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Abstract Metastasis-initiating cells dynamically adapt to the distinct microenvironments of

different organs, but these early adaptations are poorly understood due to the limited sensitivity of

in situ transcriptomics. We developed fluorouracil-labeled RNA sequencing (Flura-seq) for in situ

analysis with high sensitivity. Flura-seq utilizes cytosine deaminase (CD) to convert fluorocytosine to

fluorouracil, metabolically labeling nascent RNA in rare cell populations in situ for purification and

sequencing. Flura-seq revealed hundreds of unique, dynamic organ-specific gene signatures

depending on the microenvironment in mouse xenograft breast cancer micrometastases.

Specifically, the mitochondrial electron transport Complex I, oxidative stress and counteracting

antioxidant programs were induced in pulmonary micrometastases, compared to mammary tumors

or brain micrometastases. We confirmed lung metastasis-specific increase in oxidative stress and

upregulation of antioxidants in clinical samples, thus validating Flura-seq’s utility in identifying

clinically actionable microenvironmental adaptations in early metastasis. The sensitivity, robustness

and economy of Flura-seq are broadly applicable beyond cancer research.

DOI: https://doi.org/10.7554/eLife.43627.001

Introduction
Metastasis is a multi-step process that begins with migration of cancer cells from the primary tumor

into the circulation to reach lymph nodes and the parenchyma of distant organs (Massagué and

Obenauf, 2016; Lambert et al., 2017). In host organs, disseminated cancer cells interact with a tis-

sue microenvironment that includes organ-specific resident cells, immune cells, perivascular niches,

extracellular matrix, cytokines, metabolites, and an oxygen concentration range. This environment

eliminates the majority of cancer cells that infiltrate the parenchyma from the circulation, and selects

for cells that can adapt, survive as latent entities, and form micrometastases that may eventually

grow into clinically manifest metastases. The progression from micro- to macrometastasis is thought

to entail a dynamic interaction between disseminated cancer cells and the host microenvironment,

which determines an organ-specific pattern of metastatic relapse characteristic of each type of can-

cer (Obenauf and Massagué, 2015; Celià-Terrassa and Kang, 2018).
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Overt metastasis is associated with high morbidity and mortality, and is a major clinical concern.

Large metastatic lesions accumulate genetic and epigenetic alterations and stably express specific

transcriptional signatures (Easwaran et al., 2014; Roe et al., 2017). In recent years, analysis of these

signatures in cells derived from human tumors and xenografts has uncovered numerous factors

whose expression mediates organ-specific metastasis in animal models and is associated with organ-

specific metastasis in patients (Ell and Kang, 2013; Kang et al., 2003; Minn et al., 2005; Bos et al.,

2009; Boire et al., 2017; Tavazoie et al., 2008; Valiente et al., 2014; Chen et al., 2016;

Shibue et al., 2012; Bragado et al., 2013; Gao et al., 2016). Some of these mediators serve as tar-

gets of therapeutic intervention against metastatic cancer (Celià-Terrassa and Kang, 2018;

Sleeman and Steeg, 2010). By contrast, cancer cells in the early stages of metastatic colonization

may dynamically alter their gene expression profiles in response to specific stresses experienced in

distant organs as they adapt to the host tissue microenvironment and form long-lasting metastatic

seeds. These early disseminated cells represent a crucial transition state and may be particularly vul-

nerable to therapy since they can sometimes be eliminated using adjuvant therapy after surgical

resection of primary tumors, unlike established macrometastases. Thus, it is critical to understand

the vulnerabilities, dynamic as they may be, of early micrometastases. However, insight into the

dynamic early micrometastatic state has been limited by the lack of sensitive techniques for in situ

transcriptomic analysis of minute numbers of disseminated cancer cells within large host organs.

Current techniques to study cell-type-specific transcriptomes have limitations that preclude their

effective application in studying metastasis-initiating cancer cell populations. Single-cell RNA

sequencing (scRNA-seq), with or without an intervening fluorescence activated cell sorting (FACS)

step, allows identification of the transcriptomes of underrepresented cell populations at a single-cell

level, but it requires extensive physical and enzymatic processing of the tissue, which disrupts the

effects of the host microenvironment while exerting stress on these cells, thus compromising the

ability to discern the impact of the host stroma from the transcriptome of the isolated cells. Further-

more, only about 10–20% of the transcripts are captured during the library preparation in scRNA-

seq which severely limits the coverage of transcriptome of cells of interest (Hwang et al., 2018). In

addition, scRNA-seq is challenging to apply in tissues and cell types that are difficult to dissociate

eLife digest Cancer cells may not limit themselves to the tissue or organ where they first

formed. In some cases, the cells can spread to form tumors in new parts of the body. This process is

known as metastasis, and because it is difficult to treat it causes the majority of cancer deaths. To

develop new treatments, researchers are trying to learn more about the different steps involved in

metastasis.

As cancer cells travel through the body they must adapt to the changing environments they

encounter, and avoid detection and destruction by the immune system. To do so, they turn different

genes on or off. When the cells reach their final destination tissue, they divide to form microscopic

clusters, or ‘micrometastases’, that can grow into new tumors. Micrometastases can sometimes be

eliminated by chemotherapy or radiation. Examining which genes are active in the micrometastases

may help researchers to find other ways to kill these cancer cells before they can grow into larger

tumors that are harder to treat.

Basnet et al. have developed a new tool called Flura-seq that documents which genes are active

in small clusters of cells in the tissues of living animals. The tool was used to study how breast cancer

cells form new tumors in the lungs and brains of mice. The results of the study reveal that lung and

brain micrometastases have different patterns of gene activity. In particular, the cancer cells in the

lungs turn on antioxidant genes. If they did not, they were killed by a condition known as oxidative

stress. This suggests that hindering the activity of the antioxidant genes could help to stop tumors

forming in the lungs.

Further studies that use the new Flura-seq technique could help researchers to learn more about

the early stages of cancer and cancer metastasis. The technique could also be used to study gene

activity in other small groups of cells as tissues develop and regenerate.

DOI: https://doi.org/10.7554/eLife.43627.002
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into single cells. In situ transcriptomic profiling obviate these problems but lack the necessary sensi-

tivity for disseminated cancer cells that represent less than 1% of the tissue cell population. For

example, translating ribosome affinity purification and mRNA sequencing (TRAP-

Seq) (Heiman et al., 2008) is not suitable to analyze cells that constitute less than 1% of the total

population (Bertin et al., 2015; Obenauf et al., 2015). Direct-enzyme-based metabolic tagging of

RNA with thiouracil (TU) and ethynyl cytosine (EC) in the cells of interest are limited in sensitivity and

specificity due to collateral tagging and purification of tagged RNA in cells lacking the enzymes, and

requires additional in vitro biotinylation steps (Cleary et al., 2005; Gay et al., 2014; Gay et al.,

2013; Miller et al., 2009; Hida et al., 2017). TU tagging has a sensitivity limit of 5% (Gay et al.,

2013). Thiol (SH)-linked alkylation of the metabolic labeling of RNA in tissue (SLAM-ITseq) eliminates

the noise associated with the purification of RNAs that are not thiol tagged in TU-tagging method

(Matsushima et al., 2018), but undesired TU tagging through endogenous enzymes in cells lacking

UPRT expression remains a limitation. Other methods such as laser capture microdissection/RNA-

seq are useful in preserving the spatial information (Nichterwitz et al., 2016), however, require

sophisticated tools and are challenging to use in rare cell populations that are sparsely distributed in

the tissue.

Here, we describe the development of a CD-based method for in situ transcriptomic profiling of

rare cell populations with high sensitivity (less than 0.01% of an organ), and the application of this

method to the analysis of organ-specific micrometastatic adaptation. Using this approach, we define

microenvironment-dependent transcriptional programs in micrometastatic pulmonary and brain

metastases from breast cancer, identify oxidative stress as a lung-specific liability of disseminated

cancer cells, and demonstrate that NRF2 activation and upregulation of distinct antioxidant genes

are adaptive responses to this stress in lung micrometastases. This oxidative stress and adaptive

transcriptional events are reversible upon removal of metastatic cells from the tissue microenviron-

ment, and disappear when metastasis-derived cells are placed in culture. We validate our findings in

metastatic tumors from different organ sites from patients with breast cancer. Thus, Flura-seq identi-

fies both a dynamically induced organ-specific stress program activated by metastasis-initiating can-

cer cells in the pulmonary microenvironment, as well as an adaptive transcriptional program that

ensures cancer cell survival, which could be targeted to therapeutic advantage.

Results

5-FU tagging allows isolation and quantitation of variable abundance
transcripts
Cytosine deaminase (CD) is a key enzyme of the pyrimidine salvage pathway in fungi and prokar-

yotes, but is absent in mammalian cells, which instead use cytidine deaminase for the same purpose

(Mullen et al., 1992). In addition to converting cytosine to uracil, CD can also convert 5-fluorocyto-

sine (5-FC), a non-natural pyrimidine, to 5-fluorouracil (5-FU). 5-FU is endogenously converted to flu-

orouridine triphosphate (F-UTP), which is incorporated into RNA (Figure 1A,B). An antibody-based

purification step that specifically captures the 5-FU-tagged RNA would yield a sample suitable for

sequencing. Although 5-FU or the combination of CD expression and 5-FC treatment are cytotoxic

in some cells (Austin and Huber, 1993; Kievit et al., 1999; Longley et al., 2003), such toxicity

requires more than 7 days of treatment (Hamstra et al., 2004; Kaliberov et al., 2006). We hypothe-

sized that short-term 5-FC treatment in CD-expressing cells may avert such toxic effects and mini-

mize transcriptional distortion, thus allowing in situ transcriptomic profiling of rare cell populations.

We expressed S. cerevisiae CD in human embryonic kidney 293 T cells (293 T-CD cells), and

treated the cells with 5-FC to yield intracellular 5-FU, which is incorporated into newly synthesized

RNA. Antibodies against bromodeoxyuridine (BrdU) crossreact with other halogenated uridines

incorporated into nucleic acids (Aten et al., 1992). Accordingly, untransfected control cells incu-

bated with 5-FU showed positive anti-BrdU immunofluorescence, whereas cells incubated with 5-FC

did not (Figure 1—figure supplement 1A). The anti-BrdU antibody also stained 293 T-CD cells

when treated with 5-FC, demonstrating that the antibody binds to exogenous or CD-generated 5-

FU derivatives but not 5-FC derivatives (Figure 1—figure supplement 1A). To test the specificity

and efficiency of RNA isolation, we immunoprecipitated messenger RNA (mRNA) from 5-FU-labeled

cells with the anti-BrdU antibody and determined the mRNA levels of representative high expression
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Figure 1. Cell-type-specific labeling and isolation of RNAs by Flura-tagging. (A) Schematic diagram showing RNA labeling and isolation using CD and

5-FC; (B) Chemical reactions steps involved in the labeling of RNA using CD and 5-FC; (C) Enrichment of mRNAs immunopurified by anti-BrdU antibody

in cells expressing CD relative to WT cells and normalized to their corresponding inputs after 5-FC treatment for the indicated times, as measured by

qRT-PCR for the representative genes (n = 3,±S.E.); (D) Schematic diagram of the constructs used for inducible expression of UPRT and/or CD, and the

Figure 1 continued on next page
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genes (glyceraldehyde 3-phosphate dehydrogenase, GAPDH; tubulin beta chain, TUBB) and low

expression genes (chemokine CX3C motif ligand 1, CXC3L1) by reverse transcriptase-polymerase

chain reaction (RT-PCR). In 293 T-CD cells, these mRNAs were detectable after 2 hr of treatment

with 5-FC, and the levels continued to increase for up to 24 hr (Figure 1C). The relative enrichment

of the RNAs was two to three orders of magnitude higher in 293 T-CD cells compared to control

293 T cells (Figure 1C). These results demonstrate that 5-FU tagging allows specific labeling and

purification of newly synthesized transcripts.

Cell specificity of RNA Flura-tagging
5-FU can be transported across cell membranes based on its concentration gradient (Ojugo et al.,

1998; Wohlhueter et al., 1980). Therefore, we determined whether 5-FU labeling of RNAs using

this method would be restricted to CD-expressing cells or collaterally affect neighboring cells. We

generated CD-expressing derivatives of MDA-MB-231 (MDA231) cells, a cell line derived from the

pleural fluid of a patient with highly metastatic, triple hormone receptor-negative breast cancer

(Cailleau et al., 1974). The CD-expressing derivative cells, MDA231-CD, were co-cultured with

unmodified MDA231 cells (Figure 1D), incubated with 5-FC, and the 5-FU labeling of individual cells

was determined based on anti-BrdU immunofluorescence. The co-cultures showed 5-FU-labeling not

only in MDA231-CD cells but also in unmodified MDA231 cells (Figure 1E).

To limit the diffusion of 5-FU from CD-expressing cells, we implemented a dual strategy. First, we

engineered MDA231 cells to co-express CD and uracil phosphoribosyl transferase (UPRT). UPRT

directly converts 5-FU to 5-fluorouridine monophosphate (F-UMP), which does not diffuse across cell

membranes, bypassing the generation of 5-fluorouridine (Figure 1—figure supplement 1B). We

developed a polycistronic vector that allows doxycycline (Dox)-inducible co-expression of UPRT, CD

and red fluorescence protein (RFP) (Figure 1D), and transduced this vector into the cells (MDA231-

CD/UPRT cells). Second, since thymine can competitively inhibit cellular uptake of 5-FU

(Yuasa et al., 1996), we included thymine in the medium as a competitive inhibitor of 5-FU trans-

port. This dual strategy restricted the anti-BrdU immunostaining to cells expressing CD (Figure 1E).

Thymine was used in all subsequent in vitro and in vivo experiments.

Next, we determined whether this 5-FU-tagging method, ‘Flura-tagging’, could be used to isolate

RNA specifically from cells of interest that were admixed with a large proportion of unlabeled cells.

MDA231-CD/UPRT cells were co-cultured with 4T1 mouse breast cancer cells at ratios of 10�3 to

10�4 (100 to 1000 MDA231-CD/UPRT cells to 106 4T1 cells). After 12 hr of incubation with 5-FC, 5-

FU-labeled mRNAs were immunoprecipitated with anti-BrdU antibody, and the proportion of human

and mouse mRNA for representative housekeeping genes was determined by qRT-PCR. Notably,

human mRNAs were enriched by more than 10-fold relative to mouse mRNAs, despite human cells

comprising 0.01–0.1% of the total cell population (Figure 1F). These results demonstrated the effi-

cacy and specificity of the technique in measuring newly synthesized RNAs from small cell popula-

tions of interest in a heterogeneous mixture of cells.

To identify potential transcriptional alterations caused by Flura-tagging, we compared the tran-

scriptome of MDA231-CD/UPRT cells treated with two different concentrations of 5-FC (50 mM and

250 mM), with that of untreated cells that do not express CD/UPRT, using global RNA sequencing

analysis (RNA-seq). Over 99% of ~20,000 analyzed genes showed statistically similar expression with

50 mM or 250 mM 5-FC (Supplementary file 1) indicating that Flura-tagging introduces minimal

alteration in the basal transcriptomes of cells in our experimental conditions.

Figure 1 continued

experimental design of Flura-tagging; (E) MDA231 cells expressing RFP-IRES-CD or UPRT-T2A-RFP-IRES-CD were co-cultured with unmodified control

cells, treated with 5-FC, and Flura-tagging was assessed by BrdU immunostaining (n = 3, Scale bar, 20 mM). Arrow indicates cells lacking CD expression

but stained with BrdU antibody; (F) 100, 500 or 1000 human MDA231 cells expressing CD/UPRT were co-cultured with 106 mouse 4T1 cells, treated with

5-FC for 12 hr, and 5-FU-tagged RNAs were immunoprecipitated. The fold enrichment of the indicated representative human genes over mouse

housekeeping genes (mHPRT1) was measured by qRT-PCR (n = 3 ± S.E.). p-Values were calculated by unpaired two-tailed student’s t test.

DOI: https://doi.org/10.7554/eLife.43627.003

The following figure supplement is available for figure 1:

Figure supplement 1. Cell-type-specific labeling and isolation of RNAs by cytosine-deaminase-based 5-FU tagging.

DOI: https://doi.org/10.7554/eLife.43627.004
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Flura-tagging system effectively captures signal dependent change in
gene expression
To determine whether Flura-tagging could be used to analyze the transcriptional response to extrin-

sic regulatory signals, we examined the transcriptional response to TGF-b, a pleiotropic cytokine

that regulates the expression of many genes involved in diverse cellular processes (David and Mas-

sagué, 2018). We used the TGF-b response of MDA231 cells (Padua et al., 2008) as an indicator of

the sensitivity and fidelity of our method. MDA231-CD/UPRT cells were treated with 5-FC and either

TGF-b or the TGF-b receptor kinase inhibitor SB-505124 (SB). We subjected total RNA from

MDA231 cells and immunoprecipitated 5-FU-tagged RNA from MDA231-CD/UPRT cells to RNA-seq

analysis. In MDA231 cells, 176 genes showed either an increase or decrease of more than two-fold

in transcript levels upon TGF-b treatment (Supplementary file 2). RNA-Seq analysis of Flura-tagged

RNA samples (‘Flura-seq’) captured the TGF-b transcriptional response of MDA231 cells with high

accuracy and fidelity, compared to the RNA-seq control (Figure 2A,B; Supplementary file 2). It is

also noteworthy that Flura-seq showed an enhancement in the fold change of the majority of TGF-b

induced genes compared to the control (Figure 2B–D). This is possibly because Flura-seq only

detects newly synthesized transcripts, whereas RNA-seq accounts for the total transcripts and thus

dilutes the transcriptional response to an acute TGF-b stimulus. On the other hand, Flura-seq identi-

fied 575 genes differentially expressed upon TGF-b treatment (Supplementary file 2). Comparison

of the genes uniquely identified by Flura-seq (2.5 hr post TGF-b treatment) to the differential gene
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DOI: https://doi.org/10.7554/eLife.43627.005
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expression data sets in MDA231 cells 6 hr post TGF-b treatment (Tufegdzic Vidakovic et al., 2015)

showed that 83 of the genes identified only by Flura-seq were induced by TGF-b as detected by

RNA-seq at later time points, suggesting that Flura-seq captures early signal-induced gene expres-

sion that is missed by RNA-seq due to dilution by the preexisting basal mRNA pool. Collectively,

these results show that Flura-seq can accurately capture global changes in gene expression in

response to stimuli.

Flura-seq analysis of rare metastatic cells in situ
Next, we determined whether Flura-seq could be used to characterize transcriptomics in situ from a

small number of cancer cells disseminated in an intact organ that would be challenging to achieve

using existing technologies. MDA231 cells expressing a GFP-luciferase fusion protein for imaging

and bioluminescence analysis and Dox-inducible CD/UPRT for Flura-seq analysis, were inoculated

into the tail vein of Foxn1nu immunodeficient mice to allow colonization of the pulmonary paren-

chyma (Figure 3A). A small proportion of the injected cells survive in the lungs and initiate meta-

static outgrowth (Minn et al., 2005). At day 31 after inoculation, the cancer cell population was

present as micrometastatic colonies throughout the pulmonary parenchyma (Figure 3—figure sup-

plement 1A,B). In tissue sections, the size distribution of these colonies ranged from 112 to 877 cells

per cluster, with a mean value of 333 cells (Figure 3—figure supplement 1C). CD/UPRT expression

was induced by doxycycline treatment on day 28, and mice were administered 5-FC (250 mg/kg)

and thymine (125 mg/kg) on day 31 for 4 hr to 12 hr before harvesting the lungs for immunoprecipi-

tation of 5-FU-tagged RNAs (Figure 3A). The 5-FC dose was selected based on the non-toxic dose

of the structurally related thiouracil in mice (250 mg/kg) that has been used for RNA tagging with

thiouracil (Gay et al., 2014).

We determined the relative fold enrichment of 5-FU tagging in vivo by measuring the relative

capture of representative housekeeping human and mouse transcripts. The human mRNAs were

enriched more than a 10,000-fold compared to the corresponding mouse mRNAs (Figure 3B), indi-

cating that 5-FU tagging occurs primarily in the human cells of interest and that tagged RNAs can

be purified efficiently from intact mouse lung tissue. We also compared the relative fold enrichment

of 5-FU tagging with TU tagging, an analogous covalent RNA labeling technique (Gay et al., 2013;

Miller et al., 2009). To this end, mice harboring lung micrometastases were treated in parallel with

TU for 12 hr according to previous studies (Miller et al., 2009). Analysis of tested human mRNAs rel-

ative to the mouse mRNAs showed approximately 10-fold enrichment with TU tagging compared to

over 10,000-fold enrichment with 5-FU tagging (Figure 3B). In parallel, we determined the percent-

age of human cells present in the mouse lungs in these experiments. Approximately 0.003% to

0.08% of the total cell population comprised of human cells, as determined by RFP expression from

the polycistronic UPRT/CD/RFP vector (Figure 3—figure supplement 1D). Since one mouse lung

contains approximately 150 million cells (Perrone et al., 2010), we estimate that RNA from as few

as approximately 5000 human cancer cells per mouse lung could be analyzed by 5-FU tagging (Fig-

ure 3—figure supplement 1E).

To determine whether 5-FU tagged mRNA from micrometastatic lesions could be used to charac-

terize the in situ transcriptome of cancer cells, mice were treated with 5-FC for 4 hr or 12 hr, and

tagged RNAs were immunopurified and sequenced. The sequenced reads were aligned to a hybrid

genome containing both human and mouse genomes, so that reads coming from human or mouse

cells could be distinctly identified. In mice treated with 5-FC for 4 hr, approximately 53% of the

aligned reads were mapped to human genome, whereas 74% of the aligned reads were mapped to

human genome when the mice were treated with 5-FC for 12 hr (Figure 3C). Fewer than 1% of the

mapped reads in the non-immunopurified input samples were aligned to the human genome while

99% of the reads aligned to the mouse genome (Figure 3C).

To further distinguish transcripts derived from the cells of interest (human cells) versus other cells

(mouse cells), we focused on transcripts that were enriched more than 2-fold relative to input. After

applying this enrichment cut-off, the reads were aligned to 7487 human genes and 231 mouse genes

(Figure 3D). When the cutoffs were increased to 4, 8 and 16-fold, the number of human genes iden-

tified remained the same, whereas the mouse genes were completely eliminated (Figure 3D). These

results demonstrate the sensitivity and specificity of Flura-seq in identifying in situ transcriptomes of

cells of interest in vivo (Figure 3E).
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Figure 3. Flura-tagging of rare metastatic cells in situ. (A) Schematic diagram of lung colonization xenograft assay used for evaluation of Flura-tagging

in vivo. Athymic mice were injected through the tail vein with 50,000 MDA231 cells expressing CD/UPRT and GFP-luciferase. After 4 weeks, mice were

treated with doxycycline (3 days) to induce CD/UPRT expression in the disseminated cancer cells, and injected with 5-FC. Lungs were harvested 4 hr

to 12 hr later, and subjected to immunopurification of 5-FU-tagged RNA for RNA-seq analysis (Flura-seq); (B) Comparison of relative fold enrichment of

Flura-tagging and TU-tagging in vivo after immunoprecipitation. Mice with CD/UPRT expressing MDA231 lung metastases were injected with either 5-

FC or TU for 12 hr, lungs were harvested. Flura-tagged RNA was purified by immunoprecipitation, and TU-tagged RNA was biotinylated and purified by

Figure 3 continued on next page

Basnet et al. eLife 2019;8:e43627. DOI: https://doi.org/10.7554/eLife.43627 8 of 26

Research article Cancer Biology

https://doi.org/10.7554/eLife.43627


Flura-seq identifies organ-specific in situ transcriptomes in
micrometastases
Next, we applied Flura-seq to define the in situ transcriptomes of breast cancer cells during early

stages of metastatic colonization in distinct microenvironments of the brain and lungs. MDA231-CD/

UPRT cells were injected intracardially into the arterial circulation of female mice to allow infiltration

of multiple organs (Figure 4A). In the lungs and brain, the cells developed micrometastases within

31 days of injection (Figure 4—figure supplement 1A). The cancer cells were also injected into the

mammary fat pad (MFP) to generate orthotopic mammary tumors (Figure 4A). To identify the genes

that are expressed in response to the organ-specific microenvironment, we harvested the brain,

lungs, and mammary tumors, and subjected samples to Flura-seq analysis. In parallel, an aliquot of

these tissue samples was dissociated into single cells and cultured in selective media to isolate the

labeled MDA231 cells as previously described (Minn et al., 2005). Following selection and in vitro

expansion for 1–2 weeks (passage 2), these cultures were subjected to RNA-seq analysis

(Figure 4A). Principal component analysis (PCA) revealed that the in situ transcriptomes of MDA231

cells in different tissues were highly divergent from one other (Figure 4B). In contrast, in vitro culture

of the mammary tumor and metastasis-derived cells diminished their transcriptomic differences

(Figure 4B).

Flura-seq identified several thousand genes that were differentially expressed in different tissues

whereas the same cells showed differential expression of only a few hundred genes when cultured in

vitro (Figure 4C, Supplementary file 3). The majority of organ-specific gene expression changes

were not preserved when the cells were isolated from the host tissues and expanded in culture.

These results suggested that micrometastases have considerable transcriptional plasticity and

dynamically regulate gene expression in response to microenvironmental cues. In situ transcriptomic

analysis is therefore critical to capture the phenotypic state of micrometastatic cells in the biologi-

cally relevant intact tissue context.

Mitochondrial complex I expression and oxidative stress in lung
micrometastatic cells
Analysis of in situ organ-specific transcriptomes unexpectedly revealed that lung micrometastases

had the highest content of unique transcriptional activity relative to brain micrometastases and mam-

mary tumors, suggesting that distinct requirements exist for successful metastasis initiation in the

lung microenvironment (Figure 4D, Figure 5—figure supplement 1A). Gene Ontology (GO) analysis

of the differentially expressed cancer cell genes in the different tissues revealed that genes encoding

components of the mitochondrial electron transport chain, particularly genes encoding Complex I

subunits, were significantly upregulated in lung metastases relative to both brain metastases and

orthotopic mammary tumors (Figure 5A). Gene set enrichment analysis (GSEA) further confirmed

the upregulation of Complex I-encoding genes in lung micrometastases (Figure 5B). The enrichment

of these genes was not observed when the cancer cells were isolated from each organ and cultured

in vitro under similar conditions (Figure 5—figure supplement 1B), suggesting that the lung micro-

environment drives Complex I expression in metastatic cells. In fact, Complex I genes were

Figure 3 continued

streptavidin beads. The relative fold enrichment of representative human housekeeping genes relative to representative murine housekeeping genes

(mHPRT1, mLDH1, mPGK1 and mGAPDH), normalized to their corresponding inputs, were determined by qRT-PCR (n = 5,±S.E.); (C) Flura-seq

specifically enriches for 5-FU-tagged human transcripts from lung micrometastases. 5-FU-tagged RNA from mouse lungs bearing CD/UPRT-expressing

MDA231 cells and treated with 5-FC for 4 hr or 12 hr were immunopurified and sequenced. RNA reads were aligned to a hybrid genome containing the

human and mouse genomes. The percentage of aligned reads mapped to human genome for the Flura-seq samples and the corresponding

unprecipitated input is shown (n = 2,±S.E.); (D) Number of human and mouse genes identified by Flura-seq (samples with 4 hr of 5-FC treatment) at

different fold enrichment cutoffs relative to the corresponding unprecipitated inputs (n = 2); (E) Comparison of the workflow, limitations and sensitivity

of Flura-seq versus other methods for transcriptomic analysis of rare cell populations in tissues. p-Values were calculated by unpaired two-tailed

student’s t test.

DOI: https://doi.org/10.7554/eLife.43627.006

The following figure supplement is available for figure 3:

Figure supplement 1. Flura-tagging of rare metastatic cells in situ.

DOI: https://doi.org/10.7554/eLife.43627.007
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Figure 4. Flura-seq identifies organ specific in situ transcriptomes in micrometastases. (A) Schematic diagram of experimental design used to obtain

tissue specific transcriptomes of MDA231 cells in mice; (B) Principal component analysis of genes expressed by MDA231 cells in the indicated organs,

as determined by Flura-seq of fresh tissue, or by RNA-seq of in vitro cultured cells derived from these tissues; (C) Comparison of differentially

expressed genes in metastatic MDA231 cells in different organs as determined by Flura-seq of fresh tissue versus RNA-seq of tissue-derived MDA231

cell cultures. The number of differentially expressed genes and their corresponding fold-change in the indicated organ pairs were plotted for both

methods; (D) Heatmap representation of differentially expressed genes identified by Flura-seq in MDA231 cells residing in the indicated pairs of

organs, compared to the expression of these genes in the third organ.

DOI: https://doi.org/10.7554/eLife.43627.008

The following figure supplement is available for figure 4:

Figure 4 continued on next page
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underexpressed in lung metastasis-derived cells in culture relative to cells derived from brain metas-

tases or mammary tumors, possibly due to re-adaptation of the cells when removed from the lung

microenvironment.

Complex I activity is a source of reactive oxygen species (ROS) (Balaban et al., 2005; Mur-

phy, 2009), which at high concentrations cause oxidative stress owing to chemical alteration of pro-

teins and nucleic acids in the cell (Liou and Storz, 2010; Liou and Storz, 2015). 4-Hydroxynonenal

(4-HNE), a product derived from lipid peroxidation in cells, is a marker of oxidative stress (Liou and

Storz, 2015). A higher level of 4-HNE was present in lung micrometastases compared to the brain

micrometastases, as determined by anti-4-HNE immunohistochemistry (Figure 5C), indicating higher

oxidative stress in the lung micrometastases. Cells counteract the cytotoxic effect of oxidative stress

by upregulating genes that have antioxidant activity (Espinosa-Diez et al., 2015). Indeed, analysis of

the expression of 63 genes that include all the antioxidant enzymes and the proteins that directly

detoxify ROS (Gelain, 2009) revealed that a set of antioxidant genes were specifically upregulated

in the lung micrometastases (Figure 5D). To confirm that the transcriptional changes identified

reflect changes in protein levels, we performed immunohistochemistry for one of these gene prod-

ucts, glutathione peroxidase 1 (GPX1), which functions in the detoxification of hydrogen peroxide.

Anti-GPX1 immunohistochemistry analysis confirmed high expression GXP1 in lung micrometastases

compared to brain micrometastases (Figure 5E). We also tested whether the organ-specific oxida-

tive stress and antioxidant programs are specific to triple negative breast cancer by analyzing lung

and brain micrometastases formed by HCC1954 cell line, a HER2+ human breast cancer cell line. The

higher oxidative stress and increased expression of antioxidants were also detected in lung micro-

metastases relative to brain micrometastases in HCC1954 xenograft model (Figure 5—figure sup-

plement 2A–C), indicating that higher oxidative stress and elevated antioxidant program are more

general phenomena of early stage lung metastasis in breast cancer.

During oxidative stress, the transcription factor nuclear factor erythroid 2-related factor 2 (NRF2)

is stabilized, enabling transcription of an antioxidant transcriptional program (Ma, 2013). Lung

micrometastases contained high levels of NRF2 compared to brain micrometastases, based on anti-

NRF2 immunohistochemistry (Figure 5F). To determine whether NRF2 transcriptional activity is

increased in lung micrometastases, we created a list of 24 NRF2 target genes based on NRF2 chro-

matin immunoprecipitation-sequencing data curated by Cistrome database (ENCODE Project Con-

sortium, 2012) (Supplementary File 4), and performed GSEA analysis on our cancer cell

transcriptomes. Indeed, the NRF2 signature was enriched in lung micrometastases compared to

brain micrometastases and mammary tumors (Figure 5G). Like the Complex I genes, the NRF2

responsive genes were underexpressed in lung metastasis-derived cells placed in culture (Figure 5—

figure supplement 1C). Collectively, these results show a specific upregulation of Complex I associ-

ated with oxidative stress and a strong NRF2 response in breast cancer cells that survive as lung

micrometastases.

Organ-specific oxidative stress in human breast cancer lung metastases
We investigated Complex I gene expression, and the associated oxidative stress and antioxidant

responses in breast cancer patients with metastasis. We analyzed RNA-seq data from breast primary

tumors and matched lung metastases from 11 patients (Siegel et al., 2018). The lung metastases

showed significantly higher expression of Complex I genes compared to mammary tumors

(Figure 6A). Matched pair comparison showed that 73% (8/11) patients had higher expression of

Complex I genes in lung metastases than in their matched primary tumors (Figure 6B). 100% (8/8) of

the patients with higher Complex I genes had higher expression of lung-specific antioxidant genes

identified by Flura-seq (Figure 6B), and 88% (7/8) of the patients had higher NRF2 gene signature

expression (Figure 6B).

A closer examination of differentially expressed genes (>2 fold) in lung metastases compared to

their corresponding primary tumors revealed that 45% (5/11) patients overexpressed 26–39 out of

Figure 4 continued

Figure supplement 1. Flura-seq identifies organ-specific in situ transcriptomes in micrometastases.

DOI: https://doi.org/10.7554/eLife.43627.009
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Figure 5. Mitochondrial Complex I expression and oxidative stress in lung micrometastases. (A) Gene Ontology (GO) analysis of biological

processes (BP) of genes that were upregulated in MDA231 lung micrometastases compared to brain micrometastases or mammary tumors. The top

functional groups and their corresponding pvalues are shown (n = 3); (B) Gene Set Enrichment Analysis (GSEA) analysis of nuclear Complex I genes was

performed for the genes identified by Flura-seq in the indicated pairs of MDA231 lung and brain micrometastases and mammary tumors. p-Values were

Figure 5 continued on next page
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43 nuclear encoded Complex I genes (Supplementary File 5). We divided these patients into two

groups: a high Complex I group of five patients with upregulation of more than 25 Complex I genes,

and a low Complex I group of remaining six patients. Complex I high patients were specifically asso-

ciated with higher expression of lung antioxidant genes and NRF2 signature genes (Figure 6C,D),

supporting the conclusion that the high expression of Complex I in lung metastasis is associated

with the expression of compensatory antioxidant programs. Moreover, eight antioxidant genes that

were upregulated together with Complex I genes in patients’ lung metastases (Figure 6D) were also

upregulated in Flura-seq transcriptomes from experimental lung micrometastases (refer to

Figure 5D).

Finally, we sought to determine whether the differences in oxidative stress and antioxidant

responses in lung vs. brain metastases were conserved in clinical samples from breast cancer

patients. We performed immunohistochemistry for 4-HNE and NRF2 on a tissue microarray (TMA)

containing lung metastases and brain metastases from more than 40 breast cancer patients. Consis-

tent with the Flura-seq findings, 93% (42/45) of the lung metastases scored high for 4-HNE immu-

nostaining, whereas only 16% (9/55) of brain metastases did (Figure 6E). Likewise, 78% (32/41) of

the lung metastases scored high for NRF2 immunostaining versus only 30% (14/48) in the brain

metastases (Figure 6F). There was a strong association between oxidative stress (4-HNE) and NRF2

protein level in majority of the patients (Figure 6G). Collectively, these results demonstrate higher

oxidative stress and elevated protective antioxidant program in lung metastases compared to brain

metastases in breast cancer patients.

To test if the NRF2 signature genes overexpression in breast cancer tumors correlate with organ-

specific metastasis prognosis outcomes, we calculated the Hazard ratio for NRF2 signature genes for

lung, brain and bone metastasis in breast cancer patients. We found that the Hazard ratio was signif-

icantly different for lung metastasis but not for brain and bone metastasis (Figure 6H), indicating

that NRF2 overexpression is advantageous for the survival of breast cancer cells in the lungs com-

pared to brain or bone.

Discussion

Organ-specific metabolic adaptation of metastasis-initiating cells
Previous studies have identified stable, organ-specific transcriptomic programs in cancer cells that

were selected on the basis of their ability to form macrometastases and then isolated from these

lesions by FACS or in vitro culture prior to transcriptomic analysis (Roe et al., 2017; Kang et al.,

2003; Minn et al., 2005; Bos et al., 2009; Boire et al., 2017; Chen and Massagué, 2012;

Malladi et al., 2016; Bruns et al., 1999; Ikeda et al., 1990; Ambrogio et al., 2014). Although these

methods successfully identify heritable transcriptional alterations of clinical relevance, these

approaches overlook the dynamic transcriptional states that are dependent on tissue-specific micro-

environmental cues. Flura-seq now enables the highly sensitive capture of these dynamic

Figure 5 continued

calculated by random permutations; (C) Oxidative stress in lung and brain tissue sections containing micrometastases were examined by IHC using anti-

4-HNE antibody. Scale bars, 100 mm (top) and 20 mm (bottom); (D) Heatmap representation of the expression of genes encoding known antioxidant

factors in MDA231 tumors from the indicated organs. The highlighted genes were also upregulated in clinical samples of lung metastasis from breast

cancer patients (Figure 6D); (E) IHC analysis of GPX1, an antioxidant gene product identified by Flura-seq to be selectively upregulated in lung

micrometastases. Scale bars, 100 mm (top) and 20 mm (bottom); (F) IHC analysis of NRF2 in lung and brain micrometastases. Scale bars, 100 mm (top)

and 20 mm (bottom); (G) GSEA analysis of the NRF2 response gene signature applied to Flura-seq data from the indicated pairs of MDA231 lung and

brain micrometastases and mammary tumors (n = 3). p-Values were calculated by random permutations.

DOI: https://doi.org/10.7554/eLife.43627.010

The following figure supplements are available for figure 5:

Figure supplement 1. Differential gene expression in brain and lung micrometastatic cells.

DOI: https://doi.org/10.7554/eLife.43627.011

Figure supplement 2. Oxidative stress and antioxidant programs are elevated in lung micrometastases relative to brain micrometastases in HCC1954

xenograft metastasis model.

DOI: https://doi.org/10.7554/eLife.43627.012
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Figure 6. Specific oxidative stress in patient-derived lung metastasis tissues. (A–D) Expression of nuclear Complex I and antioxidant genes in a gene

expression data set of matched primary tumors and lung metastases from patients with breast cancer (Siegel et al., 2018). (A) GSEA analysis of the

expression of Complex I genes shows higher expression of these genes in lung metastases (LM) compared to primary tumors (Primary); (B) Complex I

genes, lung antioxidant genes (from Figure 5D), and NRF2 response signature genes are upregulated in lung metastases (LM) compared to matched

Figure 6 continued on next page
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transcriptional states, thus shedding light on crucial adaptive processes underway in micrometasta-

ses that could not previously be identified.

In this study, we applied Flura-seq to identify the in situ transcriptomic programs that are differ-

entially active in cancer cells at early stages of metastatic colonization in the lungs and brain. We

identified metabolic gene signatures that were specific to the colonized organ and lost upon remov-

ing cancer cells from the tissue microenvironment and placing them in culture. Specifically, we identi-

fied mitochondrial Complex I as the top upregulated transcriptional alteration in lung metastases

that was dynamic and dependent on an intact tissue microenvironment. Elevated expression of Com-

plex I genes correlated with increased oxidative stress and activation of counteracting antioxidant

programs including the upregulation of a distinct set of NRF2-driven antioxidant genes in metastatic

cells that seed the lungs. Antioxidant and NRF2 activity were also increased in association with high

Complex I expression in lung metastases from breast cancer patients, suggesting a role of these

pathways in mitigating the cytotoxic effects of oxidative stress on lung metastatic cells. Lung tissue

is exposed to higher concentration of oxygen compared to other organs (Jagannathan et al.,

2016), and high oxygen concentration can cause oxidative stress (Halliwell, 2014). It is therefore

possible that higher oxygen concentration in the lung micrometastases drives the observed changes.

However, we cannot rule out other lung specific microenvironmental cues such as metabolites, cyto-

kines, physical stress, or immune surveillance as sources of the observed changes.

These results demonstrate that metastatic tumor cells arising from a single source adopt unique

transcriptional profiles depending on their site of colonization. Despite increasing appreciation that

metastatic outgrowths frequently exhibit altered metabolic gene expression compared to their pri-

mary tumor counterparts (LeBleu et al., 2014; Dupuy et al., 2015; Chen et al., 2007), whether

these metabolic transitions result from the outgrowth of a selected subpopulation predisposed to

thrive in a particular location or from the dynamic adaptation of cancer cells to a changing microenvi-

ronment remains an open question. Our results support a model wherein tumor cells dynamically

adapt to local conditions and suggest that a major determinant of the metabolism of metastatic cells

is the site of colonization. These metabolic rearrangements are likely an early event in the establish-

ment of metastatic seeding and may represent a targetable bottleneck against the growth of meta-

static lesions.

Oxidative stress with clinical implications in metastasis
Oxidative stress has been implicated in metastasis, however, the precise role of the stress in metas-

tasis has remained controversial. On one hand, oxidative stress has been observed in cancer cells

soon after detachment from epithelia (Schafer et al., 2009), and it persists during circulation

(LeBleu et al., 2014) and upon colonization of metastatic sites in model systems (Piskounova et al.,

2015; Gill et al., 2016). The lung has been proposed to have pro-oxidant environment due to high

Figure 6 continued

primary tumor (Pr). Gene set variation analysis (GSVA) analysis for transcriptomic data from primary tumors and matched lung metastases of individual

patients (letter and color coded); (C) Association of anti-antioxidant gene expression with mitochondrial Complex I expression in lung metastasis.

Patients were divided into two groups based on the upregulation of Complex I genes in the lung metastases relative to their corresponding primary

tumor. The Complex I-High group consisted of five patients with more than 25 out of 43 Complex I genes upregulated by more than twofold in lung

metastases relative to the corresponding primary tumor. The Complex I-Low group consisted of six patients with less than 25 Complex I genes

upregulated by twofold in the lung metastases compared to the corresponding primary tumor. GSVA signature analysis of Complex I genes, lung

antioxidant genes, and NRF2 signature genes was performed in the Complex I-High and -Low groups. p-Values were calculated by unpaired two-tailed

student’s t test; (D) Heatmap of the relative expression of individual mitochondrial Complex I genes and antioxidant genes in lung metastases relative

to the corresponding primary tumor. Complex I-High and –Low patient samples are shown as separate groups, in order to highlight the association of

antioxidant gene expression with Complex I gene expression. Red dots, antioxidant genes that were also identified to be upregulated in mouse lung

micrometastases by Flura-seq (shown in Figure 5D); (E, F) IHC analysis of oxidative stress marker 4-HNE (E) and NRF2 (F) in tissue microarrays of brain

metastases (BrM) and lung metastases (LM) from breast cancer patients. Shown are representative images and the quantifications based on the degree

of staining (0, no signal: 3, highest signal). (n = 55 samples for BrM and n = 45 for LM for 4-HNE; n = 48 for BrM and n = 41 for LM for NRF2). Scale bar,

20 mm; (G) Association between oxidative stress (4-HNE) and NRF2 scores in lung metastases and brain metastases of breast cancer patients. Heatmap

of the IHC staining of 4-HNE (E) and NRF2 (F) was plotted for each patient sample in the TMAs; (H) Hazard Ratio plots of the predictive ability of NRF2

signatures in brain (BrM), lung (LM) and bone (BM) metastasis-free survival outcomes in EMC-MSK dataset (GSE2603, GSE5327, GSE2034 and

GSE12276). p-Values were calculated using Log-rank test.

DOI: https://doi.org/10.7554/eLife.43627.013
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oxygen and toxins exposure (Schild et al., 2018), and anti-oxidative mediators such as NRF2

(Wang et al., 2016; DeNicola et al., 2015; Menegon et al., 2016), peroxiredoxin 2 (Stresing et al.,

2013) and thioredoxin-like 2 (Qu et al., 2011) stimulate the progression of lung cancer and lung

metastasis. On the other hand, ROS has also been reported to promote metastasis, and antioxidants

have been shown to inhibit metastasis (Ferraro et al., 2006; Ishikawa et al., 2008;

Porporato et al., 2014). The oxidative state and the role of oxidative stress soon after the meta-

static cancer cells seed the distant organs before they form macrometastases remain unknown. Our

findings demonstrate high oxidative stress in the lung micrometastases of breast cancer, supporting

the idea that antioxidant programs promote the progression of lung metastasis and highlighting a

critical role for antioxidant mediators in the transition of micrometastases to overt metastases.

Surprisingly, however, our data suggest that elevated antioxidant defenses are not a universal

hallmark of metastatic lesions. We found that breast cancer brain metastases experience a low level

of oxidative stress and antioxidative response. Given that metastatic cells can exhibit reversible met-

abolic alterations (Piskounova et al., 2015), these results raise the possibility that tumor cells

undergo multiple metabolic transitions in order to adapt to the changing microenvironments

encountered during the metastatic cascade. Indeed, recent evidence suggests that cancer cells from

disparate origins may converge to adopt metabolic phenotypes in a given organ (Schild et al.,

2018; Mashimo et al., 2014). Techniques such as Flura-seq that enable in situ interrogation of tumor

cell phenotypes can reveal to what extent these various metabolic transitions are driven by adapta-

tion to the specific microenvironment versus selection of cancer cells with preexisting traits. Given

increasing evidence that cell lineage is a critical determinant of cancer cell metabolism

(Mayers et al., 2016; Yuneva et al., 2012) it will be interesting for future studies to determine

whether lineage-specific metabolic predispositions contribute to the metastatic organ tropisms of

different tumor types. More broadly, these studies will help to shed light on the precise factors in

the tissue microenvironment that contribute to organ-specific metabolic profiles.

Flura-seq as an in situ transcriptomic technique with broad biological
applications
Preservation of the intact tissue microenvironment is critical to accurately elucidate the transcrip-

tional state of a cell in vivo. Flura-seq can define in situ transcriptomes from a very rare cell popula-

tion representing a small fraction (>0.003%) of an organ. The superior sensitivity of Flura-seq

compared to related TU-tagging and EC-tagging may be due to the elimination of a biotinylation

step and RNA purification system that distinguishes between cytosine derivatives and uracil deriva-

tives. Flura-seq can be easily applied to any cell type that constitutes a rare subpopulation within the

host tissue, such as stem cells and specific subtypes of immune and neuronal cells, in addition to

residual cancer cells populations during early stages of metastasis or following the shrinking of a

tumor with current therapies.

Another feature of Flura-seq is that it only identifies newly synthesized transcripts, which is an

advantage in the study of transcriptional responses to cytokines, metabolites, pharmacologic agents,

stress signals, and other factors that act by rapidly changing the transcriptomic state of target cells.

Further, since Flura-seq involves covalently labeling RNA, it can complement other techniques such

as scRNA-seq to combine in situ transcriptomic analysis with profiling of the dissociated cell popula-

tion with single-cell resolution. Recent advances in scRNA-seq have significantly expanded the appli-

cation of this technology to the analysis of underrepresented cell types in tissues; however, the

method requires extensive physical and enzymatic processing that destroys the tissue microenviron-

ment, and thus microenvironment-dependent gene expression features cannot be accurately cap-

tured by scRNA-seq. The higher coverage and applicability of Flura-seq to any tissues and cell types

is the principal benefit of Flura-seq over scRNA-seq.

Flura-seq involves the expression of exogenous enzymes, CD and UPRT, and treatment of cells or

mice with 5-FC. These treatments may alter the levels of certain transcripts, and is therefore impor-

tant to validate findings made by Flura-seq with alternative methods such as immunostaining, as

shown here. This limitation notwithstanding, Flura-seq provides a sensitive, robust and economical

alternative to existing in situ transcriptomics techniques. Thus, the power of Flura-seq in studying

rare cell populations can be harnessed to address challenging questions of high biological and clini-

cal significance.
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Materials and methods

Key resources table

Reagent type
(species) or
resource Designation Source or reference Identifiers

Additional
information

Antibody anti-BrdU; BrdU
antibody
(Rat monoclonal)

Abcam Cat#ab6326 (1:200)

Antibody anti-CD31; CD31
antibody
(Rat monoclonal)

Dianova Cat#DIA-310 (1:100)

Antibody anti-GFP; GFP
antibody (Chicken
monoclonal)

Aves Labs Cat#GFP-1020 (1:500)

Antibody anti-4-Hydroxynonenal;
4-HNE antibodyl
(Rabbit polyclonal)

Abcam Cat#ab46545 (1:75)

Antibody anti-NRF2; NRF2
antibody (Rabbit
polyclonal)

Abcam Cat#ab137550 (1:600)

Antibody anti-Glutathione
Peroxidase 1;
GPX1 antibody
(Rabbit polyclonal)

Abcam Cat#ab22604 (1:200)

Antibody Goat polyclonal
anti-chicken

Thermo Fisher Cat#A-11039 (1:1000)

Antibody Goat polyclonal
anti-rat

Thermo Fisher Cat#A-11006 (1:1000)

Antibody Goat polyclonal anti-mouse Abcam Cat#ab150117 (1:1000)

Biological
sample (Human)

Human breast
cancer lung
metastases tissue
microarray (TMA)

This paper (Section
of lung tissue
containing cancer cells
was surgically removed
from breast cancer
patients, preserved in
paraflim and a small
portion of the
preserved tumor was
used to make the TMA)

N/A Tissue microarray
Available from
Edi Brogi

Chemical
compound, drug

Doxycycline Sigmal-Aldrich Cat#D9891

Chemical
compound, drug

5-Fluorocytosine; 5-FC Sigma-Aldrich Cat#F7129

Chemical
compound, drug

5-Fluorouracil; 5-FU Sigma-Aldrich Cat#F6627

Chemical
compound, drug

SB-505124 Sigma-Aldrich Cat#S4696

Chemical
compound, drug

Thymine Sigma-Aldrich Cat#T0376

Chemical
compound, drug

4-Thiouracil; TU Sigma-Aldrich Cat#440736

Other Oligo (dT)25 magnetic
beads

New England Biolabs Cat#S1419S

Other Protein G Dynabeads Thermo
Fisher Scientific

Cat#10004D

Commercial
assay or kit

Tissue digestion
C-tube

Miltenyi Cat#130-096-334

Continued on next page
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Continued

Reagent type
(species) or
resource Designation Source or reference Identifiers

Additional
information

Commercial
assay or kit

Mouse Tumor
Dissociation Kit

Miltenyi Cat#130-096-730

Commercial
assay or kit

TruSeq RNA Library
Prep Kit v2

Illumina RS-122–2001

Commercial
assay or kit

SMARTer PCR
cDNA synthesis kit

Clontech Cat#634926

Commercial
assay or kit

Nextera XT DNA
library Preparation Kit

Illumina FC-131–1024

Commercial
assay or kit

RNeasy MinElute
Cleanup kit

Qiagen Cat#74204

Commercial
assay or kit

cDNA kit-First
Strand Transcriptor

Roche Cat#043790–12001

Cell line (Human) MDA231 Laboratory of
Joan Massague

PMID: 19421193 Expresses TGL

Cell line (Human) MDA231-CD This paper (MDA231
cells were transduced
with rtTA3 and
TRE-CD-IRES-RFP)

N/A Available from
Massague lab

Cell line (Human) MDA231-CD/UPRT This paper (MDA231
cells were transduced
with rtTA3 and
TRE-UPRT-T2A-RFP-IRES-CD)

N/A Available from
Massague lab

Cell line (Human) 293T Laboratory of
Joan Massague

N/A

Strain, strain
background (Mus
musculus)

Hsd:Athymic
Nude- Foxn1nu

Envigo Cat#069

Sequence-based
reagents

Oligonucleotides This paper N/A Oligonucleotide
sequences are provided
in Supplementary file 6

Recombinant
DNA reagent

CMV Tight RFP-IRES-CD This paper (RFP-IRES-CD
was subcloned
into CMV Tight EGFP
Puro (Addgene:
Plasmid #26431) vector by
removing EGFP).

N/A Available from
Massague lab

Recombinant
DNA reagent

CMV Tight UPRT-
T2A-RFP-IRES-CD

This paper
(UPRT-T2A-RFP-IRES-CD
was subcloned into
CMV Tight EGFP
Puro (Addgene: Plasmid
#26431) vector by
removing EGFP).

N/A Available from
Massague lab

Recombinant
DNA reagent

rtTA3 Addgene Plasmid #26730

Software and
Algorithms

STAR2.5.2b PMID: 23104886 https://github.com
/alexdobin/STAR

Software and
Algorithms

HTSeq v0.6.1p1 PMID: 20979621 https://htseq.
readthedocs.io/en/
release_0.10.0/

Software and
Algorithms

DESeq2 v3.4 PMID: 25516281 https://bioconductor.
org/packages/release/
bioc/html/DESeq2.html

Software and
Algorithms

GSVA v3.4 PMID: 23323831 https://bioconductor.
org/packages/release/bioc
/html/GSVA.html
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Cell culture
Human embryonic kidney cells transformed with T-cell antigen (293T) and human breast cancer

MDA-MB-231 (MDA231) cells were cultured in DMEM High Glucose medium (Wheaton) supple-

mented with 10% fetal bovine serum and 2 mM L-glutamine. All cell lines have been regularly tested

for mycoplasma contamination, and the identity of the cell lines have been authenticated by STR

profiling. For the induction of CD or CD/UPRT, cells were treated with 1 mg/ml doxycycline for 24 hr.

For 5-FU tagging, cells were treated with 250 mM 5-FC or 5-FU unless indicated. Where indicated,

125 mM thymine was added together with 5-FC. For the induction of TGF-b target genes, cells were

treated with 200 pM TGF-b or 2.5 mM SB-505124 for 150 min. For 5-FU-tagging during TGF-b treat-

ment, cells were treated with 5-FC and thymine for 30 min before adding TGF-b or SB-505124.

Animal experiments
Mouse experiments were performed following the protocols approved by the MSKCC Institutional

Animal Care and Use Committee (IACUC). Five- to six-week-old female mice (Mus musculus) Hsd:

Athymic-Foxn1nu were used in all the experiments. For lung colonization experiments, 50,000

MDA231 cells suspended in 100 ml PBS were injected into the tail vein. For organ-specific metastasis

experiments, 50,000 MDA231 cells or 100,000 HCC1954 cells suspended in 100 ml PBS were injected

intracardially. For mammary fat pad injection, 50,000 MDA231 cells in 50 ml PBS were mixed with 50

ml matrigel and the mixture was injected in the fat pad of mammary gland #4. Proliferation of

injected cancer cells was quantified using bioluminescence imaging following retro-orbital injection

of D-luciferin (Gold Biotechnology). CD/UPRT expression was induced by feeding mice doxycycline

diet for 2–3 days. For Flura-tagging, mice were injected with 250 mg/kg (500 ml) 5-FC intraperitone-

ally together with 125 mg/kg (500 ml) thymine subcutaneously. For thiouracil-tagging, mice were

injected intraperitoneally with 250 mg/kg (500 ml) of 4-thiouracil. The mice were euthanized 4–12 hr

post injection, lungs and brain were harvested and processed for downstream experiments. For

RNA analysis, lungs were dissociated using the PRO 200 grinder from PRO Scientific Inc. in RNA

extraction lysis buffer. The lung lysates were either used immediately for mRNA extraction or stored

at �80˚C for later use.

Immunofluorescence (IF) and Immunohistochemistry (IHC)
For IF, cells were fixed with 4% paraformaldehyde for 10 min, permeabilized with 0.2% TritonX-100

for 10 min, blocked with 5% BSA for 1 hr at room temperature, prior to incubation with primary anti-

bodies at 4˚C overnight, and secondary antibodies incubated for 1 hr at room temperature. Mouse

lung and brain were fixed in 4% paraformaldehyde 24–48 hr at 4˚C, embedded in paraffin and sec-

tioned at 5 mm. Paraffin-embedded sections or tissue microarrays were rehydrated using Histo-Clear

(National Diagnostics) followed by 100-95–70% ethanol and water. Antigen retrieval was performed

in a steamer for 30 min in citrate antigen retrieval solution. Tissue sections were blocked with 5%

normal goat serum for 1 hr, and incubated with primary antibodies overnight. Secondary antibodies

conjugated with fluorophores were used for detection. IHC were performed on BOND RX (Leica Bio-

systems) using standard Epitope Retrieval Solution 2 (Leica Biosystems) for 30 min followed by pri-

mary antibody incubation for 30 min and BOND polymer refine detection kit-DAB. Automated

image analysis was performed using the FIJI software package. Human histopathological sections

were obtained under a biospecimen protocol approved by the MSK Institutional Review Board. All

human pathology analyses were performed under the supervision of an experienced breast patholo-

gist (E.B.).

Flura-tagged and TU-tagged mRNA extraction
Cells or tissues were lysed in lysis buffer (20 mM Tris-HCl pH 7.5, 500 mM LiCl, 1% LiDS, 1 mM

EDTA, 5 mM DTT), and mRNAs were extracted using Oligo (dT)25 magnetic beads following the

manufacturer’s protocol. The isolated mRNAs were immunoprecipitated using anti-BrdU antibody

(1–5 mg/sample) conjugated with Protein G Dynabeads by overnight incubation at 4˚C. The mRNAs

were incubated with the antibody bead complex in 0.8X Binding buffer (0.5X Sodium Chloride-

Sodium Phosphate-EDTA (SSPE) with 0.025% Tween 20) at room temperature for 1–2 hr in a rotator.

Subsequently, beads were washed twice with Binding buffer, twice with Wash buffer B (1X SSPE

with 0.05% Tween 20), once with Wash buffer C (TE with 0.05% Tween 20), and once with TE buffer.
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The bound mRNAs were eluted in 200 ml of 100 mg/mL BrdU for 45 min in a shaker at room tempera-

ture. The eluted RNAs were purified using the RNeasy MinElute Cleanup kit following the manufac-

turer’s protocol. The RNA was eluted in 100 ml RNAase free water. The Flura-tagged RNA elute

were re-precipitated as described above, and eluted in 12.5 ml final volume. The RNA was either

reverse-transcribed using cDNA kit-First Strand Transcriptor following the manufacturer’s protocol,

or used for Flura-Seq. TU-tagged mRNAs were purified as described in Miller et al. (2009).

Isolation of organ-derived cancer cells
Brain, lung or mammary tumors were cut into small fragments (around 1 mm3) and transferred to a

tissue digestion C-tube. The tumor pieces were incubated with mouse Tumor Dissociation Kit and

further dissociated mechanically on a gentleMACS Dissociator as per manufacturer’s protocol. The

digestion reaction was stopped with albumin-rich buffer (RPMI-1640 medium containing 0.5% bovine

serum albumin (BSA)). A single-cell suspension was obtained by filtering through a 70 mm cell

strainer. The cells were then cultured in DMEM High Glucose media containing 10% FBS, 2 mM

L-Glutamine, 200 mg/mL Hygromycin and 8 mg/mL Blasticidin to select MDA231 cells.

Flow cytometry
Harvested lungs were chopped into small pieces (around 1 mm3), which were then incubated at

37˚C in 30 mL digestion buffer (5% Fetal Bovine Serum (FBS) 1 mM L-glutamine 0.35 mg/mL Wor-

thington Type III collagenase, 6.25 � 10�3 U/mL dispase, 100 U/mL penicillin, 100 mg/mL streptomy-

cin, 6.25 ng/mL amphotericin B) containing 10 mL trypsin and 30 ml DNAse for 1 hr. The cells were

filtered through a 70 mM filter, and were collected by centrifugation. The cell pellets were then

resuspended in PBS containing 0.1% FBS and 100 mg/ml DAPI, and analyzed using a BD FACS Aria

IIU Flow cytometer. CD or CD/UPRT expressing stable cell lines were treated with 1 mg/mL doxycy-

cline for 24 hr, trypsinized, filtered and sorted for RFP positive cells using a BD LSRFortessa Flow

cytometer.

RNA sequencing
RNA-seq library preparation. Total RNA was purified using Qiagen RNeasy Mini Kit. Quality and

quantity of the RNA were checked using an Agilent BioAnalyzer 2000. 10 ng of RNA per sample was

used for library construction with Sample Prep Kit v2 according to manufacturer’s instructions.

Libraries were multiplexed on a Hiseq2500 platform, and more than 25 million raw paired-end reads

were generated for each sample.

Flura-seq library preparation. RNA was amplified by SMARTer PCR kit with the number of PCR

cycles determined empirically based on the amount of purified 5-FU-tagged RNA. The Nextera XT

kit was used to prepare sequencing libraries following the manufacturer’s protocol. In our in vivo

experiments, 20–24 cycles of PCR were used.

Statistics and data analysis
In all relevant experiments, mice were randomized prior to different treatments. Comparisons

between samples were done in the gene expression analysis, and each group had 2–3 biological rep-

licates that are indicated in the figure legends for each experiment. In the in vitro experiments, bio-

logical replicates are samples derived from cells that were plated and processed separately. In the in

vivo experiments, the biological replicates represent individual mouse. N described in the Figure

legends represents independent biological replicates. The technical replicates are originated from

the same sample but divided into different groups. Sample size for each experiment was determined

empirically.

Reads were quality checked using FastQC v0.11.5 and mapped to a human (hg19) or hybrid

human-mouse (hg19-mm10) genome with STAR2.5.2b (Dobin et al., 2013) using standard settings

for paired reads. Uniquely mapped reads were assigned to annotated genes with HTSeq v0.6.1p1

(Anders and Huber, 2010) with default settings. Read counts were normalized by library size, and

differential gene expression analysis based on a negative binomial distribution was performed using

DESeq2 v3.4 (Love et al., 2014). In general, thresholds for differential expression were set as fol-

lows: adjusted p value<0.05, fold change >2.0 or<0.5, and average normalized read count >10.

Genes were considered detectable in the immunoprecipitation samples with a normalized read
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count >100. Gene set enrichment analysis was performed using GSVA v3.4 (Hänzelmann et al.,

2013) and previously curated gene sets (Subramanian et al., 2005). GSEA mountain plots were gen-

erated by ‘liger’ R package (V0.1).

Plasmids generation
Primers used for cloning the constructs described in the manuscript are described in

Supplementary file 6. CD (Addgene 35102), and UPRT (Addgene 47110) were used as template for

PCR for subcloning. RFP and IRES were amplified using pTRIPZ (Dharmacon) as template. The PCR

products were either ligated using DNA Ligase after restriction enzyme digestion and/or by Gibson

Assembly.
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The following datasets were generated:

Author(s) Year Dataset title Dataset URL
Database and
Identifier

Basnet H, Tian L,
Massague J

2018 Organ-specific in situ
transcriptomics of MDA231 cells
identified by Flura-seq

https://www.ncbi.nlm.
nih.gov/geo/query/acc.
cgi?acc=GSE118937

NCBI Gene
Expression Omnibus,
GSE118937
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https://doi.org/10.7554/eLife.43627.017
https://doi.org/10.7554/eLife.43627.018
https://doi.org/10.7554/eLife.43627.019
https://doi.org/10.7554/eLife.43627.020
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE118937
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE118937
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https://doi.org/10.7554/eLife.43627


Basnet H, Macali-
nao DG, Massague
J

2017 Flura-seq of TGFB treated MDA231
cells

https://www.ncbi.nlm.
nih.gov/geo/query/acc.
cgi?acc=GSE93605

NCBI Gene
Expression Omnibus,
GSE93605

The following previously published datasets were used:

Author(s) Year Dataset title Dataset URL
Database and
Identifier

Siegel M, Perou C 2018 Integrated RNA and DNA
sequencing reveals early drivers of
metastatic breast cancer

https://www.ncbi.nlm.
nih.gov/geo/query/acc.
cgi?acc=GSE110590

NCBI Gene
Expression Omnibus,
GSE110590

Minn AJ, Massa-
gue J

2005 ubpopulations of MDA-MB-231 and
Primary Breast Cancers

https://www.ncbi.nlm.
nih.gov/geo/query/acc.
cgi?acc=GSE2603

NCBI Gene
Expression Omnibus,
GSE2603

Wang Y, Foekens J,
Minn A, Massague
J

2007 Breast cancer relapse free survival
and lung metastasis free survival

https://www.ncbi.nlm.
nih.gov/geo/query/acc.
cgi?acc=GSE5327

NCBI Gene
Expression Omnibus,
GSE5327

Wang Y, Klijn JG,
Zhang Y, Sieuwerts
AM

2005 Breast cancer relapse free survival https://www.ncbi.nlm.
nih.gov/geo/query/acc.
cgi?acc=GSE2034

NCBI Gene
Expression Omnibus,
GSE2034

Bos PD, Massague
J

2009 Expression data from primary
breast tumors

https://www.ncbi.nlm.
nih.gov/geo/query/acc.
cgi?acc=GSE12276

NCBI Gene
Expression Omnibus,
GSE12276
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2016. Carcinoma-astrocyte gap junctions promote brain metastasis by cGAMP transfer. Nature 533:493–498.
DOI: https://doi.org/10.1038/nature18268, PMID: 27225120

Basnet et al. eLife 2019;8:e43627. DOI: https://doi.org/10.7554/eLife.43627 23 of 26

Research article Cancer Biology

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE93605
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE93605
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE93605
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE110590
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE110590
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE110590
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE2603
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE2603
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE2603
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE5327
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE5327
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE5327
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE2034
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE2034
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE2034
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE12276
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE12276
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE12276
https://doi.org/10.1158/0008-5472.CAN-14-1606
http://www.ncbi.nlm.nih.gov/pubmed/25217522
https://doi.org/10.1186/gb-2010-11-10-r106
http://www.ncbi.nlm.nih.gov/pubmed/20979621
https://doi.org/10.1007/BF01046839
http://www.ncbi.nlm.nih.gov/pubmed/1376726
http://www.ncbi.nlm.nih.gov/pubmed/8450832
https://doi.org/10.1016/j.cell.2005.02.001
https://doi.org/10.1016/j.cell.2005.02.001
http://www.ncbi.nlm.nih.gov/pubmed/15734681
https://doi.org/10.3791/52985
https://doi.org/10.3791/52985
https://doi.org/10.1016/j.cell.2017.02.025
https://doi.org/10.1016/j.cell.2017.02.025
http://www.ncbi.nlm.nih.gov/pubmed/28283064
https://doi.org/10.1038/nature08021
http://www.ncbi.nlm.nih.gov/pubmed/19421193
https://doi.org/10.1038/ncb2861
http://www.ncbi.nlm.nih.gov/pubmed/24161934
https://doi.org/10.1038/sj.neo.7900005
http://www.ncbi.nlm.nih.gov/pubmed/10935470
https://doi.org/10.1093/jnci/53.3.661
https://doi.org/10.1038/s41556-018-0145-9
http://www.ncbi.nlm.nih.gov/pubmed/30050120
https://doi.org/10.1158/0008-5472.CAN-06-3137
http://www.ncbi.nlm.nih.gov/pubmed/17308085
https://doi.org/10.1038/nature18268
http://www.ncbi.nlm.nih.gov/pubmed/27225120
https://doi.org/10.7554/eLife.43627
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responses and cellular adjustments to oxidative stress. Redox Biology 6:183–197. DOI: https://doi.org/10.1016/
j.redox.2015.07.008, PMID: 26233704

Ferraro D, Corso S, Fasano E, Panieri E, Santangelo R, Borrello S, Giordano S, Pani G, Galeotti T. 2006. Pro-
metastatic signaling by c-Met through RAC-1 and reactive oxygen species (ROS). Oncogene 25:3689–3698.
DOI: https://doi.org/10.1038/sj.onc.1209409, PMID: 16462764

Gao H, Chakraborty G, Zhang Z, Akalay I, Gadiya M, Gao Y, Sinha S, Hu J, Jiang C, Akram M, Brogi E, Leitinger
B, Giancotti FG. 2016. Multi-organ site metastatic reactivation mediated by Non-canonical discoidin domain
receptor 1 signaling. Cell 166:47–62. DOI: https://doi.org/10.1016/j.cell.2016.06.009, PMID: 27368100

Gay L, Miller MR, Ventura PB, Devasthali V, Vue Z, Thompson HL, Temple S, Zong H, Cleary MD, Stankunas K,
Doe CQ. 2013. Mouse TU tagging: a chemical/genetic intersectional method for purifying cell type-specific
nascent RNA. Genes & Development 27:98–115. DOI: https://doi.org/10.1101/gad.205278.112, PMID: 23307
870

Gay L, Karfilis KV, Miller MR, Doe CQ, Stankunas K. 2014. Applying thiouracil tagging to mouse transcriptome
analysis. Nature Protocols 9:410–420. DOI: https://doi.org/10.1038/nprot.2014.023, PMID: 24457332

Gelain Daniel, P.. 2009. A systematic review of human antioxidant genes. Frontiers in Bioscience :4457–4463.
DOI: https://doi.org/10.2741/3541

Gill JG, Piskounova E, Morrison SJ. 2016. Cancer, oxidative stress, and metastasis. Cold Spring Harbor Symposia
on Quantitative Biology 81:163–175. DOI: https://doi.org/10.1101/sqb.2016.81.030791, PMID: 28082378

Halliwell B. 2014. Cell culture, oxidative stress, and antioxidants: avoiding pitfalls. Biomedical Journal 37:99–105.
DOI: https://doi.org/10.4103/2319-4170.128725, PMID: 24923566

Hamstra DA, Lee KC, Tychewicz JM, Schepkin VD, Moffat BA, Chen M, Dornfeld KJ, Lawrence TS, Chenevert TL,
Ross BD, Gelovani JT, Rehemtulla A. 2004. The use of 19F spectroscopy and diffusion-weighted MRI to
evaluate differences in gene-dependent enzyme prodrug therapies. Molecular Therapy 10:916–928.
DOI: https://doi.org/10.1016/j.ymthe.2004.07.022, PMID: 15509509

Hänzelmann S, Castelo R, Guinney J. 2013. GSVA: gene set variation analysis for microarray and RNA-seq data.
BMC Bioinformatics 14:7. DOI: https://doi.org/10.1186/1471-2105-14-7, PMID: 23323831

Heiman M, Schaefer A, Gong S, Peterson JD, Day M, Ramsey KE, Suárez-Fariñas M, Schwarz C, Stephan DA,
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Genes that mediate breast cancer metastasis to lung. Nature 436:518–524. DOI: https://doi.org/10.1038/
nature03799, PMID: 16049480

Mullen CA, Kilstrup M, Blaese RM. 1992. Transfer of the bacterial gene for cytosine deaminase to mammalian
cells confers lethal sensitivity to 5-fluorocytosine: a negative selection system. PNAS 89:33–37. DOI: https://doi.
org/10.1073/pnas.89.1.33, PMID: 1729703

Murphy MP. 2009. How mitochondria produce reactive oxygen species. Biochemical Journal 417:1–13.
DOI: https://doi.org/10.1042/BJ20081386, PMID: 19061483

Nichterwitz S, Chen G, Aguila Benitez J, Yilmaz M, Storvall H, Cao M, Sandberg R, Deng Q, Hedlund E. 2016.
Laser capture microscopy coupled with Smart-seq2 for precise spatial transcriptomic profiling. Nature
Communications 7:12139. DOI: https://doi.org/10.1038/ncomms12139, PMID: 27387371

Obenauf AC, Zou Y, Ji AL, Vanharanta S, Shu W, Shi H, Kong X, Bosenberg MC, Wiesner T, Rosen N, Lo RS,
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