
nificantly reduced the depressive symptoms and improved
cognitive functions in poststroke depressive patients
through alteration of brain dynamics [24].

4. Discussion

Seven bioactive components of the SGJY capsule, including
betulinic, cianidanol, (+)-epicatechin, kaempferol, luteolin,
quercetin, and sesamin, had been successfully obtained by
systemic pharmacology strategy. Recent studies also con-
firmed the antidepressant effects of these compounds.

Sesamin Sesamin

(a)

Fluoxetine 

Fluoxetine 

(b)

Figure 7: -e best binding modes of sesamin (a) and fluoxetine (b) with MMP9 protein by SwissDock. Visualization is performed using
UCSF Chimera.
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Kaempferol and quercetin had been reported to relieve
symptoms of depression and exhibited antidepression effects
through acting on interleukin-6 (IL6), mitogen-activated
protein kinase 1 (MAPK1), signal transducer, and activator
of transcription 3 (STAT3) and transcription factor AP-1
(JUN) [25]. Betulinic produced a significant antidepressant-
like effect [26]. Cianidanol, also called (+)-catechin, together
with kaempferol and quercetin showed potential capacity in
depression management [27]. Luteolin could prevent both
neuroimmune responses and behavioral abnormalities in-
cluding major depressive disorder, which was induced by
visceral inflammation [28]. Sesamin inhibited chronic un-
predictable mild stress (CUMS)-induced mice depressant-
like behaviors and anxiety, which retained immobility and
prevented stress-induced decrease of 5-HT and NE in the
striatum and serum. Moreover, sesamin treatment signifi-
cantly prevented CUMS-induced neuroinflammation by
inhibiting over-activation of microglia and expressions of
inflammatory mediators including iNOS, COX-2, TNF-α,
and IL-1β in stressed mice hippocampus and cortex [29].
-erefore, multiple active components of the SGJY capsule
may exert therapeutic effects on MMD.

PPI network analysis showed that 14 core targets cor-
related bioactive components had been determined, such as
AKT1, HSP90AA1, ESR1, EGFR, PTGS2, GSK3B, MMP9,
MMP2, IGF1R, KDR, APP, MCL1, PIK3R1, and MAPT.
Some studies had reported that the AKT1 gene was strongly
associated with antidepressant treatment [30, 31], which
further confirmed our results. And PTGS2 [32, 33], EGFR
[34], ESR1 [35, 36], APP [37], IGF1R [38, 39], KDR [40],
GSK3B [41, 42], MAPT [43], and PIK3R1 [44] played very
important roles in prevalence and progression of depression.
It was verified that HSP90AA1 was up-regulated in patients
with depression, which correlated with elevated levels of
VEGF, VEGFR2, PI3K, and AKT1 [45]. Some studies showed
thatMMP-2 andMMP-9 genes had relative lower expression
on both mRNA and protein levels in depression [46, 47].
MMP9, a key protein for extracellular matrix degradation,
was significantly correlated with depressive symptoms
[38, 39]. Our study found that most of the bioactive com-
ponents of the SGJY capsule had good binding capacity to
MMP9, which indicated thatMMP9 played a very important
role on SGJY-treated MMD.

Signal transduction has been reported to be closely in-
volved in antidepressant treatment. Gene function and
KEGG results indicated that the main molecular mechanism
of the SGJY capsule in the treatment of MMD was the PI3K-
Akt signaling pathway, KDR, CDK6, IGF1R, EGFR, INSR,
GSK3B, HSP90AA1, PIK3CG, MCL1, PIK3R1, and AKT1
genes were enriched in it. Quercetin, luteolin, and
kaempferol had been confirmed to be effective in the
treatment of MMD by in vivo experiments. -e potential
PI3K-Akt signaling pathway, a classic signaling pathway in
cells, closely relates to the biological process of depression
[43, 48]. It regulates fundamental cellular functions such as
transcription, translation, proliferation, growth, and sur-
vival. In addition, the SGJY capsule might exert therapeutic
effects on MMD via Ras, estrogen, and Rap1 signaling
pathways. Homologous Ras-family small GTPases,

including Ras, Rap2, and Rap1, played a different role and
presented signal diversity and specificity. Ras signals long-
term potentiation via endoplasmic reticulum PI3K and lipid
raft ERK, whereas Rap2 and Rap1 signal depotentiation and
long-term depression via bulk membrane JNK and lysosome
p38MAPK, respectively [49]. -us, Ras-family small
GTPases related signaling pathways, including Ras-Raf-
MAPK [50], Ras-ERK-MAPK [51], and Rap1-MKK3/6-p38
MAPK [52], may be involved in explaining the disease
etiology, the clinical symptom, and treatment response of
stress-induced depression [53]. Increasing evidence had
been manifested that the disturbances of estrogen signaling
pathway occurred in psychiatric disorders, especially in
female depression [54]. Hence, the role of multiple signaling
pathways is under consideration. Further study is warranted
to reveal the relationship between core targets activated by
potential bioactive components of the SGJY capsule and
different related signaling pathways.

Due to the limitations of compounds screening and
accuracy of target prediction, the results obtained in this
study are general [55]. Although there is some evidence,
many in vivo and in vitro experiments are still needed for
verification. In short, our study portrayed the ground view of
the SGJY capsule in the treatment of mild to moderate
depression.

5. Conclusion

In this study, seven bioactive components of the SGJY
capsule have been identified by a systemic pharmacology-
based strategy and the intersection targets corresponding to
these components and their therapeutic mechanism of
MMD have been revealed in detail by the PPI network and
pathway enrichment analyses. -e result of molecular
docking showed that sesamin had a better bonding mode
with theMMP9 protein than fluoxetine. In general, bioactive
components and the main therapeutic mechanism of the
SGJY capsule in the treatment of MMD were successfully
predicted, which might provide valuable guidance for fur-
ther pharmacological research of the SGJY capsule onMMD.
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