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The prevailing abundance of full-length HIV type 1 (HIV-1) genome sequences provides
an opportunity to revisit the standard model of HIV-1 group M (HIV-1/M) diversity
that clusters genomes into largely nonrecombinant subtypes, which is not consistent
with recent evidence of deep recombinant histories for simian immunodeficiency virus
(SIV) and other HIV-1 groups. Here we develop an unsupervised nonparametric
clustering approach, which does not rely on predefined nonrecombinant genomes, by
adapting a community detection method developed for dynamic social network analysis.
We show that this method (dynamic stochastic block model [DSBM]) attains a signif-
icantly lower mean error rate in detecting recombinant breakpoints in simulated data
(quasibinomial generalized linear model (GLM), P < 8 × 10−8), compared to other
reference-free recombination detection programs (genetic algorithm for recombination
detection [GARD], recombination detection program 4 [RDP4], and RDP5). When
this method was applied to a representative sample of n = 525 actual HIV-1 genomes,
we determined k = 29 as the optimal number of DSBM clusters and used change-point
detection to estimate that at least 95% of these genomes are recombinant. Further,
we identified both known and undocumented recombination hotspots in the HIV-
1 genome and evidence of intersubtype recombination in HIV-1 subtype reference
genomes. We propose that clusters generated by DSBM can provide an informative
framework for HIV-1 classification.
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Understanding the global epidemiology of HIV type 1 (HIV-1) is contingent on our
ability to accurately reconstruct the origin of the virus (1). The origin of different
lineages of HIV-1 has been traced back to multiple zoonotic transmissions of simian
immunodeficiency virus from chimpanzees (SIVcpz) directly or through an intermediate
host to human populations in West and Central Africa (2, 3). SIVcpz, on the other hand,
originated through multiple cross-species transmissions of SIV from other primates to
chimpanzees, with extensive recombination between two or more ancestral variants (4).
SIVs in other nonhuman primate species also show evidence of recombinant origins (5),
and at least 13 recombinant breakpoints and 14 host-switch events have been identified
among SIV lineages overall (6). Furthermore, there is phylogenetic evidence that the
ancestor of HIV-1 group N was a mosaic combination of the HIV-1 group M (HIV-1/M)
ancestor and an SIV lineage (2). Taken together, these findings imply that recombination
has been an important evolutionary force in the deep evolutionary history of primate
lentiviruses.

Currently, HIV-1 is classified into four major groups (M, N, O, P). Group M, which
is responsible for the global pandemic, is further subdivided into nine “pure” subtypes
(A-D, F-H, J, and K) that are defined by substantial genetic divergence (∼10 to 25%)
and/or bootstrap support for monophyletic clades (7). The first evidence of the existence
of recombinant HIV-1 genomes was documented in the late 1980s (8). HIV-1 exhibits a
high rate of recombination that is driven by obligate template switching during the reverse
transcription stage of its replication cycle (9) and by coinfection at the cellular (10) and
host levels (11). Consequently, there are presently close to 100 circulating recombinant
forms (CRFs) documented by the Los Alamos National Laboratory (LANL) HIV Se-
quence Database (https://www.hiv.lanl.gov/), where each CRF comprises a mosaic of two
or more pure HIV-1 subtypes that has been sampled from at least three epidemiologically
unlinked individuals (7). There are also a large number of unique recombinant forms
(URFs) that do not meet the latter criterion (12). Nevertheless, the prevailing view of
HIV-1 diversity is that the majority of virus genomes can be classified into one of the
subtypes or a relatively small number of CRFs that have reached a high level of global
or regional prevalence, such as CRF01 AE (Southeast Asia) (13) or CRF07 BC (China)
(14). Thus, intersubtype recombination is considered to be an infrequent event, such that
new infections can be routinely classified into one of the subtypes or CRFs by sequencing
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a specific region of the genome, such as the HIV-1 pol gene that
encodes the major targets of antiretroviral therapy.

Increasing deployment of whole-genome sequencing technolo-
gies for HIV-1 around the world is providing a clearer picture
of the prevalence and diversity of recombinant HIV-1 genomes
(15). For instance, molecular clock estimates of the origin of the
HIV-1 pandemic (16), or the time to the most recent common
ancestor (tMRCA), may be inaccurate due to a deep recombinant
history, such that a single phylogenetic tree is not an adequate
representation of discordant evolutionary histories relating differ-
ent regions of the virus genome. In previous work (17), we used a
sliding-window molecular clock analysis of near full-length HIV-1
genomes to show that different regions of the virus genome yield
significantly different estimates of the tMRCA. This result sup-
ports the hypothesis that HIV-1/M may have a deep recombinant
origin that involved at least two genome fragments with different
evolutionary histories. For example, this result could be explained
by the introgression of a genome fragment from an unsampled
lineage with a more distant common ancestor to the diversity of
the present day (18).

This phylogenetic evidence, together with other findings on
the deep recombinant history of SIV (6), supports the hypothesis
that the evolutionary history of HIV-1/M can be improved if the
conventional framework of established pure reference subtypes
with limited subsequent recombination is revisited. One of the
obstacles to evaluating this hypothesis is that most tools for
classifying HIV-1 genomes rely on a reference set of predefined
subtypes, such as COMET (context-based modeling for expe-
ditious typing) (19) or SCUEAL (subtype classification using
evolutionary algorithms) (20). In other words, these are supervised
classification methods. We propose that the best way to test
whether the early evolutionary history of HIV-1/M is reticulate
is to apply an unsupervised clustering method to the global
diversity of virus genomes. For example, GARD (genetic algo-
rithm for recombination detection) (21) is a divisive unsupervised
method that attempts to find the optimal partition of the sequence
alignment that maximizes the joint likelihood. Fitting GARD
to large numbers of near full-length genomes is computationally
intensive because phylogenies must be reconstructed for each
genome segment defined by every candidate partition. Further-
more, a postprocessing step is required to determine support for
a recombination breakpoint from the topological discordance of
phylogenies. In addition, there are a number of recombination
detection heuristic methods that do not require reference se-
quences, several of which are implemented in the software package
RDP (recombination detection program) (22). However, these
methods are limited to pairwise or three-way comparisons among
sequences.

This study endeavors to reconstruct the extent of recombi-
nation across the entire HIV-1/M genome. Here we describe
an unsupervised nonparametric approach to this problem based
on adapting a community detection method that was developed
for the analysis of dynamic social networks (23). Community
detection consists of grouping or partitioning nodes (vertices) of
a network graph into the same community based on their relative
edge density (24, 25). We note that a connected component in the
network, which is often referred to as a “cluster” in the context of
genetic epidemiology (26), may comprise multiple communities.
Likewise, network communities are often referred to as clusters.
To avoid confusion, we explicitly refer to subgraphs in which there
are no edges to external nodes as connected components instead
of clusters.

A network in which the distribution of edges among nodes
remains constant over the observational time period is a static

network (27). However, real networks are dynamic as relationships
evolve over time, represented by the addition and/or removal of
network edges (28, 29). A dynamic network can be represented by
a series of static networks that each capture the state of the system
at a given point in time. In the context of a dynamic network,
communities are a group of nodes that are stably connected by a
relatively high density of edges over time (30). The development
of methods to detect network communities is an active area of
research with a broad domain of application, including biological
sciences, for extracting patterns from complex relational data (25).

In this study, we use genetic distances between sequences to
generate a network or graph, where each node represents a virus
genome, and each edge indicates that the respective genomes have
a distance below some threshold. We assume that communities
in the resulting graph correspond to phylogenetic clusters such as
subtypes. When distances are calculated from different regions of
the genome, a node may switch membership from one community
to another, which can correspond to a recombination event.
This is analogous to an individual in a social network switching
affiliations from one community to another. We use stochastic
block modeling to detect the community structure of the genetic
similarity graph and employ a recently described (31) expectation
maximization algorithm to estimate the “migration” rates between
communities. Stochastic block models (SBMs) are one of the
most widely utilized classes of models for community detection
in networks (23). Individuals belong to one of K latent com-
munities, and the probability of an edge between individuals is
determined only by community membership; e.g., Pii > Pij for
i , j ∈ 1, ...,K where i �= j . SBMs are designed to uncover hidden
structural features in complex networks by clustering nodes based
on similar or shared attributes (32), while dynamic stochastic
block models (DSBMs) uncover these hidden data structures as a
dynamic network changes over discrete time (33). We propose to
adapt DSBMs as an unsupervised method to characterize the effect
of recombination on the evolutionary history of HIV-1 genomes.

Methods

Data Processing. A total of n = 3, 900 near full-length (>8,000 nt) HIV-1/M
genomes, manually curated from our previous study (17), were used in this
study. HIV-1/M has accumulated a considerable amount of genetic diversity that
includes numerous sequence insertions and deletions. Consequently, a multiple-
sequence alignment generated with conventional methods for a global selection
of HIV-1/M genomes tends to contain a large number of gap-rich intervals with
spurious alignments of nonhomologous nucleotides (34). To address this issue,
we used an automated alignment-free clustering method that we developed in
a previous study (17). In summary, we used a k-mer distance (35) to generate
a pairwise distance matrix that we converted to a graph comprising a number
of connected components. Next, we used a network centrality statistic to select a
single representative genome for each component and then generated a consen-
sus sequence from the multiple-sequence alignment of these representatives.
Finally, we constructed a reduced multiple-sequence alignment based on the
pairwise alignment of sequences against this consensus genome, discarding in-
sertions relative to this reference to filter out regions of relatively low evolutionary
homology.

To minimize the computing time of subsequent steps in our analysis, we
selected n = 550 sequences from this alignment by progressively removing
genomes with the shortest genetic distances to other genomes in the dataset.
Next, we realigned the remaining sequences using multiple alignment using fast
Fourier transform, version 7.271 (36) and then partitioned the alignment into
sliding windows of 500 nt at steps of 100 nt, resulting in a total of 82 alignment
subsets covering HXB2 nucleotide coordinates 790 to 9,465. (We arrived at these
parameter settings after some preliminary tests varying window and step sizes.)
Sequences that had deletions spanning more than 20% in one or more subsets
were excluded, resulting in a final total of 525 sequence subsets. We used SCUEAL
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(20) to classify full-length genomes with respect to the HIV-1/M subtype reference
sequences obtained from the LANL HIV Sequence Database.

Community Detection. The aim of this study was to characterize the extent
of recombination over a series of networks as snapshots of the dynamic system
over time, throughout the evolutionary history of HIV-1/M. We are adapting
DSBMs to this problem by drawing an analogy between time and the length
of the HIV-1 genome, with recombination breakpoints as discrete events. If
recombination is relatively infrequent, then genomes should largely cluster into
stable communities (pure subtypes) that diverge over time from a common
ancestor. With abundant recombination, however, we would expect sequences
to switch frequently between communities. To construct a graph, we used the
dist.dna function of the R package ape (37) to compute the Tamura–Nei (38)
(TN93) distances between every pair of sequences within each of the 82 windows
extracted from the alignment. We imported the resulting distance matrices into R
to generate undirected graphs using the package igraph (39). The TN93 distance
is the most biologically realistic genetic distance for which a closed-form solution
is available, facilitating rapid computation for large alignments (40). It relaxes
the assumption of equal transition rates (A-G and C-T), which makes it well suited
for comparing HIV-1 sequences that tend to exhibit a significant A-G transition
bias due to G-to-A hypermutation (41). By default, the dna.dist function treats
ambiguous base calls (mixtures) as completely missing values that are ignored
when computing distances. Our original HIV-1/M dataset of n = 525 sequences
contained no mixtures; however, 10 of the 37 sequences in the HIV-1 subtype
reference dataset contained a small number of mixtures with a mean of 0.31%
(range: 0.01 to 2.13%) mixtures per sequence.

We did not use a fixed distance threshold for all windows because rates
of molecular evolution vary substantially from one part of the HIV-1 genome
to another. Instead, we applied different percentile thresholds (e.g., the lower
quartile distance, 25%) to the observed distribution of TN93 distances for each
window and used simulation experiments (SI Appendix, Fig. S1) to assess which
percentile yielded the most informative graphs. Using a relative percentile thresh-
old means that the actual distance threshold will vary among windows in re-
sponse to differences in genetic variation. Finally, to reconstruct the distribution
of recombination events in the full alignment, we used the R package dynsbm
(42) to fit a DSBM to the series of graphs. This method jointly estimates the cluster
memberships for all nodes in the graph and a transition rate matrix for the move-
ment of nodes to other clusters between graphs. These parameters are estimated
by an expectation maximization method (43), which is an iterative algorithm for
fitting a model by maximum likelihood when some variables are not observed
(i.e., missing or latent). In the case of DSBM, the cluster memberships are latent
variables. In brief, the algorithm estimates the latent variables given the current
parameters and then updates the parameters by maximum likelihood; the new
parameter values are then used to reestimate the latent variables, and so forth.
To determine the optimal number of clusters, we used the integrated completed
likelihood (ICL) criterion (44), which is commonly used in model-based clustering
applications (45, 46).

To predict recombination breakpoints from the DSBM outputs, we used the
R package changepoint to perform change-point detection on the estimated
cluster memberships along the sequence of windows for each genome. Change-
point detection methods are useful for detecting abrupt and substantial changes
in a time series of observations (47) and have a broad domain of application
including finance, climate change, and monitoring medical conditions (47, 48).
A change is detected from a shift in a summary statistic, such as the mean or
variance, computed for a consecutive series of observations (49). In the context
of our work, we draw an analogy between the sliding windows along a sequence
alignment and a time series. Hence, change points correspond to estimated
recombination breakpoints as determined from shifts in cluster memberships.
For each sequence of cluster memberships, we dropped missing values (genome
windows that could not be assigned to any cluster) up to a maximum tolerance
of 10 missing values, beyond which we did not attempt to predict breakpoints
for that genome. We evaluated both the default “at most one change” (AMOC)
method (50) and the more recently described pruned exact linear time (PELT)
algorithm (51). Both methods require the user to specify a minimum segment
length (m), which is the number of consecutive observations for which no change
points are tolerated (52). For example, setting m = 10 windows means that a
new change point cannot be placed on the interval between two existing points

if the interval comprises 10 or fewer windows—not even if every window has
a different cluster assignment. Reducing m confers more sensitivity at the cost
of lower specificity, and vice versa. In both cases, we used the default modi-
fied Bayesian information criterion (MBIC) to penalize the addition of change
points (53).

Recombination Simulation. Simulating sequence evolution is an important
tool for validating new methods in phylogenetic analysis by evaluating their accu-
racy on data with known parameters. To calibrate our DSBM method, we evaluated
its prediction accuracy on simulations under varying parameter settings. In addi-
tion, we compared its performance to other recombination detection methods
that do not require reference genomes, i.e., GARD and RDP. First, we created a
highly simplified recombination scenario using an alignment of 16 reference
genomes, 4 for each of the HIV-1/M subtypes A, B, C, and D. We applied one
to three breakpoints to produce recombination fragments of roughly equal size,
i.e., one breakpoint at position 4,500, two at 3,000 and 6,000, or three at 2,250,
4,500, and 6,750. For each breakpoint, we selected two subtypes at random
to recombine, such that all four genomes of one subtype exchanged segments
with all four genomes of the other. We then evaluated our ability to reconstruct
these simulated recombination breakpoints. This “post hoc” simulation method
is similar to the one used to validate the subtyping and recombination detection
program COMET (19), which is reference dependent.

Next, we generated more realistic simulations in which recombination events
could be distributed throughout the evolutionary history of the “observed” se-
quences. We generated a multiple-sequence alignment of a larger set (n = 37)
of HIV-1/M subtype reference sequences from the LANL database, including
representatives of subtypes A-D, F-H, J, and K. From this alignment, we used IQ-
TREE (version 1.3.11.1) (54) to reconstruct a maximum-likelihood tree relating
the subtype reference sequences used in the previous method. We rooted this
tree using the sample collection dates by root-to-tip regression using the rtt
function in the R package ape (37). Next, we used BEAST (version 1.10.4) (55)
to sample time-scaled phylogenies from the posterior distribution, using the
TN93 nucleotide substitution model, with rate distribution modeled by a gamma
distribution with four rate categories; an uncorrelated lognormal clock model
(μ= 1,σ = 0.33); and a skyline tree prior with 10 population sizes. In addition,
we set the prior distribution for the time to the most recent common ancestor to
a normal distribution with μ= 82 y and σ = 4.1, based on recent estimates of
the origin of HIV-1/M (1). We ran a single-chain sample for 108 steps, discarded
the first 107 steps as burn-in, and generated a maximum clade credibility (MCC)
tree from the remainder using TreeAnnotator (version 1.10.4).

We used a Python script to update the MCC tree with recombination events
by switching random branches that span a randomly selected time. To generate
one, two, or three recombination breakpoints, we selected a random point in
time to prune and regraft subtrees on two randomly selected extant branches.
We assumed that the leftmost portion of the alignment was always related by the
original tree and that the portion of the alignment past the first breakpoint was
related by the modified tree. We repeated this process for additional breakpoints
by progressively modifying the tree to the immediate left of the breakpoint to
relate sequence fragments to the right. In all, we generated 100 simulations of
one, two, and three breakpoints for a total of 300 sets of trees. The evolution of a
9,000-nt sequence at the root was simulated along each tree using INDELible
(v1.0.3) (56) under a codon substitution model with rate variation modeled
by a gamma distribution (α= 1.5, β = 3) discretized into 50 rate categories
and a transition/transversion ratio κ= 8.0 and applied to all tree segments.
These settings were taken from a previous study (26) in which the simulation
model was calibrated to yield alignments with pairwise TN93 distributions closely
resembling the empirical distribution for an alignment of actual HIV-1 sequences.
The input tree was rescaled such that the expected number of substitution events
per codon was 3.22, which we derived from the total length of the maximum
clade credibility tree (643.5 y), the clock rate estimate (0.00167 substitutions per
nucleotide per year), and an adjustment of 3 nt per codon.

We used the sequence alignments produced by both simulation methods to
evaluate different recombination detection methods, including the DSBM com-
munity detection method. We ran the GARD method in HyPhy (version 2.3.11)
(21) with the HKY85 nucleotide substitution model and no rate variation. Since
this program required a message-passing interface (MPI) parallel computing
environment, we ran this analysis with eight threads. In addition, we evaluated
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both versions 4 and 5 of the program RDP (22, 57) using the default settings and
with the sequence type set to “linear.”

To measure the computing times of these different methods, we generated
test sets by randomly sampling sequences with replacement from the larger set of
37 reference genomes and added random mutations at 0.1% of positions in each
genome on average. Through this process, we generated 10 replicates of 50, 100,
and 200 sequences for a total of 30 test sets and then ran each set through DSBM,
GARD, RDP4, and RDP5. Since the RDP programs are released only as Windows
binary executables, and GARD requires an MPI-enabled environment, it was not
feasible to run all tests in the same computing environment. Hence, we focused
on characterizing the time complexity of each method (relative change in time
with increasing data).

All source code for the DSBM method has been released under a permissive
free license at https://github.com/Abayomi-Olabode/dsbm.

Results

Our hypothesis is that community detection with a DSBM (31)
can be adapted for the unsupervised detection of recombination
events from variation among HIV-1 genomes. We draw an anal-
ogy between latent communities in a social network and genetic
clusters, such as the clusters that are presently labeled as the HIV-
1 subtypes. Hence, a recombination event is analogous to moving
from one network community to another. To briefly summarize
our approach, we first generate a series of networks by partitioning
a multiple alignment of HIV-1 genomes into “sliding windows”
of a fixed width and step size and then compute a genetic distance
(TN93) between all pairs of subsequences within each window.
A network (undirected graph) can be derived from each distance
matrix by applying a distance threshold, below which an edge
is drawn between the respective nodes (sequences). Finally, we
applied the implementation of DSBMs in R (42) to the resulting
series of graphs to reconstruct community memberships for all
nodes. For brevity, we refer to this method as DSBM.

Simulation Analysis. To evaluate the accuracy of this approach,
we first used a simple method to generate alignments of recom-
binant sequences by combining fragments from one or more
HIV-1/M subtype reference genomes at predetermined positions

(breakpoints). We also used this simulation experiment to cal-
ibrate the threshold for converting TN93 distances to graphs.
DSBM performed best at a percentile threshold of 40% with
an average accuracy of 88.6%; in comparison, average accuracies
were 86.25 and 78.6% at percentile thresholds of 30 and 20%,
respectively (SI Appendix, Fig. S1). The method was the least ac-
curate for recombination between subtypes B and D, which is
consistent with their atypically high similarity (58). Note that
the 40% threshold is not a fixed TN93 distance (i.e., 0.04), but
rather the distance associated with the lower 40% of the empirical
distribution of all TN93 distances for that window. Consequently,
every window can have a different threshold distance. We used
the percentile as a means of accommodating variation in rates of
evolution among different regions of the genome.

Next, we generated more realistic simulations by grafting re-
combination events into a time-scaled phylogeny reconstructed
from n = 37 HIV-1 genomes with prior information (1). Break-
point locations were drawn at random from a uniform distribution
over the alignment length. Starting from the left of the alignment,
we pruned and regrafted subtrees by selecting two extant branches
at random at given time points to produce a new tree for sequence
fragments past the next breakpoint. We tested the ability of
DSBM to accurately capture the recombination breakpoints in
these simulations (Fig. 1A). Overall, DSBM was significantly
more accurate (measured by error percentage) than the three other
methods on these data (quasibinomial generalized linear model
(GLM), t > 5.4, P < 7.5× 10−8). Error rates increased signif-
icantly with the number of actual recombination breakpoints in
the data (t = 15.6, P < 10−12).

In addition, we evaluated the sensitivity of DSBM to varying
the sizes of windows (250, 500, 750, and 1,000 nt) and steps
(50, 100, 200, and 300 nt), which determines the number and
stability of the graphs generated from the genome alignment.
Error percentage was not significantly associated with window
size (quasibinomial GLM, t =−0.33, P = 0.74) or step size
(t = 0.75, P = 0.46), although we noted a slight tendency for
error to increase with window size for simulations with one
breakpoint and to decrease with window size for three break-
points (SI Appendix, Fig. S2). Furthermore, we expect increasing
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window size to constrain our ability to resolve breakpoints that
are separated by shorter segments or breakpoints too close to a
sequence terminus. Pooling simulation replicates for all numbers
of breakpoints, we confirmed that the error rate increased signifi-
cantly with decreasing length of the shortest segment (t =−9.46,
P < 2× 10−16) with no significant effect of window size over the
evaluated range (250 to 1,000 nt).

Finally, we measured the runtimes for processing varying num-
bers of sequences derived from HIV-1 subtype reference genomes
with DSBM, GARD, RDP4, and RDP5. Since the purpose of this
experiment was to measure computing time, we arbitrarily set the
number of DSBM clusters to 8 and 12 rather than optimize the
number of clusters. Computing times for DSBM were comparable
to those for RDP4, whereas those for GARD and RDP5 were
substantially faster (Fig. 1B); however, it is difficult to compare
the latter two since GARD requires a parallel computing (MPI)
environment. Overall, these results indicate that the expected
computing times tend to increase faster than linearly with the
number of sequences and increase with the number of clusters
for DSBM. We also noted an unusual trend in GARD com-
puting times, with faster times obtained for sample sizes above
50 sequences. On examining the output files, we determined
that GARD efficiently rejected all models with recombination
breakpoints for the larger datasets. In contrast, GARD runs on
datasets with 50 sequences were unable to reject the presence of
recombination and were burdened with 677.8 candidate models
(partitions of the alignment among trees) on average.

Application to HIV-1/M Genomes. Having validated the DSBM
method on simulated data in comparison to other unsupervised
recombination detection methods, we next applied our method to
n = 525 full-length HIV-1/M genome sequences to characterize
the role of recombination in the evolutionary history of this
virus (Fig. 2). These sequences were selected from all available
full-length HIV-1 genomes to maximize the representation of
global diversity in a reduced dataset. The ICL criterion, used
to determine the optimal number of clusters for DSBM, was
maximized at 29 clusters (SI Appendix, Fig. S4), based on a TN93
distance percentile threshold of 30%. Although our simulation
experiments slightly favored 40% over 30%, the memory require-
ments of the dynsbm program for processing graphs generated
from this dataset under a 40% threshold exceeded the limits of
our compute server.

The results of our analysis are summarized in Fig. 2. Fig. 2A
displays a heatmap summarizing the transition rate matrix from
the DSBM analysis. Some clusters have substantial transition
rates (darker shades) between them, such as clusters 3 and 14,
11 and 15, or 21 and 27. This implies a hierarchical structure
to clusters akin to the subsubtypes of HIV-1. The frequencies
of cluster memberships were consistent across the length of the
HIV-1 genome (SI Appendix, Fig. S5).

To better understand the associations between these clusters, we
mapped the original HIV-1 subtype annotations of the genome
sequences to these data. We found that windows from genomes
labeled as subtype A1 (n = 10) were predominantly assigned to
clusters 2, 6, 7, and 13; subtype B (n = 20) was associated with
clusters 5, 10, and 17; and subtype C (n = 17) to clusters 1, 12,
21, and 27 (SI Appendix, Fig. S6). Within these major subtypes,
cluster assignments tended to become more variable past genome
window 50 (SI Appendix, Fig. S7), in association with the start of
the env gene. In addition, subtype D was associated with clusters
11, 15, and 20, while G was associated with clusters 22 and 29.
Circulating recombinant form 01AE was strongly associated with

cluster 18. Finally, genomes annotated as “complex” intersubtype
recombinants did not exhibit a strong association with any cluster.

Fig. 2B displays the cluster memberships for all 525 genomes
in 82 windows of 500 nt in steps of 100 nt. We mapped cluster
memberships to a color gradient such that clusters with similar
colors tend to have relatively higher transition rates between them.
Under the standard concept of pure HIV-1 subtypes, genomes
should tend to maintain the same coloration across their length. In
other words, a row representing a non-recombinant genome will
maintain a single color across all cells. Indeed, we see an overall
stratification of colors in this color map (Fig. 2B). We used white
to represent windows that the algorithm failed to assigned to any
cluster—an outcome that implies the subsequence in that region
is too divergent from the other genomes in the dataset, such that
its TN93 distance exceeds the threshold in all cases. A total of
489 (1.1%) windows were unassigned; these missing values were
distributed across 76 (14.5%) of the genomes.

If we plot the cluster assignments for individual genomes
(Fig. 2C ), we see traces that are consistent with recombination, for
instance in Fig. 2 C2, C3, and C14. Other traces are too noisy to
be interpreted visually, i.e., Fig. 2 C10–C13. To automate the ex-
traction of recombination breakpoints from traces in the presence
of random error, we applied two different change-point detection
algorithms to the entire set of traces. Seventeen genomes were
excluded due to excessive numbers of unassigned windows. The
AMOC method classified 496 (97.6%) genomes as recombinant
and 12 as nonrecombinant at minimum segment lengths of three
and five windows and 494 as recombinant at a minimum of 10
windows.

Next, we used the less restrictive PELT method to estimate
the number of breakpoints per genome under varying minimum
segment lengths (Fig. 3, Left). As expected, the mean number of
breakpoints per genome increased with shorter minimum segment
lengths. At m = 5 windows, for instance, we inferred a mean
of 8.3 (interquartile range [IQR] = 7 to 10) breakpoints. On
the other hand, the distribution of breakpoints across windows
was less sensitive to varying the minimum segment length, with
significant positive correlations between distributions (Spearman’s
ρ > 0.51, P < 9.4× 10−10; Fig. 3, Right). Local peaks in the
frequencies of breakpoints were robust to varying minimum seg-
ment length. Consistent with previous work (59), we observed
recombination “hotspots” associated with the 5′ and 3′ ends of the
env gene. We also observed a distinct and robust peak associated
with the 3′ end of the pol gene and a sharp increase in the
frequency of breakpoints within or upstream of gag.

Genomes that were classified as recombinant by SCUEAL
had significantly higher numbers of breakpoints assigned by
DSBM, and this concordance was robust to varying minimum
segment lengths (Wilcoxon rank-sum test, P < 7.8× 10−13;
SI Appendix, Fig. S9). Finally, we found no significant association
between the number of predicted breakpoints and the year of
sample collection, which ranged from 1983 to 2016 with a median
of 2006, for any of the three minimum segment lengths (Poisson
regression, P < 0.24; SI Appendix, Fig. S8).

Revisiting the HIV-1 Subtype References. In addition to analyz-
ing a large selection of HIV-1/M genome sequences, we applied
the DSBM method to evaluate the HIV-1 subtype reference
genomes curated by the LANL HIV Sequence Database. These
reference genomes have long been used as the “gold standard”
against which other genome sequences are evaluated for evidence
of recombination. We assessed a subset of the reference genomes
covering HIV-1/M subtypes A-D, F-H, J, and K and excluded
reference genomes corresponding to the CRFs. For this analysis,
the ICL criterion selected k = 6 as the optimal number of clusters.
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Fig. 2. Summary of results from DSBM analysis of n = 525 HIV-1/M genomes. (A) A heatmap depicting the matrix of transition rates among 29 clusters. A
transition occurs when an individual switches cluster memberships from one genomic window to the next. Cells are shaded in proportion to rates, and rows
and columns of the matrix were reordered by hierarchical clustering (represented by dendrograms above and to the left of the heatmap) to bring together
clusters linked by higher transition rates. (B) A color map displaying the cluster assignments for n = 525 genomes, partitioned into n = 82 windows of 500 nt
in steps of 100 nt. Clusters linked by higher transition rates were mapped to similar colors along a gradient. A white cell indicates that DSBM failed to assign
the corresponding window to a cluster. A color-blind accessible version is provided in SI Appendix, Fig. S3. (C) Step charts depicting the cluster assignments for
an arbitrary sample of 16 genomes across 82 windows, where we used the hierarchical clustering permutation order from A to minimize the vertical distance
between clusters related by higher transition rates. Line segments (red) indicate the location of change points, as determined by a conservative AMOC method
with a minimum segment length of 20.

This is clearly fewer than the recognized number of HIV-1 sub-
types. We observed that subtypes B and D were assigned to the
same cluster. Furthermore, genomic windows from subtypes F and
K tended to be assigned to the same cluster and subtypes G and J
to a third cluster. These cluster assignments are consistent with the
placement of the respective subtypes in a phylogeny of HIV-1/M
subtypes and CRFs (60).

Employing the same postprocessing method as in our previous
analysis, we detected evidence of recombination breakpoints in 18
(48.6%) of 37 reference genomes when the minimum segment
length was set to 5. The PELT method of change-point detection

identified one, two, and four breakpoints in 2, 13, and 3 of
the remaining genomes, respectively (Fig. 4). These breakpoints
tended to be concentrated in genomes classified by SCUEAL
into subtypes F (subsubtypes F1 and F2), J, and K. We also
observed consistent patterns of recombination in the subtype G
genomes spanning windows 42 to 51 and 67 to 78. These putative
breakpoints, which are consistent with previous work (18), were
not picked up by the PELT method because the affected clusters
were annotated as being similar, even though we did not observe
substantial clustering in transition rates between the six clusters
in this analysis. These results highlight an important limitation
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Fig. 3. Distribution of DSBM predicted recombination breakpoints in HIV-1/M genomes. (Left) Histogram of the number of breakpoints per genome, where
breakpoints were extracted from DSBM cluster assignments by the PELT change detection method. We varied the minimum segment length to 3, 5, and 10
windows (see color key). (Right) Smoothed splines summarizing the distribution of predicted breakpoints among sliding windows of the HIV-1 genome alignment.
The raw frequency distributions are drawn as step charts in lighter colors. A diagram of the HIV-1 reading frames, mapped from the HXB2 reference coordinates
to our alignment, is displayed at the base.

of change-point detection based on changes in the mean. For
comparison, we ran GARD and RDP on this same alignment.
GARD detected two breakpoints associated with windows 32
and 43, respectively, but it was not possible to associate these
breakpoints with specific sequences. Neither RDP4 nor RDP5
predicted any significant breakpoints from these data.

Discussion

Recombination is a major contributing factor to the extensive
genetic variability observed in RNA viruses (61). Since many
comparative methods assume that sequences are related through
a single, nonrecombinant evolutionary history, screening for re-
combination is an important step for the analysis of these viruses
(21). Furthermore, ongoing advancements in next-generation
sequencing are driving the proliferation of large HIV-1/M genome
databases (62, 63), providing more opportunities to reconstruct
the role of recombination in the evolutionary history of this virus.
Here, we have adapted a community detection method from
network science (DSBMs) (23, 31) to detect the residual evidence
of past recombination events without requiring a reference set
of nonrecombinant genomes. Hence, DSBM is an unsupervised
method for detecting recombination.

Comparison to Other Unsupervised Methods. Compared to the
commonly used unsupervised methods for recombination detec-
tion [GARD, RDP4 (57), and RDP5 (22)], DSBM is more sen-
sitive to detecting recombination in our simulation experiments.
In addition, DSBM offers unique advantages by striking a balance
between the level of detail offered by RDP and the statistical power
of GARD. RDP employs a number of efficient, nonparametric
heuristics for detecting recombination by the direct comparison of
extant sequences. For example, the BOOTSCAN (64) component
of RDP calculates genetic distances in sliding windows between
every pair of sequences from the input alignment. DSBM can be

viewed as a generalization of RDP, in that it uses the same distance-
based approach to directly compare all sequences in the alignment.
It uses these distances to generate a series of undirected graphs,
to which it fits a hidden Markov model in which the probability
of an edge connecting two individuals is determined by their
unobservable (latent) and dynamic cluster memberships. Conse-
quently, the placement of a breakpoint in a sequence by DSBM
is informed by the entire dataset, which confers greater power
than pairwise comparisons at the cost of increased computational
complexity.

Similarly, GARD analyzes the joint distribution of all se-
quences, using a genetic algorithm to explore the model space
defined by the placement of hypothetical breakpoints in the
alignment. The likelihood of a given model is calculated by fitting
maximum-likelihood phylogenies to every interval between break-
points (21). Hence, GARD is the most biologically realistic of the
unsupervised methods, since it is explicitly modeling the impact
of recombination on evolutionary histories. The minimum length
of an interval must increase with the number of sequences, since a
requisite number of phylogenetically informative substitutions are
needed to reconstruct larger trees. This requirement sets an upper
limit to the number of breakpoints for a given length of alignment.
Since GARD operates on phylogenies, it is less sensitive to more
recent recombination events that affect only a small number
of sequences. It does not readily scale with increasing amounts
of recombination because every breakpoint requires fitting an
additional tree to fewer data. In contrast, adding breakpoints does
not increase the number of model parameters in either RDP or
DSBM. Additionally, GARD does not report which sequences
are affected by each recombination event. Like RDP, DSBM
infers recombination events at the level of individual sequences
because it makes direct comparisons between extant sequences.
Therefore, we characterize DSBM as a compromise between the
efficient heuristics in RDP and the model-based approach of
GARD.
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Fig. 4. Detection of recombination in curated HIV-1 subtype reference genomes by community detection with a DSBM. Predicted breakpoints (using the PELT
change-point detection method with a minimum segment length of five windows) are marked directly on the heatmap with vertical line segments. We used
a different color palette to emphasize the different number of clusters between this analysis (k = 6) and our previous analysis of n = 525 HIV-1/M genomes
(k = 25). The bar at the top represents the location of the breakpoints predicted by GARD (the colors we used solely to depict the location and sizes of the
recombinant fragments).

Limitations. DSBM is time consuming to compute and slower
than the other methods, in part due to the quadratic time com-
plexity of parameterizing the matrix of transition rates between
clusters (communities). Like GARD, the computing time can
be ameliorated by running DSBM in a parallel computing en-
vironment. Our extension of DSBM involves a number of tuning
parameters—namely, a genetic distance threshold, the window
size, and the window step size. Our simulation experiments in-
dicated that results from DSBM are not sensitive to varying
the window and step size parameters. However, choosing an
appropriate distance threshold, which determines how sequence
variation maps to network topologies, was critical to our analysis
(SI Appendix, Fig. S1). Furthermore, we used change-point detec-
tion to map cluster assignments from DSBM to recombination
breakpoints, which introduced additional tuning parameters such
as the minimum segment length. We evaluated the effect of vary-
ing minimum segment lengths on the distribution of recombi-
nation breakpoints, for instance. Although the overall number of
breakpoints varied with this parameter, the density of breakpoints
was qualitatively consistent (Fig. 3). Even so, it will be important
to report all parameter settings when applying DSBM to other
data, as well as evaluating the robustness of results to varying
settings. Finally, another limitation of DSBM is that it assumes the
rates of transitions between clusters are “time” homogeneous, i.e.,
that recombination rates between specific lineages are constant
through the genome. Since DSBMs are a recent innovation in
network science, it may eventually become possible to fit models

with transition rates that vary over the genome length; however,
the current model already estimates a large number of parameters
from the data.

It should be possible to generalize the application of DSBM
from HIV-1 genomes to those other viruses. Like HIV-1 and
other retroviruses (65), many other viruses are characterized by
frequent recombination, substantial genetic variation (66), and
rate heterogeneity among sites (67). For instance, many viruses in
the family Picornaviridae have an abundance of genetic diversity
and frequent recombination over short and long evolutionary
time scales (68). Although we propose DSBM as a general-
purpose method for detecting recombination in virus genomes, it
would likely be necessary to recalibrate the cutoff parameters for
generating networks to apply this method to other viruses. Some
aspects may be more robust to changing evolutionary contexts. For
instance, we used the empirical distribution of TN93 distances
to normalize cutoffs across sliding windows. By not retuning the
cutoffs for such viruses, normalization would rescale the TN93
distances but the underlying distribution within that range may
be different. The end result will be a dataset skewed toward
having a few but very large clusters or pockets of small clus-
ters with few memberships and many “singletons,” i.e., isolated
nodes.

Recombination and HIV-1. An interesting outcome of our anal-
ysis is the putative recombination hotspots in association with
the gag and nef gene sequences, which are adjacent to or overlap
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the 5′ and 3′ long terminal repeats (LTR), respectively (Fig. 3).
Based on the composition of the CRF genomes documented by
the LANL HIV Sequence Database, breakpoints are often found
in these regions. For example, CRF01 AE contains a breakpoint
at the 5′ end of the 3′ LTR sequence (HXB2 nucleotide coor-
dinate 9,086), and CRF02 AG contains one at the 3′ end of
the 5′ LTR (coordinate 789). Overall, we observed that 57.1%
(n = 77) and 45.6% (n = 92) of the documented CRFs contain
breakpoints upstream of HXB2 coordinates 1,496 and 8,757,
respectively (adjusting for CRFs without sequence coverage in
these regions). Furthermore, recombination in these regions of
the HIV-1 genome has been observed as non-CRFs (69, 70). In
a comparative analysis of HIV-1 gag, Minin et al. (71) detected a
recombination hotspot in association with an instability element
in the region encoding the capsid protein. However, this hotspot
was not reproduced in subsequent work by Archer et al. (59),
who reported hotspots associated with both ends of the env
gene. Resolving these differences will require the reconciliation of
methods and datasets or, more effectively, experimental validation
with an in vitro system (72).

Our analysis revealed that there was no significant difference
in the number of detected recombination breakpoints over time,
when older and contemporary sequences were compared. This
result is consistent with frequent and ongoing recombination
throughout the evolutionary history of HIV-1/M. Rather than
continuing to accumulate novel recombination breakpoints over
time, the lack of a significant trend suggests that the number
of breakpoints has already approached an upper limit by the
time of our earliest samples. This would be consistent with the
existence of recombination hotspots, such that the probability
of breakpoints is not uniformly distributed across the genome.
However, we should be careful not to overinterpret this result;
for instance, reconstructing recombination events by the direct
comparison of sequences may be increasingly uncertain for less
frequent early genomes where the “parental” genomes are less
likely to have been sampled.

Previous studies have proposed reclassifying some of the de-
fined HIV-1 subtypes and circulating recombinant forms. In some
cases, this was motivated by the availability of whole genome
sequencing data (73, 74). For example, a recent analysis of the
major HIV-1 genes gag, pol, and env culminated in a proposal
to further partition of subtypes A and D into subsubtypes and
to merge subtypes B and D into a single subtype (58). A non-
recombinant HIV-1/M subtype L was proposed ∼30 y after the
genomes were first sampled in 1983 and 1990 in what is now the
Democratic Republic of the Congo (75). Furthermore, there has
been some debate surrounding the status of HIV-1/M subtype G.

For instance, Abecasis et al. (18) and Lemey et al. (76) have
both found evidence suggesting that subtype G is a recombinant
offspring of three distinct parental genomes that are also catego-
rized as pure subtypes or circulating recombinant forms, including
subtypes A, J, and CRF02 AG. Other groups (77) have countered
with evidence that CRF02 AG is an offspring of subtypes A and
G. Nevertheless, the current HIV-1 nomenclature system classifies
subtype G as a pure subtype. The most recent set of subtype
reference genomes curated by the LANL HIV Sequence Database
continues to include subtype G, for example.

Our analysis is consistent with the hypothesis that many of
the HIV-1/M subtype reference genomes are actually recombinant
(17, 18). These findings support the idea that the current HIV-1
nomenclature (7), which has served as an important framework
for our understanding of HIV-1 diversity and evolution, should
be revisited in light of recent genomic evidence. For example, our
DSBM analysis of a large sample of HIV-1/M genomes identified
k = 29 as the optimal number of clusters. In this context, a cluster
is roughly analogous to a nonrecombinant subtype. However,
what we recognize as a subtype may also comprise multiple
clusters (SI Appendix, Fig. S7). A key challenge to developing a
revision proposal is that nonrecombinant genomes seem to be rare
under our current working definition. None of the n = 525 in
our largest analysis had windows uniformly assigned to a single
cluster along its entire length. Given that this dataset was designed
to summarize the global diversity of HIV-1, we are pessimistic
that expanding the scope of our analysis will yield a substantial
number of genomes that are each representative of a single cluster.
However, it may be feasible to utilize cluster assignments from a
DSBM analysis to reconstruct consensus genomes as a mosaic of
observed genomes, which could play the same role as a full-length
representative genome.

Data Availability. Previously published data were used for this work (https://
github.com/Abayomi-Olabode/dsbm).
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58. N. Désiré et al., Characterization update of HIV-1 M subtypes diversity and proposal for subtypes A and
D sub-subtypes reclassification. Retrovirology 15, 1–7 (2018).

59. J. Archer et al., Identifying the important HIV-1 recombination breakpoints. PLOS Comput. Biol. 4,
e1000178 (2008).

60. D. M. Tebit, E. J. Arts, Tracking a century of global expansion and evolution of HIV to drive
understanding and to combat disease. Lancet Infect. Dis. 11, 45–56 (2011).

61. M. Worobey, E. C. Holmes, Evolutionary aspects of recombination in RNA viruses. J. Gen. Virol. 80,
2535–2543 (1999).

62. C. Kuiken, B. Korber, R. W. Shafer, HIV sequence databases. AIDS Rev. 5, 52–61 (2003).
63. D. Pillay et al.; PANGEA-HIV Consortium, PANGEA-HIV: Phylogenetics for generalised epidemics in

Africa. Lancet Infect. Dis. 15, 259–261 (2015).
64. D. P. Martin, D. Posada, K. A. Crandall, C. Williamson, A modified bootscan algorithm for automated

identification of recombinant sequences and recombination breakpoints. AIDS Res. Hum. Retroviruses
21, 98–102 (2005).

65. A. Onafuwa-Nuga, A. Telesnitsky, The remarkable frequency of human immunodeficiency virus type 1
genetic recombination. Microbiol. Mol. Biol. Rev. 73, 451–480 (2009).

66. J. J. Bujarski, “Recombination of viruses” in Encyclopedia of Virology, A. Granoff, R. G. Webster, Eds.
(Academic Press, New York, NY, 1999), pp. 1446–1454.

67. E. Domingo et al., The quasispecies (extremely heterogeneous) nature of viral RNA genome
populations: Biological relevance–A review. Gene 40, 1–8 (1985).

68. A. N. Lukashev, Recombination among picornaviruses. Rev. Med. Virol. 20, 327–337 (2010).
69. J. T. Blackard et al., Transmission of human immunodeficiency type 1 viruses with intersubtype

recombinant long terminal repeat sequences. Virology 254, 220–225 (1999).
70. U. Neogi, V. Sood, N. Goel, A. Wanchu, A. C. Banerjea, Novel HIV-1 long terminal repeat (LTR)

sequences of subtype B and mosaic intersubtype B/C recombinants in North India. Arch. Virol. 153,
1961–1966 (2008).

71. V. N. Minin, K. S. Dorman, F. Fang, M. A. Suchard, Phylogenetic mapping of recombination hotspots in
human immunodeficiency virus via spatially smoothed change-point processes. Genetics 175,
1773–1785 (2007).

72. H. A. Baird et al., Sequence determinants of breakpoint location during HIV-1 intersubtype
recombination. Nucleic Acids Res. 34, 5203–5216 (2006).

73. G. Yebra et al.; ICONIC Consortium, A high HIV-1 strain variability in London, UK, revealed by
full-genome analysis: Results from the ICONIC project. PLoS One 13, e0192081 (2018).

74. M. Rubio-Garrido et al., Current and historic HIV-1 molecular epidemiology in paediatric and adult
population from Kinshasa in the Democratic Republic of Congo. Sci. Rep. 10, 1–13 (2020).

75. J. Yamaguchi et al., Brief report: Complete genome sequence of CG-0018A-01 establishes HIV-1
subtype l. J. Acquired Immune Deficiency Syndromes (1999) 83, 319 (2020).

76. P. Lemey, M. Lott, D. P. Martin, V. Moulton, Identifying recombinants in human and primate
immunodeficiency virus sequence alignments using quartet scanning. BMC Bioinformatics 10, 1–18
(2009).

77. I. Bulla et al., HIV classification using the coalescent theory. Bioinformatics 26, 1409–1415 (2010).

10 of 10 https://doi.org/10.1073/pnas.2108815119 pnas.org

https://doi.org/10.1073/pnas.2108815119

