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Summary 
In selecting a behavior, animals should weigh sensory evidence both for and against their beliefs about 
the world. For instance, animals use optic flow to estimate and control their own rotation. However, 
existing models of flow detection can confuse the movement of external objects with genuine self motion. 
Here, we show that stationary patterns on the retina, which constitute negative evidence against self 
rotation, are used by the fruit fly Drosophila to suppress inappropriate stabilizing rotational behavior. In 
parallel in silico experiments, we show that artificial neural networks trained to distinguish self and world 
motion incorporate similar negative evidence. We used neural measurements and genetic manipulations 
to identify components of the circuitry for stationary pattern detection, which is parallel to the fly’s 
motion- and optic flow-detectors. Our results exemplify how the compact brain of the fly incorporates 
negative evidence to improve heading stability, exploiting geometrical constraints of the visual world. 
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Introduction 
Animals constantly monitor their sensory inputs to detect significant events so that they can respond with 
appropriate actions. However, sensory inputs are often conducive to multiple interpretations. When 
evaluating the likelihood of a certain event occurring given sensory inputs, it is important that one seeks 
not only for the evidence confirming such interpretation, but also evidence against the interpretation. 
Failure to acknowledge negative evidence is well documented in the domain of human reasoning 
(Nickerson, 1998) as well as in perceptual decision making tasks (Michel and Peters, 2021; Stocker and 
Simoncelli, 2007), a phenomenon termed confirmation bias. However, initiating spurious behavioral 
responses to falsely interpreted sensory events can be costly in real life. Therefore, one would expect that 
animals might be able to weigh negative evidence better in contexts of innate, naturalistic behaviors.  

A critical innate behavior that is based on visual inferences is course stabilization. When an animal moves 
relative to its environment, it experiences systematic, panoramic patterns of visual motion, called optic 
flow (Gibson, 1966). Diverse species ranging from vertebrates to invertebrates estimate their own 
movement based on optic flow and use that information to stabilize their locomotion (Hardcastle and 
Krapp, 2016; Mauss and Borst, 2020). Because animals need to be able to move around as they intend if 
they were to achieve behavioral goals, algorithms they use to detect visual motion and estimate their own 
velocity are often regarded as highly optimized for accuracy (Potters and Bialek, 1994). Reflecting the 
importance of the optic flow-based course stabilization behaviors, neurons tuned to specific patterns of 
optic flow have been found in the brains of diverse species across taxa (Duffy and Wurtz, 1991; Kramer 
et al., 2019; Krapp and Hengstenberg, 1996; Rasmussen et al., 2021; Schnell et al., 2010). These flow 
sensitive neurons are thought to achieve their selectivity by weighting local motion cues over space to 
match them with template flows generated by different types of self motion, an algorithm termed template 
matching (Franz and Krapp, 2000; Perrone, 1992). Template matching can effectively distinguish different 
types of optic flow, including by negatively weighting local visual motion oriented against the flow 
template, a process whose microcircuit implementation has been well studied in insects (Farrow et al., 
2006; Mauss et al., 2015).  

However, these template matching algorithms can overlook the alternative possibility that the observed 
motion did not result from the movements of the observer. For example, a large object traversing in front 
of a stationary observer will generate a pattern of visual motion consistent with optic flow during yaw 
rotation (Figure 1a). This sort of “world motion” scene will spuriously trigger template matching-based 
yaw detectors, since it does not contain local visual motion inconsistent with the yaw optic flow template. 
Incorrectly initiating stabilizing behaviors in response to world motion will deviate animals from their 
intended courses and is thus maladaptive. One therefore supposes that animals have evolved additional 
strategies to distinguish visual motion caused by world motion from genuine optic flow. An important 
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visual cue to distinguish between self rotation and world motion is patterns that are stationary on the retina. 
The geometry of optic flow during yaw rotation dictates that visual motion is oriented in the same direction 
everywhere and that the speed is constant across all points sharing an elevation. Therefore, the existence 
of any stationary pattern in the visual field strongly implies that the observer is not, in fact, rotating (Figure 
1b), even when parts of the visual field are moving coherently. Importantly, template matching algorithms 
are insensitive to this form of negative evidence against self motion, because areas with zero velocity do 
not contribute either positively or negatively to the total weighting of the visual motion field.  

In the present study, we have discovered that the fruit fly Drosophila uses stationary visual patterns as 
negative evidence against self rotation, as predicted from the geometrical argument above. With high-
throughput behavioral assays, we find that stationary visual patterns selectively suppress the rotational 
course stabilization behaviors of the flies, but not other types of motion-dependent and turning behaviors. 
In a parallel in silico experiment, we show that simple artificial neural networks optimized to distinguish 
between genuine optic flow and object motion generate similar behavioral patterns to those observed in 
flies. By performing two-photon calcium imaging on the identified visual circuits for motion and optic 
flow detection, we demonstrate that integration of evidence for and against self rotation takes place in the 
central brain, downstream of flow-sensitive peripheral neurons. Finally, through a behavioral genetic 
screen, we identified genetically defined populations of neurons necessary for the suppression of 
optomotor response in the presence of stationary patterns, which include the early visual neuron Mi4. 
Overall, our results demonstrate how flies exploit the geometrical constraints of the visual world to 
incorporate both positive evidence for and negative evidence against self rotation as they stabilize their 
orientation in the world. 
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Results 

Drosophila suppress rotational optomotor responses in the presence of stationary patterns 

When flies are presented with wide-field visual patterns rotating around them in the yaw direction, they 
exhibit stereotyped turning responses in the same directions as the visual motion, a behavior termed the 
rotational optomotor response (Buchner, 1976; Götz and Wenking, 1973). To test whether flies can utilize 
stationary patterns as negative evidence against self rotation to suppress optomotor response, we designed 
stimuli we called “islands of motion” (Figure 1c). In these stimuli, a background of a random binary 
checkerboard with 5° resolution rotated in yaw at 80°/s around the observer and was paired with different 
foreground patterns. Foreground patterns had transparent square-shaped windows through which the 
moving background was visible, creating “islands” of visual motion. The windows had the size of 15° and 
randomly covered an average of 20% of the visual field. The foreground pattern was either (1) uniform 
gray (labeled ‘uniform’), (2) a stationary 5° random binary checkerboard (labeled ‘stationary’), or (3) a 
5° random binary checkerboard randomly updated at 15 Hz (labeled ‘flicker’). Importantly, under each of 
these three foreground patterns, the stimulus contains the identical net motion energy. However, only the 
stationary foreground contains stationary patterns that can be potentially used as negative evidence against 
self rotation. To measure fly optomotor responses to the islands of motion stimuli, we tethered wild-type 
flies on surgical needles and allowed them to walk on air floated balls while projecting these stimuli on 
panoramic screens surrounding them (Figure 1d) (Creamer et al., 2019). We discovered that the existence 
of a stationary pattern in the foreground resulted in almost 10-fold suppression of the optomotor response 
amplitude relative to the uniform foreground condition (Figure 1e, f). This is consistent with the 
hypothesis that flies integrate negative visual evidence into rotational optomotor behavior. Notably, the 
suppression of turning by stationary patterns was even stronger than the suppression caused by flickering 
patterns, which are known to suppress motion detector activity, and thus optomotor turning, through a 
spatial contrast normalization mechanism (Drews et al., 2020). 

Stationary patterns specifically suppress optomotor responses 

The observed suppression of optomotor response is consistent with the functional interpretation that flies 
are specifically using stationary patterns as negative evidence against self rotation. However, it is also 
possible that stationary patterns are suppressing all motion-dependent behaviors, not just responses to 
rotational optic flow. To test this possibility, we asked if stationary patterns also suppress other motion-
dependent behaviors and turning behaviors. First, we focused on the visual control of forward walking 
speed. Walking flies accelerate or decelerate in response to translational optic flow to stabilize their 
walking speed, a behavior dependent on the same set of motion detecting neurons as ones necessary for 
the optomotor turning response (Creamer et al., 2018). In an open-loop setting, forward and backward 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 5, 2023. ; https://doi.org/10.1101/2023.01.04.522814doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.04.522814
http://creativecommons.org/licenses/by-nc/4.0/


5 

 

optic flow both make flies decelerate (Creamer et al., 2018). To probe if the walking speed control is also 
similarly suppressed by stationary patterns, we paired the same set of foreground patterns with background 
patterns moving symmetrically about the fly, which approximated translational optic flow during forward 
or backward translational movements (Figure 1g). Importantly, unlike in the case of self rotation, 
stationary patterns do not imply the lack of self translation. This is because far away objects can remain 
visually stationary during translation. Thus, there is no geometrical reason to expect stationary patterns to 
suppress forward walking speed modulation in response to translational optic flow. Here, we observed 
that both stationary and flickering foregrounds increased, rather than decreased, the strength of the slowing 
caused by forward optic flow (Figure 1h, i). They did not significantly affect slowing caused by backward 
optic flow (Figure 1j, k).  

Next, we asked if the stationary foreground suppresses flies’ visually driven aversive turning. Vertical 
bars horizontally moving fast drive strong aversive turning in flies, a behavior dependent on the same set 
of motion detectors as the rotational optomotor response (Tanaka and Clark, 2022, 2020). Again, unless 
stationary patterns broadly suppress the motion detectors or turning, there is no geometrical reason to 
expect that stationary patterns suppress aversive turning. To test this idea, we presented a fast-moving 
vertical bar on the same three (uniform, stationary, or flicker) foreground patterns (Figure 1l). The peak 
amplitude of aversive turning was not decreased by stationary patterns, while flickering patterns strongly 
suppressed the aversive turning (Figure 1m, n), consistent with spatial contrast normalization in motion 
detectors (Drews et al., 2020). Overall, these results show that the suppression of turning by stationary 
patterns is specific to optomotor response, supporting the functional interpretation that flies are using the 
stationary patterns as negative evidence against self rotation. 

The suppression of rotational optomotor responses mirrors the geometry of self rotation 

If flies are using stationary patterns as negative evidence against self rotation, we can make further 
predictions about what kinds of foreground patterns should mostly strongly suppress rotational optomotor 
responses. During yaw rotation, vertical edges move sideways, while horizontal edges appear to remain 
stationary on the retina. As a consequence, whereas stationary vertical patterns strongly argue against self 
rotation, stationary horizontal patterns are uninformative about whether or not the observer is rotating. To 
test whether the suppression of optomotor responses shows the pattern of orientation selectivity expected 
from this geometrical rule, we presented islands of motion stimuli with stationary foregrounds in patterns 
that were either vertical, two-dimensional, or horizontal (Figure 1o). As predicted by the geometrical 
reasoning above, vertical stationary patterns suppressed turning more than two-dimensional or horizontal 
patterns, further buttressing the functional interpretation that flies are using stationary patterns as negative 
evidence against self rotation (Figure 1p, q). Flickering horizontal and vertical patterns also resulted in 
similar orientation selective suppression of optomotor response (Figure S1a-c). 
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So far, we have focused on the use of contrast-defined stationary patterns as negative evidence against 
self rotation. Another geometrical cue that signifies an absence of self motion is stationary motion-defined 
contours, that is, boundaries between areas with different velocities which are themselves stationary. 
During genuine self rotation, regions of the visual field containing visual motion should rotate their 
position consistently with visual motion inside them. That is, the “islands of motion” should appear to be 
sliding over space (Figure S1d). Conversely, the existence of stationary islands of motion in our stimuli 
argues against self rotation, even when the foreground does not contain contrast-defined stationary 
patterns. We think of this cue as second-order (Lu and Sperling, 1995), since it concerns spatiotemporal 
correlations in a higher-order image statistic, namely local motion. Flies have been shown to be able to 
detect certain forms of second-order motion when tracking objects in flight (Theobald et al., 2008). To 
test whether flies can use this second-order cue for the absence of self rotation, we presented flies with 
islands of motion stimuli where the islands either remained fixed or moved with the rotation of the 
background (Figure S1d). Flies turned slightly but significantly more to the stimuli with sliding windows 
than to the ones with fixed windows (Figure S1e, f). In comparison, a contrast-defined stationary 
foreground pattern strongly suppressed turning even when the windows were sliding (Figure S1e, f). This 
observation suggests that flies do not use motion-defined stationary contours as strong negative evidence 
against self rotation, especially compared to contrast-defined stationary patterns.  
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Figure 1. Drosophila use stationary patterns as negative evidence against self rotation to suppress 
rotational optomotor responses. (a) Self motion and world motion can both activate a template matching-
based flow detector in a similar way. (b) When an observer rotates in the environment, every visible object 
moves in the same direction. Therefore, the existence of any stationary patterns in the visual field argues 
against self rotation. (c) A schematic of the islands of motion stimuli. Rotating background was viewed through 
windows in the foreground. (d) A schematic of the behavioral setup. (e, f) Wild type fly turning response to the 
islands of motion stimuli (e) over time and (f) averaged over time. Vertical lines mark the onset and offset of 
the stimuli, and the horizontal line marks zero turning. Throughout, positive angular velocities indicate turning 
in the same direction as the stimulus. Individual dots in (f) represent individual flies, and data from the same 
flies are connected with gray lines. (g) In the translational islands of motion stimuli, the background moves 
front-to-back or back-to-front in a symmetric fashion about the fly. (h-k) Normalized walking speed of flies in 
response to the (h, i) forward or (j, k) backward translational islands of motion stimuli, either over time (h, j) or 
averaged over time (i, k). Horizontal dotted lines indicate 100% walking speed during the pre-stimulus period. 
(l) A schematic of the moving bar stimulus. The blue “foreground” region was filled with the same three 
foreground patterns (uniform, stationary, or flicker) as in (c) and (g). (m, n) Turning responses of flies in 
response to the bar stimuli, either (m) over time or (n) peak response amplitude. (o) Schematic of stimuli used 
to probe orientation selectivity of the optomotor suppression caused by stationary foreground patterns. (p, q) 
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Fly turning responses to islands of motion stimuli with one-dimensional stationary foreground patterns, either 
(p) over time or (q) averaged over time. Shading around the time traces and error bars on the bar plots indicate 
standard error of the mean across flies. (e-k) N = 23 flies. (m, n) N = 20 flies. (p, q) N = 23 flies. n. s.: not 
significant, *: p < 0.05; **: p < 0.01; ***: p < 0.001; ****: p < 0.0001 in Wilcoxon signed-rank tests. 

 

 

Figure S1. Use of additional geometrical cues to suppress optomotor response. Related to Figure 1. 
(a) Schematic of stimuli used to probe orientation selectivity of the optomotor suppression caused by flickering 
foregrounds. (b ,c) Fly turning responses to islands of motion stimuli with flickering foreground patterns, either 
(b) over time or (c) averaged over time. (d) The islands of motion stimuli with a uniform foreground and 
windows sliding in the direction and speed of the rotating background (green) is entirely consistent with 
genuine yaw optic flow. The other two stimuli were created by adding either first-order (contrast-defined 
stationary patterns in the foreground, not moving with the islands; blue) or second-order (motion-defined 
stationary contours of stationary windows; grey) cues against self rotation. The stimulus with a uniform 
foreground and fixed windows is identical to the “uniform” condition in Figure 1c. (e, f) Fly turning responses 
to islands of motion stimuli shown in (d), either (e) over time or (f) averaged over time.  (b, c) N = 23 flies. (e, 
f) N = 24 flies. n. s.: not significant, *: p < 0.05; **: p < 0.01; ***: p < 0.001; ****: p < 0.0001 in Wilcoxon signed-
rank tests. 
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Artificial networks trained to distinguish self and world motion exhibit behavior similar to flies 

Based on geometrical arguments, we have so far interpreted the suppression of optomotor response by 
stationary visual patterns as a manifestation of a strategy to prevent inappropriate optomotor response in 
the face of world motion. An alternative approach to test this functional interpretation is to train artificial 
neural networks (ANNs) to distinguish self and world motion, and see if they learn to use stationary 
patterns as cue disfavoring self motion, similar to flies. To this end, we build ANNs with a convolutional 
architecture with varying numbers of layers and channels (Figure 2a). The inputs to the ANNs were 
videos of naturalistic scenes representing either self or world motion. The videos were created by 
extracting single horizontal slices from monochromatic, panoramic images of natural scenes (Meyer et al., 
2014) (Figure 2b).  In the self motion videos, the whole scene translated rigidly in the horizontal direction 
with time-varying velocity drawn from an autocorrelated Gaussian process (Mano et al., 2021; van 
Kampen, 1992). In the world motion videos, random patches of contrast taken from different regions of a 
natural scene mimicked external objects moved horizontally in the foreground, while the scene itself 
remained stationary. The velocities of the patches were drawn from the same process as the self motion 
videos. The ANNs were then trained to distinguish between self motion and world motion based on the 
visual evidence in the two types of videos (see Materials and Methods for details).  

The trained ANNs on average distinguished well between self and world motion, as quantified with the 
area under the curve (AUC) metrics of the receiver-operator characteristic (ROC) curves (Metz, 1978) 
(Figure 2c). The exception was the deepest models with small numbers of channels (e.g., L = 6, C = 1). 
The poor performance of these networks represents the failure of training rather than the intrinsic 
limitation of its network architecture, because they can in principle implement identical functions as 
shallower, better-performing networks. In fact, the simplest network with only a single layer and a single 
channel was able to perform the task with an AUC of approximately 0.8. To better understand how the 
trained networks distinguished self and world motion, we visualized the convolutional kernels of some of 
the top-performing instances of the model with the simplest architecture (i.e. L = 1, C = 1) (Figures 2d, 
e, S2a-c). The kernels of the first layer of the networks are directly convolved with the input images, and 
thus can be straightforwardly interpreted as a linear receptive field. Out of the 100 randomly initialized 
instances of the model, roughly a half (46 of 100) had kernels with temporally constant polarities (static 
kernels), whereas the rest (54 of 100) had kernels with changing polarity (dynamic kernels) (Figure 2e, 
S2a-c). The static kernels had an edge-detector or center-surround antagonistic structure, making them 
sensitive to stationary patterns. Their outputs contributed negatively to the estimated probability of self 
motion (Figure 2e, S2a-c). Thus, this first class of models with static kernels used stationary patterns as 
negative evidence against self motion, similar to flies. In contrast, the dynamic kernels had a center-
surround structure with preferred contrasts that flipped between the first and second halves of the kernel 
(Figure 2e, S2a-c), making them sensitive to changes in contrast. The dynamic kernels contributed 
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positively to the probability of self motion. Thus, the models with dynamic kernels use contrast changes 
as positive evidence in favor of self motion. The models with stationary kernels always outperformed ones 
with dynamic kernels (stationary: AUC = 0.857 ± 0.012, dynamic: AUC = 0.755 ± 0.007, mean ± standard 
deviation).      

Next, we tested how the trained ANNs respond to the islands of motion stimuli used in the behavioral 
experiments, as well as to full-field rotating checkerboards (Figure 2f). To this end, single horizontal 
slices of the stimuli were downsampled to the 5º and 100 Hz spatiotemporal resolution of the ANN 
simulations. In general, successfully trained ANNs predicted the highest probability of self motion for the 
full-field rotating checkerboards as well as for the islands of motion stimuli with flickering foregrounds 
(Figure 2g, h). Most importantly, the trained ANNs predicted higher probability of self motion for the 
islands of motion stimuli with uniform foregrounds compared to ones with stationary foregrounds, 
consistent with the behavior of flies. The difference of responses between the uniform and stationary 
conditions, as quantified by logit differences (Figure 2i), increased with the number of channels. Unlike 
flies, the trained ANNs strongly distinguished between the islands of motion stimuli with fixed and sliding 
windows (Figures S1d-f, S2d, e).  Overall, these observations support the idea that systems evolved to 
distinguish self and world motion in natural scenes can use stationary patterns as negative evidence against 
self motion. 
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Figure 2. A simple artificial neural network trained to distinguish self and world motion exhibits similar 
behaviors to flies. (a) A schematic of the model architecture and training. The model consisted of L 
convolutional layers with C channels. The spatial width of the convolutional kernels was fixed at 15º, three 
pixels with 5º spacing. The depth of the kernel was the duration of the video (30 frames) for the first layer, and 
the number of channels in the following layers. The activity of the last convolutional layer was averaged with 
spatially uniform weights and logistic-transformed to generate the estimate of the probability that the input 
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video belongs to the self motion condition. (b) Illustrative examples of videos used for training artificial neural 
networks (ANNs). The videos were created by taking out single horizontal slices of panoramic images of 
natural scenes. For the self motion condition, the entire scene moved horizontally following a stochastic 
velocity time series. In the world motion condition, only “objects” moved and the scene itself remained 
stationary, where the objects are patches randomly selected from the same image. A single world motion 
image contained up to 10 objects, with widths of each between 5º to 36º.  (c) The average model performance 
for each model architecture quantified as the area under the curve (AUC) of the receiver-operator 
characteristic (ROC) curve, calculated on the held-out test dataset. (d) A schematic of the simplest model with 
L = 1 and C = 1. (e) Representative examples of the spatiotemporal kernels from the trained models with the 
simplest architecture, as shown in (d). AUC scores corresponding to the kernels are below the heatmaps. The 
signs of the weights indicate how the kernels contributed to the estimated probability of self motion. See also 
Figure S2. (f) A schematic of the simulated experiment. Trained models were presented with the full-field 
moving checkerboard or the islands of motion stimuli as in Figure 1c. (g) The predicted probability of self 
motion for the full-field rotating checkerboard or the islands of motion stimuli, for different model architectures. 
The lines represent median, and shaded regions represent 25th and 75th percentile performances across 100 
model initializations. (h) Same as (g), but showing the logit values instead of the probability of self motion. (i) 
Difference between the logit values of the self motion probability between the uniform and the stationary 
conditions, shown as functions of the model architecture.  
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Figure S2. Additional details of the neural network models trained to distinguish self and world motion. 
Related to Figure 2. (a-c) Examples of kernels from single-layer, single-channel models (L = 1, C = 1), 
belonging to the category of either (a) stationary edge detectors, (b) stationary center-surround antagonism, 
or (c) dynamic kernels. Similar to the kernels shown in Figure 2e, stationary and dynamic kernels had negative 
and positive weights toward the probability of self motion, and stationary ones outperformed the dynamic ones. 
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(d) The predicted probability of self motion for the islands of motion stimuli with fixed or sliding islands and 
uniform foreground as shown in Figure S1d, as functions of model architectures. The lines represent median, 
and shaded regions represent 25th and 75th percentile performances across 100 model initializations. (e) Same 
as (d), but showing the logit values instead of the probability of self motion. 

 

Characterizing the visual tuning of optomotor suppression 

Next, in order to put constraints on underlying neural mechanisms, we performed additional 
psychophysical experiments on wild-type flies to characterize how the observed suppression of optomotor 
response depended on different stimulus parameters. First, we swept the contrast of foreground patterns. 
As naively expected, the amount of suppression decreased as the contrast decreased, both for stationary 
and flickering patterns (Figure 3a). Second, we modulated the fraction of the visual scene occupied by 
background and foreground. We observed significant suppression of turning for both flickering and 
stationary foreground types when the islands of motion covered up to 40% of the screen (Figure 3b). 
Third, we found that suppression of turning by both flickering and stationary foreground patterns did not 
depend strongly on the background velocity (Figure 3c). Fourth, we modulated the update rate of the 
flickering foreground, creating a continuum between the stationary and flickering conditions. We found 
that the optomotor suppression peaked at an update rate of ~5 Hz (Figure 3d). Fifth, to probe the spatial 
frequency tuning of the hypothetical stationary pattern detector, we used stationary plaid patterns 
generated by superimposing vertical and horizontal sinusoidal gratings with various wavelengths as the 
foreground pattern. The amount of suppression increased until the wavelength of 30° and then stayed high 
up to about 60° (Figure 3e), revealing a band-pass property. Sixth, we modulated the mean luminance of 
the foreground patterns to probe the contrast preference of the hypothetical stationary pattern detectors. 
We found that half-contrast stationary foreground with luminance below the mean background luminance 
recapitulated the full extent of turning suppression caused by the full-contrast foreground (Figure 3f). 
This cannot be explained as the simple effect of overall luminance decrement, because uniform darker 
foreground increased the optomotor response, rather than decreasing it, relative to the uniform mean-gray 
foreground (Figure 3g). This result suggests that the hypothetical stationary pattern detector is more 
sensitive to local contrast decrements than increments.  
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Figure 3. Visual tuning of the optomotor suppression by stationary patterns. (a) Time-averaged turning 
responses of flies to the islands of motion stimuli with stationary or flickering foreground patterns with varying 
foreground contrasts.  (b) Time-averaged turning responses of flies to the islands of motion stimuli with 
different fractions of background coverage. (c) Time-averaged turning responses of flies to the islands of 
motion stimuli with different background velocities. (d) Time-averaged turning responses of flies to the islands 
of motion stimuli with flickering foreground patterns updated at different temporal frequencies. (left) Raw 
turning amplitude, and (right) fractional suppression relative to the uniform foreground condition. (e) Time-
averaged turning responses of flies to the islands of motion stimuli with plaid foreground patterns with different 
spatial wavelengths. (left) Raw turning amplitude, and (right) fractional suppression relative to the uniform 
foreground condition. (left) The horizontal dotted line indicates the turning amplitude in the uniform foreground 
condition.  (f) Time-averaged turning responses of flies to the islands of motion stimuli with full- and half-
contrast foreground patterns with different mean luminance.  (g) Time-averaged turning responses of flies to 
the islands of motion stimuli with the uniform foregrounds with different luminance levels. (a) N = 19 flies. (b) 
N = 25 flies.  (c) N = 20 flies. (d) N = 19 flies. (e) N = 20 flies. (f, g) N = 20 flies. n. s.: not significant, *: p < 
0.05; **: p < 0.01; ***: p < 0.001; ****: p < 0.0001 in Wilcoxon signed-rank tests. Cyan and magenta stars in 
(b, c) respectively indicate the results of statistical tests between uniform and stationary or flicker conditions. 
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Stationary patterns do not suppress elementary motion detectors 

We next sought to identify the neural bases of the optomotor suppression by stationary patterns. A 
straightforward hypothesis is that there are dedicated visual neuron types that detect stationary patterns 
and subsequently suppress neurons somewhere in the neural pathway implementing the optomotor 
response (Figure 4a). To investigate this possibility, we first used two-photon calcium imaging to attempt 
to find neurons in the optomotor response pathway that are suppressed by stationary patterns (Figure 4b). 
To start, we recorded the calcium activity of T4 and T5 neurons. T4 and T5 neurons are the first direction 
selective neurons in the fly visual system and are necessary for rotational optomotor responses (Maisak et 
al., 2013) (Figure 4c). To record the activity of individual T4 and T5 axon terminals in lobula plate, we 
sparsely expressed a genetically encoded calcium indicator GCaMP6f (Chen et al., 2013) in T4/T5 
neurons using SPARC, a genetic method to achieve stochastic transgene expression under the Gal4 control 
(Isaacman-Beck et al., 2020). As visual stimuli, we used a modified version of the islands of motion 
stimuli, where the background was presented in a single circular aperture with 15° diameter, centered 
about the receptive field of individual T4 and T5 cells (Figure 4d). We set a 5° wide uniform gray buffer 
zone between the aperture and the foreground to prevent foreground patterns from overlapping with the 
receptive fields of T4 and T5. We found that stationary foreground patterns significantly suppressed T5 
responses by about 25%, whereas T4 responses were not affected by the stationary patterns, for both 
preferred (Figure 4e, f) and non-preferred directions (Figure S3a, b). In contrast, flickering foreground 
patterns strongly suppressed the activity of both T4 and T5 (Figure 4c, d). The observation that dynamic 
patterns in the surround suppress T4 and T5 activities is consistent with spatial contrast normalization 
(Drews et al., 2020). Overall, while stationary patterns did slightly suppress T5 activities, the amplitude 
of the suppression appears too small to explain the behavioral observations (i.e., 90% suppression of 
turning) (Figure 1). Importantly, this observation is consistent with the behavioral finding that motion-
dependent behaviors other than optomotor responses were unaffected by stationary patterns (Figure 1g-
n). 

Stationary patterns do not suppress optic flow detectors 

The observation that stationary patterns do not suppress T4 and T5 suggests that information about 
stationary patterns is integrated into the circuitry for optomotor response somewhere downstream of these 
neurons. T4 and T5 neurons synapse onto several types of wide-field, optic-flow sensitive visual 
projection neurons collectively called lobula plate tangential cells (LPTCs) (Boergens et al., 2018; 
Fischbach and Dittrich, 1989; Hausen, 1976; Shinomiya et al., 2022; Wei et al., 2020) (Figure 4c). LPTCs 
tuned to horizontal optic flow are thought to implement optomotor responses, although only HS neurons 
have been causally connected to optomotor behavior thus far (Busch et al., 2018; Haikala et al., 2013; A. 
J. Kim et al., 2017). Here, we recorded calcium responses of five different types of horizontally tuned 
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LPTCs: HS (Hausen, 1976; Schnell et al., 2010), H2 (Cruz et al., 2019; Farrow et al., 2006; Hausen, 1982; 
Wei et al., 2020), CH (Boergens et al., 2018; Eckert and Dvorak, 1983; Farrow et al., 2006; Wei et al., 
2020), Hx (Wasserman et al., 2015), and FD1 (Egelhaaf, 1985; Wei et al., 2020) (Figure 4g, h). We 
imaged the lobula plate dendrites of these cells expressing jGCaMP7b (Dana et al., 2019), which has a 
relatively low Ca2+ dissociation constant and is thus suited for detecting hyperpolarization. As visual 
stimuli, we used the islands of motion stimuli with the identical configuration as ones used in the 
behavioral experiments, as well as full-field stationary, flickering, and translating checkerboards. All the 
LPTC types studied exhibited directionally selective responses to moving checkerboards, with preference 
to either front-to-back (HS, CH, FD1) or back-to-front (H2, Hx) directions (Figures 4g, h, S3d), consist 
with the lobula plate innervation (Boergens et al., 2018; Wasserman et al., 2015; Wei et al., 2020) and 
previous physiological recordings (Egelhaaf, 1985; Farrow et al., 2006; Hausen, 1976; Schnell et al., 2010; 
Wasserman et al., 2015). Some LPTC types also showed negative calcium responses to motion in their 
non-preferred direction (CH, H2, Hx) (Figures 4g, h, S3d). Overall, stationary foreground patterns did 
not affect the responses of LPTCs, except for significantly increasing HS responses (Figures 4h).  

  

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 5, 2023. ; https://doi.org/10.1101/2023.01.04.522814doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.04.522814
http://creativecommons.org/licenses/by-nc/4.0/


18 

 

 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 5, 2023. ; https://doi.org/10.1101/2023.01.04.522814doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.04.522814
http://creativecommons.org/licenses/by-nc/4.0/


19 

 

Figure 4. Stationary patterns do not suppress local motion and optic flow detector neurons. (a) A 
schematic of our hypothesis: hypothetical stationary pattern detectors can suppress optomotor responses by 
inhibiting local motion detectors, optic flow detectors, or premotor neurons. (b) A schematic of our two-photon 
imaging setup.  (c) In the visual system of Drosophila flies, motion is first detected by the elementary motion 
detector neurons T4/T5. Projection neurons collectively called lobula plate tangential cells (LPTCs) achieve 
selectivity to specific optic flow patterns by pooling signals from T4 and T5 over space. LPTCs send axons to 
the central brain, where they likely synapse onto premotor circuitry. (d) The modified island of motion stimuli 
for T4/T5 recording. Background patterns moving at 40 °/s were shown through a circular aperture with 15° 
diameter, centered around the receptive field of T4 or T5. A 5° wide, gray annulus separated the aperture and 
the foreground. (e, f) Calcium responses of T4/T5 neurons to the island of motion stimuli moving in their 
preferred direction, (e) over time or (f) time averaged, by the different foreground conditions. The vertical 
dotted lines mark the onset and offset of the stimuli. The horizontal dotted line indicates the pre-stimulus 
baseline. The responses were averaged over a 3 second window starting at the stimulus onset. See Figure 
S3a, b for their response to stimuli moving in the non-preferred directions. (g, h) Calcium responses of the 5 
LPTC types to the islands of motion stimuli moving in the (top) front-to-back or (bottom) back-to-front directions, 
either (g) over time or (h) time averaged. Vertical scale bars each indicate 20% ΔF/F. Also see Figure S3c 
for their response to the foreground patterns without islands of motion. (e, f) T4: N = 12 flies. T5: N = 12 flies.  
(g, h) HS: N = 10 flies. CH: N = 12 flies. H2: N = 10 flies. Hx: N = 11 flies. FD1: N = 11 flies. n. s.: not significant, 
*: p < 0.05; **: p < 0.01; ***: p < 0.001; ****: p < 0.0001 in Wilcoxon signed-rank tests.  

 

Figure S3. Additional characterization of T4/T5 and LPTCs. Related to Figure 4. (a, b) Calcium responses 
of T4 and T5 neurons to the island of motion stimuli moving in their non-preferred direction, (a) over time or 
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(b) time averaged, by the foreground types. (c) Calcium responses of the 5 LPTC types to the full-field 
stationary or flickering checkerboard patterns. Vertical scales bars indicate 10% ΔF/F. Stationary patterns 
appeared to hyperpolarize H2 and Hx, but these effects were overwhelmed in the presence of islands of 
motion. (d) Calcium responses of the 5 LPTC types to the full-field translating checkerboards (labeled as full) 
or the islands of motion stimuli with the uniform foreground (labeled as isl.), either moving in the front-to-back 
(ftb) or back-to-front (btf) directions. Vertical scales bars indicate 50% ΔF/F. (a, b) T4: N = 12 flies. T5: N = 12 
flies.  (c, d) HS: N = 10 flies. CH: N = 12 flies. H2: N = 10 flies. Hx: N = 11 flies. FD1: N = 11 flies. n. s.: not 
significant, *: p < 0.05; **: p < 0.01; ***: p < 0.001; ****: p < 0.0001 in Wilcoxon signed-rank tests.  

 

Evidence for and against self motion are integrated across the eyes 

In the calcium imaging experiments above, we found that stationary patterns suppressed neither T4/T5 
nor various LPTC types. While it is unclear whether the set of LPTCs studied here cover the entirety of 
the optic flow detectors contributing to the rotational optomotor response, overall, these results favor the 
idea that integration of evidence for (i.e., optic flow) and against (i.e., stationary patterns) self rotation 
takes place in the circuitry downstream of the LPTCs, somewhere in the central brain, rather than in the 
optic lobe. To further test this hypothesis, we next checked if the suppression of optomotor response by 
stationary patterns can transfer between the eyes. To do so, we devised a set of stimuli where different 
visual patterns (i.e., uniform gray, stationary, flickering, or rotating checkerboards) were presented on 
each eye of the fly (Figure 5a). The two patterns were separated by a 30º wide buffer zone of uniform 
gray to make sure each eye sees only single type of pattern. Here, if stationary pattern is suppressing 
signals that drive optomotor response independently in each optic lobe, stationary patterns presented on 
the contralateral eye would not suppress optomotor response triggered by rotating stimuli presented on 
the ipsilateral eye (Figure 5b). Conversely, if stationary patterns suppress signals driving optomotor 
response centrally after information from both optic lobes is integrated as we suspect, then stationary 
patterns presented on one eye should suppress optomotor response caused by visual motion presented on 
the other eye (Figure 5b). We found that, after accounting for the flies’ innate attraction towards spatial 
patterns over uniform gray (Figure 5c), stationary patterns presented on one eye significantly reduced 
optomotor turning caused by motion on the other eye when motion pointed the back-to-front direction 
(Figure 5d). In contrast, flickering patterns presented on one eye never suppressed optomotor response 
triggered by motion on the other eye (Figure 5d). Rather, flickering patterns on one eye increased turning 
caused by front-to-back motion on the other eye (Figure 5d). These observations suggest that the 
integration of information about stationary patterns into the optomotor pathway occurs centrally, where 
information from the two optic lobes is integrated. In contrast, flickering patterns likely suppress the 
rotational optomotor response by suppressing flow-sensitive visual neurons locally in each optic lobe, as 
previously measured (Drews et al., 2020; Matulis et al., 2020). 
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Figure 5. Suppression of rotational optomotor response by stationary patterns translate across eyes. 
(a) A schematic of the binocular stimuli used in (c, d). Different visual patterns were presented on each eye of 
the fly. Patterns presented on each eye are indicated by icons with two boxes. The patterns were either uniform 
grey, stationary or flickering checkerboards, or checkerboards moving horizontally in either direction. (b) If 
stationary or flickering patterns suppress optic flow signals in each optic lobe locally, contralaterally presented 
patterns should not suppress optomotor responses caused by ipsilaterally presented visual motion. 
Conversely, if suppression of optomotor responses occurs globally, then contralateral patterns should 
suppress ipsilaterally triggered optomotor responses. (c) Time-averaged turning responses to unilateral 
motion stimuli paired with different foreground patterns. Note that flies exhibited slight turning towards 
unilaterally presented stationary or flickering patterns. (d) Time-averaged turning response to unilateral visual 
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motion paired with contralateral stationary or flickering patterns (left bars), compared with expected turning 
calculated as linear sums of the turning to unilateral visual motion and unilateral stationary or flickering patterns 
(right bars). N = 20 flies. n. s.: not significant, *: p < 0.05; **: p < 0.01; ***: p < 0.001; ****: p < 0.0001 in 
Wilcoxon signed-rank tests.  

 

Behavioral genetic screening for the stationary pattern detectors 

The behavioral and imaging experiments have suggested that the integration of the visual negative 
evidence into the optomotor circuitry happens downstream of LPTCs. However, unfortunately, circuitry 
downstream of LPTCs is currently only poorly mapped. Thus, instead of trying to track the optomotor 
pathway deeper into the brain, we next employed a behavioral genetic screen to directly identify neurons 
that contribute to hypothetical stationary pattern detectors. To this end, we silenced synaptic outputs of 
candidate neurons by introducing a temperature sensitive defective allele of shibire (Kitamoto, 2001) 
using the Gal4/UAS system, and repeated the behavioral experiments with the islands of motion stimuli. 
We then looked for Gal4 driver lines whose silencing rescued fly optomotor response in the presence of 
stationary patterns. The degree of suppression was quantified as the ratio between the flies’ time-averaged 
turning amplitude in response to the islands of motion stimuli with stationary and uniform foregrounds 
(henceforth fractional turning). This value would be 0 for complete suppression of turning by a stationary 
foreground and 1 for no suppression at all. For the screen, we selected single and split Gal4 lines targeting 
the following neuron classes: columnar neurons in lamina, the most peripheral neuropil of the fly visual 
system (L and C cells) (Fischbach and Dittrich, 1989; Rister et al., 2007; Takemura et al., 2008; Tuthill et 
al., 2013), columnar input neurons to the motion-detecting T4/T5 cells (Mi and Tm cells) (Fischbach and 
Dittrich, 1989; Shinomiya et al., 2014; Takemura et al., 2017, 2013), multi-columnar, amacrine-like 
interneurons in distal medulla (Dm cells) (Fischbach and Dittrich, 1989; Nern et al., 2015),  and neurons 
in the heading circuitry and their visual inputs (E-PG, Ring, and TuBu cells) (Omoto et al., 2017; Seelig 
and Jayaraman, 2013; Turner-Evans et al., 2017). Note that, although these drivers were selected based 
on their expression in specific visual neuron types, their expression patterns are not strictly limited to these 
neurons but rather can be broader. After the initial screening, to exclude false positives due to the large 
number of statistical comparisons, we repeated the identical behavioral experiment a second time on the 
lines whose silencing resulted in significant changes in behavior. 

Among 37 driver lines we screened, we identified four Gal4 lines whose silencing reproducibly resulted 
in significantly reduced optomotor suppression by stationary patterns. One of the drivers was a split Gal4 
line (SS00316) designed to selectively label Mi4 neurons (Strother et al., 2017a, 2017b) (Figure 6a, b). 
The other three drivers were single Gal4 drivers, R13E12, R15C05, and R75H07 (Figure 6a, b). Although 
these drivers were selected for their expression in visual neurons (R13E12 for Tm3, R15C05 for Dm4, 
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Dm9, Dm12, and R75H07 for Dm4, Dm11, L3) (Nern et al., 2015), silencing the same set of visual 
neurons with independent drivers did not result in the same phenotype (R55D08 for Tm3, R23G11 for 
Dm4, SS02427 for Dm9, R11C05 for Dm11, R47G08 for Dm12, split L3 for L3) (Figure 6a), implying 
that “off-target” labeling drove the silencing phenotype. Indeed, the single Gal4 drivers in the hits      
labeled a large number of neurons in the central brain, and it was difficult to identify which specific cell 
types contributed to the behavioral phenotype. In an attempt to narrow down specific neuron types labeled 
by these drivers that contributed to the behavioral phenotype, we created three split Gal4 drivers by 
combining split Gal4 hemidrivers under the control of the R13E12 enhancer segment and three 
neurotransmitter identity marker genes (ChAT, vGlut, GAD1) (Deng et al., 2019; Diao et al., 2015; Lacin 
et al., 2019) (Figure S4a). Among the generated split Gal4 driver, only silencing of R13E12 x ChAT 
resulted in significant reduction in optomotor suppression by stationary patterns (Figure S4b). This result 
suggests that cholinergic neurons among R13E12+ neurons contributed to the detection of stationary 
patterns or suppression of optomotor response. However, unfortunately, the expression patterns of the 
split drivers were still too widespread to identify specific cell types. Importantly, silencing neurons in the 
heading direction circuitry (Green et al., 2019; Omoto et al., 2017; Seelig and Jayaraman, 2013; Turner-
Evans et al., 2017) did not result in significant reduction in the optomotor suppression, suggesting that the 
suppression is independent of that circuit. Thus, our screen left us with the neuron type Mi4 as a solidly 
identified contributor to the putative stationary stimulus detector. 
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Figure 6. Behavioral genetic screening for stationary pattern detector circuitry. (a) The results of the 
initial screening experiment. The x-axis represents fractional turning, calculated as the ratio between time-
averaged turning amplitudes in response to the islands of motion stimuli paired with stationary and uniform 
foregrounds. Thus, smaller numbers indicate stronger suppression of turning. The bars indicate averages over 
flies, and error bars indicate standard errors of the mean. The vertical dotted line represents zero fractional 
turning. Numbers in the parentheses respectively indicate the sample sizes for flies with and without UAS-
shibirets, respectively. The names of the nominal target neuron types are indicated in square brackets. The 
schematics on the left are showing the approximate neuromorphology of the nominal target neuron classes. 
Axis labels for lines that showed statistically significant differences are marked in orange. (b) Same as (a), but 
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for the replication experiments. *: p < 0.05; **: p < 0.01; ***: p < 0.001; ****: p < 0.0001 in Wilcoxon rank sum 
tests. Pairs with no significant differences are not indicated for visual clarity. AOTU: anterior optic tubercule; 
PB: protocerebral bridge; EB: ellipsoid body. 

 

Figure S4. R13E12 positive, cholinergic neurons are necessary for suppressing optomotor response 
with stationary stimuli. Related to Figure 5. (a) Expression patterns of the split Gal4 drivers between 
R13E12 and neurotransmitter marker genes. (top) R13E12AD x ChATDBD > UAS-GFP, (middle) vGlutAD x 
R13E12DBD > UAS-GFP and      (bottom) R13E12AD x GAD1DBD > UAS-GFP. The blue and green channels 
respectively show anti-Brp and anti-GFP staining. The three lines appear to label different sets of neurons. 
The scale bar indicates 100 μm.  (b) Fractional turning responses of flies expressing shibirets under the control 
of the three split Gal4 lines, similar to Figure 6a, b. Numbers in the parentheses indicate sample sizes for flies 
with and without shibirets. Only silencing using the R13E12AD x ChATDBD split driver resulted in a significant 
rescue of turning in the presence of stationary patterns. **: p < 0.01 in Wilcoxon rank sum tests. Pairs with no 
significant differences are not indicated. 
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Response properties of Mi4 can support detecting stationary patterns  

In our screening experiments, Mi4 is the only specific cell type we were able to identify as necessary for 
the suppression of optomotor responses by stationary patterns (Figure 6). Mi4 is a type of columnar, 
GABAergic, ON-preferring neuron primarily known for being presynaptic to T4 (Arenz et al., 2017; 
Strother et al., 2017a; Takemura et al., 2017). We therefore considered how responses of Mi4 could 
support the detection of stationary visual patterns. To this end, we recorded the axonal calcium activity of 
Mi4 at layer 10 of medulla (M10) using jGCaMP7b, while the flies were presented with full-field 
checkerboard patterns, either stationary or flickering. On average, Mi4 exhibited only small responses to 
both stationary and flickering checkerboard patterns (Figure 7a). However, the checkerboard patterns in 
each Mi4 receptive field could be light or dark in different trials, since checkerboard patterns were chosen 
randomly. Thus, the response of Mi4 to the stimuli was heterogeneous across trials and ROIs. When we 
calculated standard deviation of Mi4 responses across trials and ROIs for each time point, we found higher 
standard deviation for the stationary condition (Figure 7b), implying that Mi4 exhibited more varied 
responses to stationary than to flickering stimuli. To better understand different patterns of Mi4 responses 
to the stationary checkerboard stimuli, we sorted the trial-by-trial response time traces of Mi4 by its time-
averaged response amplitude for each fly and stimulus condition, ignoring the ROI identity. We then 
averaged the sorted time traces within each 20th percentile, and averaged across flies. The analysis revealed 
that Mi4 can exhibit both positive and negative sustained responses to stationary checkerboard patterns 
(Figure 7c), whose magnitude is significantly greater than its responses to flickering stimuli (Figure 7d). 
The sustained, bipolar responses of Mi4 to stationary checkerboards are consistent with its previously 
documented slow kinetics (Arenz et al., 2017; Strother et al., 2017a), the spatially antagonistic receptive 
field structure (Arenz et al., 2017; Salazar-Gatzimas et al., 2018), and the lack of rectifying nonlinearity 
(Agrochao et al., 2020; Salazar-Gatzimas et al., 2018). 

Lastly, we wondered how circuitry downstream of Mi4 could decode the existence of stationary visual 
patterns. Because of the linearity of the Mi4 receptive field, downstream neurons cannot simply sum Mi4 
activity over space to detect stationary visual patterns (Figure 7a). Rather, a nonlinear, rectifying 
operation on the Mi4 outputs seems to be necessary before spatial averaging. For example, imagine a layer 
of columnar neurons downstream of Mi4 with a positive baseline activity and a non-linear, half-wave 
rectifying input-output relationship, hereafter noted as the neuron X (Figure 7e). Mi4 is a GABAergic, 
inhibitory neuron, and previous studies have suggested that they have positive baseline activity such that 
they inhibit their downstream neurons at rest (Agrochao et al., 2020; Salazar-Gatzimas et al., 2018). When 
uniform or flickering stimuli are presented, Mi4 will remain near its resting state (Figure 7a), and their 
baseline inhibitory output will cancel out with the positive baseline activity of the neuron X, keeping them 
silent (Figures 7f). In contrast, when a stationary visual pattern is presented, some instances of Mi4 
neurons will be strongly inhibited by sustained OFF contrast (Figure 7c), thus disinhibiting the neuron X 
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(Figures 7f). These mechanics tune the neuron X to sustained dark patterns, whose spatially averaged 
activity can distinguish stationary patterns from uniform and flickering stimuli. Note that the selectivity 
of the hypothetical stationary patterns to OFF contrast is consistent with behavioral results (Figure 3f, g). 
Figure 7g summarizes the circuit architecture for the detection of stationary patterns and suppression of 
optomotor response inferred from the present study. 

 
Figure 7. Mi4 is a part of peripheral circuitry that detects stationary patterns. (a) Mean calcium responses 
of Mi4 neurons to the stationary or flickering checkerboards, either (left) over time or (right) time averaged. 
The vertical dotted lines mark the onset and offset of the stimuli. The horizontal dotted line indicates the pre-
stimulus baseline. (b) Instantaneous standard deviation of calcium responses of Mi4 neurons across trial and 
ROIs by stimulus conditions, either (left) over time or (right) time averaged. (c) The sorted average calcium 
responses of Mi4 to (top) stationary or (bottom) flickering binary checkerboards. The trial-by-trial response 
time traces were sorted by their time-averaged amplitude within each fly disregarding ROI identities, and 
averaged within each 20th percentile. (d) Same as (c), but averaged over time and plotted for each 20th 
percentile bin by stimulus conditions. (e) A schematic of potential downstream circuitry of Mi4 that can detect 
stationary patterns. (left) Here, we assume a layer of columnar “neuron X” downstream of Mi4, whose 
excitatory outputs are spatially pooled by a downstream stationary pattern detector. (right) Input-output 
relationships of Mi4 and the neuron X. Mi4 is sending non-zero output at the resting potential, indicated by the 
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vertical dotted line. The neuron X also has a positive baseline activity, indicated by the vertical intercept. (f) A 
schematic showing how the neuron X operates. (left) When uniform or flickering patterns are shown, activity 
of Mi4 remains around its resting state, providing inhibitory input to the neuron X. The neuron X remains 
inactive as a result. (right) When stationary patterns are shown, some Mi4 neurons are strongly inhibited by 
OFF contrast (indicated at position 1), thereby disinhibiting some neuron X (indicated at position 1). Since 
neuron X outputs are rectified, the spatially averaged activity of the neuron X will be higher when there are 
stationary patterns. (g) A summary schematic of the circuitry involved in the detection of stationary patterns 
as negative evidence against self rotation and the suppression of optomotor response. Given inputs from 
earlier visual neurons, T4 and T5 first detect direction of motion within a local receptive field. LPTCs pool the 
outputs of T4 and T5 over space and send outputs in the central brain. In parallel, visual neurons including 
Mi4 detect the existence of stationary patterns. Unknown visual projection neurons then send the information 
about the stationary patterns to the central brain, where commands for optomotor response are suppressed. 
(a-d) N = 10 flies. n. s.: not significant, *: p < 0.05; **: p < 0.01 in Wilcoxon signed-rank tests.  
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Discussion 
In the present study, we asked whether and how Drosophila exploits negative evidence against self 
rotation in the face of world motion to suppress inappropriate rotational stabilization responses. With 
psychophysical experiments, we demonstrated that stationary patterns of contrast, especially vertical ones, 
selectively suppress flies’ optomotor turning, a heuristic geometrical cue indicating the absence of self 
rotation (Figure 1). In parallel in silico experiments, we also showed that ANNs trained to distinguish self 
and world motion evolve a similar behavior as flies (Figure 2), supporting the functional interpretation of 
the fly behavior. Through additional behavioral experiments as well as calcium imaging of neurons in the 
optomotor pathway, we established that the information about stationary patterns and optic flow are 
integrated into rotational behavior in the central brain, rather than in the optic lobe (Figures 3-5). Next, 
through behavioral genetic screening, we identified multiple genetically defined populations of neurons 
that are necessary for the detection of stationary patterns and suppression of the rotational optomotor 
response (Figure 6). Finally, we physiologically demonstrated that Mi4, the only specific cell type 
identified in our broad candidate screen, has response properties that allow it to encode stationary patterns 
(Figure 7). 

Functional interpretation of the optomotor response suppression 

The rotational optomotor response is generally considered an almost reflexive behavior that counteracts 
biomechanical instability or environmental perturbations in order to stabilize the heading and gaze of 
animals. To maintain the course stability, animals should initiate optomotor response only to the optic 
flow caused by genuine self motion and not to external, world motion. During genuine observer rotation, 
visual patterns cannot stay stationary on the retina, and thus the presence of stationary visual patterns can 
function as negative evidence against self rotation. This is the basic geometrical argument that we use to 
interpret the suppression of optomotor response by stationary patterns as a strategy to suppress optomotor 
response in the face of world motion. Additional evidence that supports this functional interpretation are 
as follows: (1) The suppression was specific to the rotational optomotor response, since stationary patterns 
did not affect other types of visual motion-dependent behaviors or turning behaviors. (2) The suppression 
of optomotor response by stationary patterns had an orientation selectivity to vertical patterns, as expected 
from the geometrical arguments. (3) ANNs trained to distinguish self and world motion also learned to 
predict low probability of self rotation for stimuli including stationary patterns. Overall, these observations 
convincingly support the interpretation that the suppression of optomotor response by stationary patterns 
reflects an evolved strategy to distinguish between self and world motion. 

At the same time, we do not suggest that the flies’ strategy to distinguish self and world motion is 
optimized in a sense that it is the smartest conceivable algorithm. For example, during a genuine self 
rotation, there is movement not only of boundaries between areas of different luminance but also of 
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boundaries between areas with different motion signals. We observed that stationary borders between 
areas with and without visual motion did not strongly suppress optomotor response (Figure S1d-f), 
suggesting that flies do not interpret these stationary boundaries as negative evidence to self rotation. 
There are at least two different, but not mutually exclusive, explanations as to why this might be. First, 
while stationary contrast patterns are likely widely encountered under natural conditions, it is more 
difficult to imagine natural cases in which there is a static boundary between moving and stationary 
regions on the retina. This infrequency could explain why flies have not evolved a strategy to exploit 
motion-defined stationary contours as negative evidence against self rotation. Second, motion-defined 
stationary edges might be too complicated to detect within the architectural constraint of the fly optic lobe. 
Detection of motion-defined stationary contours would require computing spatial derivatives of motion 
detector outputs, and then integrating them over time. Neuroanatomically, such computation is likely to 
require at least several layers of retinotopically-resolved visual neurons postsynaptic to T4/T5 in flies. 
However, the lobula plate, where T4/T5 axons reside, is already one of the deepest retinotopic neuropils, 
and adding new layers may be evolutionarily or developmentally difficult. The observation that trained 
ANNs, especially ones with deeper and wider architectures, were able to distinguish stimuli with and 
without motion-defined stationary edges (Figure S2d, e) is consistent with this second explanation.   

One caveat of the present study is that all the stimuli were purely rotational. In practice, rotational 
optomotor responses typically take place while the observer is also moving forward. Thus, what the 
observer typically experiences is a superposition of translational and rotational optic flows. However, even 
in this more naturalistic situation, there is a good reason to believe that the stationary pattern-based 
algorithm to detect the lack of self rotation can function appropriately. This is because distant visual 
landmarks can effectively remain stationary on the retina of the observer even during forward locomotion. 
To an observer moving forward at the speed of v m/s, a landmark to the side that is D m away from the 
observer will appear to be moving at an angular speed of v/D rad/s. For instance, given that typical walking 
speeds for Drosophila are around 2 cm/s (Branson et al., 2009; DeAngelis et al., 2019) and that the 
receptive angle of each ommatidia is just below 0.1 radian (Stavenga, 2003), an object one meter away 
would appear to move at the pace of 0.2 ommatidia/s (i.e. 0.2 Hz) to a walking fly. The temporal frequency 
of 0.2 Hz is an order of magnitude lower than the preferred frequency of change detecting visual neurons 
in active flies (Arenz et al., 2017), and thus such object should appear virtually stationary. Thus, stationary 
visual patterns can likely help walking flies distinguish world motion from genuine self rotation even 
during forward locomotion. 

Matched filtering and different types of evidence for self motion estimation 

Locomotor stability is fundamental to any goal directed behavior, and thus the algorithms animals use to 
estimate self motion from visual inputs need to be accurate. Existing models of visual self motion 
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estimation, based on measured neural responses, typically employ some form of template matching 
algorithms over vector field representation of visual motion (Franz and Krapp, 2000; Perrone, 1992; 
Zemel and Sejnowski, 1998). These algorithms take spatial patterns of local image velocity as inputs, and 
compare them with optic flow templates during a certain type of self motion (e.g., clockwise yaw). 
Template matching can thus estimate what type of self motion is most likely given visual motion, 
assuming that there is indeed self motion. Here, local motion consistent and inconsistent with the flow 
template are respectively treated as evidence for and against the specific self motion. In particular, 
negative weighting of flow-inconsistent local motion is important for distinguishing partially overlapping 
patterns of optic flow (e.g., forward translation vs. yaw rotation or vertical translation), whose mechanistic 
implementation has been well studied in insects (Farrow et al., 2006; Mauss et al., 2015; Shinomiya et al., 
2022). However, since these template matching algorithms take local image velocities as their inputs, by 
design, they treat stationary visual patterns and mere uniformity identically, while the two can have quite 
different implications for assessing self motion. As we discussed above, stationary edges strongly argue 
against self rotation orthogonal to them, and thus they function as evidence of absence of self rotation. In 
contrast, uniform parts of the visual field are consistent with any true velocity, and thus they are simply 
absence of evidence for self rotation. The fly’s behavior distinguishes between these two different types 
of zero motion signal. 

While we focused on the use of visual cues for estimating self motion, animals have access to additional 
non-visual cues useful for estimating self motion (or lack thereof). For example, how animals use the 
sensation of acceleration to stabilize gaze and locomotion has been well studied in both vertebrates and 
insects (DeAngelis and Angelaki, 2012; Rauscher and Fox, 2018). While acceleration sensing is less 
susceptible to confounding environmental factors such as world motion or illumination, they instead suffer 
from unique mechanical limitations, like the inability to encode translations with constant velocity and 
the inability to distinguish translational acceleration from gravity (DeAngelis and Angelaki, 2012). 
Another important cue for self motion estimation is the efference copy of motor commands. From the 
perspective of estimating the net amount of self motion, motor commands can be considered as strong 
evidence for the existence of self motion. In contrast, from the perspective of stabilization behaviors, 
animals need to estimate inadvertent (rather than net) self motion to be corrected. To do so, expected self 
motion, given the motor commands, should be subtracted from net self motion estimated from sensory 
inputs (von Holst and Mittelstaedt, 1950). Interestingly, recent studies in Drosophila have reported that 
optic flow-sensitive LPTCs switch between encoding net and inadvertent self rotation depending on their 
locomotor modes: In walking flies, optic flow and motor commands act additively in both HS (Cruz et al., 
2019; Fujiwara et al., 2022, 2017) and H2 cells (Cruz et al., 2019), such that their response amplitudes are 
maximal when flies are voluntarily turning and receiving congruent visual feedback, consistent with net 
rotation encoding. In contrast, in flying flies, visual and motor signals act subtractively, such that HS cells 
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are silent during voluntary turns (Fenk et al., 2021; Kim et al., 2015; A. J. Kim et al., 2017), consistent 
with encoding inadvertent rotation. It is currently unclear how this switch is achieved, or how downstream 
circuity decode outputs of LPTCs differently depending on locomotor modes. Overall, it will be important 
to investigate how these non-visual cues are integrated with different types of visual cues to efficiently 
estimate self motion, both at the algorithmic and mechanistic levels. 

Neural circuit for detecting negative evidence against self rotation 

Through a series of behavioral and imaging experiments, we constrained the circuitry underlying the 
detection of stationary patterns and suppression of optomotor response. First, through calcium imaging 
experiments, we directly demonstrated that elementary motion detectors (T4/T5) and optic flow detecting 
neurons (LPTCs) are not suppressed by stationary visual patterns (Figure 4). The behavioral observations 
that motion-dependent behaviors other than optomotor response are not suppressed by stationary patterns 
(Figure 1g-n) are consistent with these imaging results. Thus, information about stationary patterns is 
likely integrated into the circuitry for optomotor response in the central brain, somewhere downstream of 
LPTCs. The observation that stationary patterns presented on one eye can suppress optomotor response 
triggered by optic flow presented on the other eye (Figure 5) is also consistent with this “central 
integration” hypothesis. Unfortunately, the circuitry that translates the activity of LPTCs and other lobula 
neurons into the turning commands remains poorly understood. Recent functional studies have begun to 
uncover descending neurons that are involved in stimulus-driven turning, such as DNa02 (Aymanns et al., 
2022; Rayshubskiy et al., 2020). It is of future interest to identify neurons that link LPTCs to these 
descending neurons, and look for where the signature of suppression by stationary patterns emerges. 

Second, through a behavioral genetic screening, we identified several Gal4 drivers whose silencing 
reproducibly reduces suppression of the optomotor response by stationary patterns (Figure 6). The 
identified drivers included a split Gal4 driver for Mi4, a columnar GABAergic cell type presynaptic to T4 
(Arenz et al., 2017; Strother et al., 2017a; Takemura et al., 2017, 2013). Previous studies have shown that 
Mi4 has a sustained, ON-center OFF-surround receptive field (Arenz et al., 2017; Salazar-Gatzimas et al., 
2018; Strother et al., 2017a), somewhat similar to the stationary center-surround antagonistic kernels we 
found in a simple ANN trained to distinguish self and world motion (Figure 2e, S2a-c). However, unlike 
ANN units, the output of Mi4 is not strongly rectified (Salazar-Gatzimas et al., 2018), and thus one cannot 
detect stationary patterns based simply on spatially averaged activity of Mi4 (Figure 7a). Rather, an 
additional layer of retinotopically resolved, rectifying neurons would be necessary to decode the presence 
of stationary patterns based on Mi4 activity (Figure 7e-g). Unfortunately, the postsynaptic targets of Mi4 
other than T4 are currently mostly unknown, with the exception of axo-axonal connections with other T4 
inputs (Mi9, TmY15) (Takemura et al., 2017). Identifying downstream neurons of Mi4 with connectomic 
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(Dorkenwald et al., 2021) or genetic (Talay et al., 2017) tracing methods would be an important first step 
to understand how the fly brain detects stationary patterns. 

The remaining three hit drivers from the screen (R13E12, R15C05, R75H07) were selected for their 
labeling of visual neurons (R13E12 for Tm3, R15C05 for Dm4, Dm9, Dm12, and R75H07 for Dm4, 
Dm11, L3). However, silencing these visual neurons with other Gal4 drivers (R55D08 for Tm3, R23G11 
for Dm4, SS02427 for Dm9, R11C05 for Dm11, R47G08 for Dm12, R64B03 x R14B07 for L3) did not 
result in similar phenotypes (Figure 6a). This observation suggests that other neurons targeted by the 
three hit drivers, most likely in the central brain, contributed to detection of stationary patterns or 
suppression of optomotor response. Another possibility is that the silencing phenotypes of these hit drivers 
might be a cumulative effect of silencing multiple cell types. For example, R15C05 and R75H07 both 
target Dm4 (Nern et al., 2015), which, incidentally, happens to be upstream of Mi4 (Eliason, 2017). 
Although silencing Dm4 with R23G11 did not result in a similar phenotype, it is conceivable that this was 
because Dm4 was redundantly necessary for the stationary pattern detection with other R15C05 and 
R75H07 positive, but R23G11 negative, neurons. 

Geometrical negative evidence against self rotation in different systems 

Optic flow-based course stabilization behaviors are fundamental to any goal directed behavior and have 
therefore been found across diverse taxa. For example, vertebrates ranging from fish (Neuhauss et al., 
1999) and birds (Goller and Altshuler, 2014) to humans (Prokop et al., 1997; Warren et al., 2001) use 
optic flow to stabilize their locomotion, similar to fly optomotor responses. Mollusks, another major 
phylum with image forming visual systems, also exhibit an analogous optomotor response (Messenger, 
1970). In addition to directly affecting locomotion, optic flow also induces conscious perception of self 
motion to human observers, called visual vection (Brandt et al., 1971; von Helmholtz, 1924). Since the 
geometrical rule that visual patterns cannot remain stationary during rotation of the observer is a general 
constraint of the visual world, we can expect that flow-based course stabilization and perception of self 
rotation might be suppressed by stationary pattern regardless of species. Indeed, previous studies in 
humans have found that stationary patterns strongly suppress rotational vection (Brandt et al., 1975; 
Howard and Howard, 1994; Ohmi et al., 1987). Interestingly, these studies have consistently observed 
that stationary patterns can suppress rotational vection only when they are in the background, behind 
moving patterns, but not when they are in front of moving backgrounds. While the authors do not offer 
any functional account for this phenomenon, the sensitivity of vection suppression to depth can be 
interpreted as an adaptation to the fact that primates have limbs that easily come into the field of view: 
Parts of the body of the observer, like limbs, move with the observer and thus can remain visually 
stationary even during self rotation, constituting a notable exception from the geometrical argument that 
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stationary patterns imply the absence of self rotation. Thus, animals with visible extremities of the body 
cannot necessarily use visually stationary proximal objects as negative evidence against self rotation.  

Another visually-driven behavior often compared to insect optomotor response is optokinetic nystagmus 
(OKN) (Hardcastle and Krapp, 2016). OKN is a syn-directional eye movement triggered by optic flow, 
which is found across vertebrates from jawless fish (Wibble et al., 2022) to humans (Dodge, 1903; Dodge 
and Fox, 1928), as well as in arthropods (Fenk et al., 2022) and cephalopods (Messenger, 1970). Similar 
to rotational vection, it has been found that vertical stationary patterns can strongly suppress OKN in 
humans (Murasugi et al., 1989, 1986). However, the functional significance of this OKN suppression is 
less clear: Initiating OKN in response to world motion (i.e., moving objects) will result in fixation on the 
moving object. It is not difficult to imagine such fixation is an actual function of OKN, rather than being 
a false positive example, as in the case of whole-body optomotor response. 

Overall, by focusing on universal geometrical constraints of optic flow, we found that flies utilize separate 
stream of visual evidence (i.e., stationary patterns) to gate their optic flow-based stabilization behaviors. 
This observation exemplifies how the small brain in flies can integrate both positive and negative evidence 
to act on appropriate scene interpretations in the context of important, innate behaviors. It is of particular 
future interest to examine how the algorithms and circuit mechanisms of negative evidence detection 
against self motion generalize to different species, beyond Drosophila. 
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Materials and Methods 

Key Resource Table 

Reagent Source Identifier 
Antibodies   
Anti-brp mouse monoclonal antibody 
(nc82) 

Developmental Studies Hybridoma Bank RRID: AB2314866 

Anti-GFP chicken polyclonal antibody  Invitrogen RRID: AB2534023 
Anti-mouse goat polyclonal antibody, 
Alexa 633 conjugated 

Invitrogen RRID: AB141431 

Anti-chicken goat polyclonal antibody, 
Alexa 488 conjugated 

Invitrogen RRID: AB142924 

Normal goat serum Abcam RRID: AB2716553 
Chemicals   
All-trans retinal Sigma Aldrich PubChem SID: 

24899355 
Vectashield antifade mounting 
medium 

Vector Laboratories RRID: AB2336789 

PBS Sigma Aldrich Cat#: P4417 
paraformaldehyde Sigma Aldrich Cat#: 252549 
Triton-X Sigma Aldrich Cat#: X-100 
Model organisms   
+;+;+ (Gohl et al., 2011) N/A 
+; UAS-shits; UAS-shits (Kitamoto, 2001) N/A 
+; tshGal80; UAS-shits (Clyne and Miesenböck, 2008) N/A 
nSyb-phiC31; S/CyO; Pri/TM6B (Isaacman-Beck et al., 2020) BDSC: #84251 
+; UAS-SPARC-I-GcaMP6f; + (Isaacman-Beck et al., 2020) BDSC: #84138 
w; R59E08AD; R42F06DBD (split 
T4/T5) 

(Schilling and Borst, 2015) JRC: SS00324 

w; +; UAS-jGCaMP7b (Dana et al., 2019) BDSC: #79029 
w; +; R27B03Gal4 (HS) (Chiappe et al., 2010; Jenett et al., 2012) BDSC: #49211 
w; +; R35A10Gal4 (CH) (Jenett et al., 2012; Wei et al., 2020) BDSC: #49897 
w; +; R47F01Gal4 (H2) (Jenett et al., 2012; Wei et al., 2020) BDSC: #50318 
w; +; OddGal4 (Hx) (Levy and Larsen, 2013; Wasserman et al., 

2015) 
N/A 

w; +; R14C03Gal4 (FD1) (Jenett et al., 2012; Wei et al., 2020) BDSC: #48602 
+; c202aGal4; + (L1) (Rister et al., 2007) N/A 
w; R53G02AD; R29G11DBD (L2) (Tuthill et al., 2013) N/A 
w; R48A08AD; R29G11DBD (L1 + 
L2) 

(Tuthill et al., 2013) N/A 

w; R64B03AD; R14B07DBD (L3) (Tuthill et al., 2013) N/A 
w; R31C06AD; R24G07DBD (L4) (Tuthill et al., 2013) N/A 
w; R21A05AD; R31H09DBD (L5) (Tuthill et al., 2013) N/A 
w; R20C11AD; R25B02DBD (C2) (Tuthill et al., 2013) N/A 
w; R35A03AD; R29G11DBD (C3) (Tuthill et al., 2013) N/A 
w; R19F01AD; R71D01DBD (Mi1) (Strother et al., 2017a) JRC: SS00809 
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w; +; R13E12Gal4 (Tm3) (Behnia et al., 2014; Jenett et al., 2012) BDSC: #48569 
w; +; R55D08Gal4 (Tm3) (Ammer et al., 2015; Jenett et al., 2012) BDSC: #39115 
w; R48A07AD; R79H02DBD (Mi4) (Strother et al., 2017a) JRC: SS00316 
w; R48A07AD; VT046779DBD (Mi9) (Strother et al., 2017a) JRC: SS02432 
w; +; R74G01Gal4 (Tm1) (Jenett et al., 2012; Tan et al., 2015) BDSC: #39868 
w; R28D05AD; R82F12DBD (Tm2) (Davis et al., 2020) BDSC: #SS00811 
w; +; R35H01Gal4 (Tm4) (Jenett et al., 2012; Serbe et al., 2016) BDSC: #49922 
w; +; R24C08Gal4 (Tm9) (Jenett et al., 2012; Tan et al., 2015) BDSC: #48050 
w; +; R22D12Gal4 (Dm1) (Jenett et al., 2012; Nern et al., 2015) BDSC: #48983 
w; +; R26H07Gal4 (Dm2) (Jenett et al., 2012; Nern et al., 2015) BDSC: #49204 
w; +; R20D11Gal4 (Dm3) (Jenett et al., 2012; Nern et al., 2015) BDSC: #47891 
w; +; R23G11Gal4 (Dm4) (Jenett et al., 2012; Nern et al., 2015) BDSC: #49043 
w; +; R15C05Gal4 (Dm4, 9, 12) (Jenett et al., 2012; Nern et al., 2015) BDSC: #48683 
w; +; R75H07Gal4 (Dm4, 11, L3) (Jenett et al., 2012; Nern et al., 2015) BDSC: #39911 
w; +; R38H06Gal4 (Dm6) (Jenett et al., 2012; Nern et al., 2015) BDSC: #50029 
+; vGlutOK371AD; ortC1-3DBD (Dm8, 
Tm5c, L1) 

(Gao et al., 2008) N/A 

w; R19G04AD; VT017422DBD (Dm9) (Davis et al., 2020) JRC: SS02427 
w; +; R30B06Gal4 (Dm10) (Jenett et al., 2012; Nern et al., 2015) BDSC: #47529 
w; +; R11C05Gal4 (Dm11) (Jenett et al., 2012; Nern et al., 2015) BDSC: #48291 
w; +; R47G08Gal4 (Dm12) (Jenett et al., 2012; Nern et al., 2015) BDSC: #50328 
w; +; R38A07Gal4 (Dm13) (Jenett et al., 2012; Nern et al., 2015) BDSC: #49978 
w; +; R47E05Gal4 (Dm14) (Jenett et al., 2012; Nern et al., 2015) BDSC: #50312 
w; +; R58G11Gal4 (Dm16) (Jenett et al., 2012; Nern et al., 2015) BDSC: #39195 
w; +; R58G03Gal4 (Dm17) (Jenett et al., 2012; Nern et al., 2015) BDSC: #39193 
w; +; R60C01Gal4 (Dm9, 13,18) (Jenett et al., 2012; Nern et al., 2015) BDSC: #39240 
w; +; R76B06Gal4 (TuBu) (Jenett et al., 2012; S. S. Kim et al., 2017) BDSC: #48327 
w; +; R20A02Gal4 (Ring) (Jenett et al., 2012; Omoto et al., 2017) BDSC: #48870 
w; +; R60D05Gal4 (E-PG) (Jenett et al., 2012; Wolff et al., 2015) BDSC: #39247 
w; R13E12AD; + (Dionne et al., 2018) BDSC: #68830 
w; +; R13E12DBD (Dionne et al., 2018) BDSC: #69582 
w; +; ChATDBD (Diao et al., 2015) BDSC: #60318 
w; +; Gad1DBD (Lacin et al., 2019) BDSC: #82987 
w; vGlutAD; + (Deng et al., 2019) BDSC: #84713 
w; +; UAS-myr::GFP (Pfeiffer et al., 2010) BDSC: #32197 
Software   
MATLAB Mathworks  
Psychtoolbox 3 (Kleiner et al., 2007)   
ScanImage 5 (Pologruto et al., 2003)   
Fiji (Schindelin et al., 2012)  
Python 3.9   
PyTorch 1.8   
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Fly Strains and Husbandry 

All flies were raised at ~50% relative humidity on a dextrose-based food, under a 12 h:12 h light/dark 
cycle. Flies for behavioral experiments were raised at 20°C, and flies for imaging experiments were raised 
at 25°C. Prior to experiments, adult flies were staged on CO2 within 24 h post eclosion. All behavioral 
experiments were performed within 12 to 24 h after staging. For physiology experiments, flies were 
imaged typically between 2 to 7 days after eclosion. All experiments were performed on non-virgin 
females. The genotypes of flies used for experiments are compiled in Table S1. 

Stimulus Presentation 

The stimuli used for behavioral and imaging experiments are respectively compiled in Table S2, S3. All 
stimuli were generated online at 180 Hz. In each experiment, stimuli were presented in a random order, 
separated by interleave epochs of uniform mean gray, which typically lasted about 3 seconds. In imaging 
experiments, additional probe stimuli were presented at the beginning and end of the experiment to select 
responsive regions of interest (ROIs) (Table S4). For T4/T5 recordings, we approximately mapped the 
receptive field location of sparsely labeled T4/T5 axons by interactively presenting translating 
checkerboards confined in a circular aperture at various locations prior to experiments. Experimental 
stimuli were then centered about the estimated receptive field center.  

Behavioral Assay and Data Analysis 

To measure flies’ visuomotor behaviors, we used a previously reported tethered walking assay (Creamer 
et al., 2019). Cold-anesthetized flies were tethered onto 30G surgical needles with UV-curable epoxy glue, 
and mounted on air-floated balls. The flies’ locomotor responses were read out as the rotation of the balls, 
which we measured with optical mouse chips (resolution ~0.5°, sampling frequency 60Hz). Visual stimuli 
were projected onto panoramic screens surrounding the flies using DLP projectors (Texas Instruments 
Lightcrafter DLP evaluation modules). The visual stimuli covered 270° of azimuth and 106° of elevation. 
The stimuli were presented only using the green channel of the projectors (peak 520 nm, ~ 100 cd/m2). 
The behavioral rigs were heated to 36 °C to promote forward walking as well as to use thermogenetic 
tools (in this study, shibirets). 

Flies’ forward walking responses to each presentation of stimuli was normalized relative to the average 
walking speed within a half second window immediately preceding the stimulus onset. The instantaneous 
turning velocity as well as normalized forward walking speed were then averaged over trials for each 
stimulus type to generate individual fly mean traces. Turning and forward walking responses to mirror 
symmetric pairs of stimuli were also respectively averaged in subtractive and additive fashion. The 
individual mean traces were then averaged over flies to visualize the dynamics of responses, as well as 
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over time for statistical comparisons across stimulus conditions and genotypes. For the screening 
experiments in Figures 6, S4, flies that exhibited less than 5 º/s turning to the uniform islands of motion 
stimulus were excluded from the analysis, because small turning amplitude made estimating the degree of 
suppression of behavior difficult.  

Two-photon Imaging 

For imaging experiments, cold-anesthetized flies were mounted onto a holder with UV-curable epoxy. 
The cuticle on the back of the head, as well as trachea and fat tissue were surgically removed to expose 
the brain. The brain was then submerged in oxygenated sugar-saline solution (Wilson et al., 2004). 
Imaging was performed with a two-photon microscope (HyperScope; Scientifica) with a 20x water 
immersion objective (XLUMPlanFL; Olympus). Visual stimuli were presented on a panoramic screen 
surrounding the fly using the same DLP projector as the ones used in the behavioral experiment. The 
projector light was filtered with a 565/24 in series with a 560/25 filter (Semrock). The stimuli were pitched 
45° forward relative to the screen to account for the tilt of the fly head. The stimuli spanned 270° of 
azimuth and 69° of elevation. The two-photon excitation at 930 nm was provided by a femtosecond Ti-
Sapphire laser (Mai Tail; SpectraPhysics). The laser power at the sample was kept below 40 mW. To 
capture the emission light from green fluorophores and exclude light from the screens, light coming into 
the photodetector was filtered with two 515/25 filters (Semrock) in series. The microscope was controlled 
through the ScanImage 5 software (Pologruto et al., 2003) and images were acquired at 8.46 Hz. 

Imaging Data Analysis 

ROIs were defined by applying a watershed algorithm (Meyer, 1994) on time-averaged fluorescent images. 
To remove a small amount of stimulus bleedthrough from the recordings, mean signals from the 
background region were subtracted from the entire recording. The background region was defined as the 
largest contiguous region below 10 percentile brightness in the time-averaged image. The fluorescence 
time traces in each ROI were then transformed into the unit of ΔF/F as follows: The fluorescence within 
each ROI was averaged across pixels for each frame. The pixel-averaged fluorescence was then averaged 
over time within each interleave epoch. Decaying exponentials in the form of F = Ae-t/τ were then fit to 
this averaged fluorescence, where τ was constrained to be identical across ROIs. The assumption is that 
bleaching of fluorophores should happen uniformly across ROIs. In each ROI, F was subtracted from the 
original pixel-averaged fluorescence time trace, and reminder (ΔF) was divided by F to generate ΔF/F 
time traces. 

Next, responsive ROIs were selected based on the consistency of their responses to multiple repetitions 
of probe stimuli presented before the experiments. The response consistency was measured as the average 
Pearson correlation between all pairs of probe responses. The threshold for response consistency was set 
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at 0.4. For T4/T5 recordings, additional ROI selection criteria were devised to functionally identify 
specific subtypes of T4 and T5 whose receptive field was appropriately aligned with the visual stimuli. 
First, in T4/T5 recordings, probe stimuli were repeated at the end of the experiment as well. We discarded 
T4/T5 ROIs with correlation between the trial-averaged pre-experiment probe response and post-
experiment probe response lower than 0.4 as being unreliable. Second, to find ROIs aligned with the 
stimulus location, we selected ROIs whose direction- and time-averaged responses to the island of motion 
probe was more than two times larger than their responses to the sea of motion probe (see Table S4 for 
definitions of the probe stimuli). Third, to make sure that ROIs belonged to the subtypes of T4/T5 tuned 
to horizontal motion, we discarded ROIs that responded the most to either the upward or downward island 
of the motion probe among the four directions. Finally, we selected ROIs based on their direction and 
polarity selectivity, calculated based on their responses to the short edge probe (see Table S4). Direction 
and polarity selectivity indices (DSI and PSI) were defined as DSI = (rftb – rbtf) / (rftb + rbtf), PSI = (rON – 
rOFF) / (rON + rOFF), where rftb = rftb,ON + rftb,OFF, rbtf = rbtf,ON + rbtf,OFF, rON = rftb,ON + rbtf,ON, rOFF = rftb,OFF + 
rbtf,OFF. rd,p was calculated as the difference between 99 and 50 percentiles of trial-average response time 
traces to the short edge with direction d (front-to-back (ftb) or back-to-front (btf)) and polarity p (ON or 
OFF). We labeled ROIs with DSI > 0.4 and PSI > 0.4 as T4a, ones with DSI < -0.4 and PSI > 0.4 as T4b, 
DSI > 0.4 and PSI < -0.4 as T5a, and DSI < -0.4 and PSI < -0.4 as T5b. 

For each stimulus presentation, the average baseline ΔF/F within a half second window immediately 
preceding the stimulus onset was subtracted from the response time traces. Responses were then averaged 
over trials for each stimulus type, then over ROIs, to generate individual mean time traces. The individual 
mean time traces were then averaged either across flies to visualize the response dynamics, or over time 
to make statistical comparisons between stimulus conditions. Responses of T4 and T5 subtypes were 
averaged within each fly after appropriately flipping the stimulus directionality. For the Mi4 imaging 
experiment (Figure 7c, d), for each fly and each stimulus condition, by-trial, by-ROI response time traces 
were sorted according to their time-averaged amplitude ignoring the ROI identities, and averaged within 
each 20th quantile bin, and then averaged across flies.   

Immunohistochemistry 

The brain was extracted from the head capsule in PBS, and then fixated for approximately 15 minutes in 
4% paraformaldehyde at room temperature. After three washes in PBS for at least 20 minutes, the brains 
were blocked with 5% normal goat serum for another 20 minutes. The brains were then incubated with 
primary antibodies (mouse anti-Brp, 1:25; chicken anti-GFP, 1:50). After another 3 washes, the brains 
were incubated with secondary antibodies (anti-mouse AF633 and anti-chicken AF488, 1:300). The 
antibodies were dissolved in PBS with 0.2% Triton-X and 5% normal goat serum. The incubation periods 
were between 1 to 3 days. The brains were then mounted on glass microscope slides with the Vectashield 
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mounting medium. The Z-stacks were acquired with Zeiss LSM880 confocal microscopes with 20x air or 
40x oil-immersion objectives, with a typical slice thickness of 1 μm. 

Artificial neural networks and training 

We built a series of artificial neural networks (ANNs) with a convolutional architecture and trained them 
on natural scene movies to infer whether a movie was produced due to self motion or world motion. 
PyTorch 1.8 running on Python 3.9 was used for the simulation. The input layer of the ANNs was 30 x 1 
x 72, with the first dimension indicating depth (time), the second dimension height, and the third 
dimension width. Following the input layer, the model had L 1 x 72 convolutional layers with each layer 
having C channels (Figure 2b). The sizes of the convolutional kernels were 30 x 1 x 3 between the input 
and the first convolutional layer and C x 1 x 3 elsewhere. For each convolutional layer, the input was 
padded periodically and the rectified linear unit was used as the activation function. The output of the all 
units in the last convolutional layer were averaged with spatially uniform weights and logistic-transformed 
to calculate the probability that the given input movies were generated by self motion rather than world 
motion. Different channels in the last convolutional layer were weighted differently in the output layer. L 
and C were varied between 1 to 6 and 1 to 8, respectively. The loss function was the standard cross entropy 
loss for binary classifications, and the training was repeated 100 times for each L, C combination with 
random initialization. The performance of the trained ANNs were tested with held-out datasets.  

To generate the natural scene movies, 241 natural scene images were obtained from an online database 
(Meyer et al., 2014). Each image had a dimension of 251 x 927 and captured a panoramic natural 
environment, covering 97.5 degrees vertically and 360 degrees horizontally. For the self motion movies, 
each image was convolved with a 2-dimensional Gaussian kernel with a full width at half maximum of 5 
degrees, mimicking the acceptance angle of one ommatidium of a fly eye. To generate the self motion 
movies, an image was shifted horizontally according to a positional trace, which has been generated by 
integrating a velocity trace. The velocity trace was simulated as an Ornstein–Uhlenbeck process with an 
autocorrelation time of 0.2/ln2 s and a standard deviation of 100 º/s, , approximately matching typical 
turning velocities and timescales of flies (DeAngelis et al., 2019; van Kampen, 1992). The positional trace 
was 300 ms long in time and had a temporal resolution of 10 ms, and thus, each movie had 30 frames. 
After this, each frame of the movies was subsampled to be 20 x 72 such that each pixel covered roughly 
5 degrees in the angular space. In this way, each movie was a 30 x 20 x 72 volume. The input to the ANNs 
was a random horizontal slice from this volume, with the size of 30 x 1 x 72. For the world motion movies, 
we first randomly selected a horizontal slice with a height of 5 degrees from a stationary natural scene 
image. Next, up to 10 patches with the height of 5 degrees were randomly selected from the same image 
to serve as the objects and placed randomly on the horizontal slice. The width of each object was randomly 
sampled from the interval of 5 degrees to 36 degrees. After this, the whole image was convolved with a 
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2-dimensional Gaussian kernel just as in the self motion cases. The motions of all the objects in each 
movie are coherent, and the velocity traces were generated the same way as in the self motion movies. 
The world motion movies were subsampled also in the same way as in the self motion ones, and the 
horizontal slice that contained the objects were selected as the input. Each natural scene movie was 
rescaled to have zero mean and unit variance. We generated 144,000 samples for training and 48,800 
samples for testing.  

To compare the behavior of the training models with those of the flies, we generated the islands of motion 
stimuli similar to what was presented to flies (Figure 1c), as well as full-field binary checkerboards 
translating horizontally. The spatiotemporal parameters of the stimuli were kept identical (resolution of 
5º, window size of 15º, window coverage of 20%, velocity of 80 º/s), except that the stimuli here lacked 
the vertical spatial dimension and had the temporal sampling rate of 100 Hz to match the size of the ANN 
input layer. For each category of the stimuli (full-field, uniform, stationary, or flicker) 2000 different 
movies were generated, and fed into each of the trained models. We then computed the averages of 
predicted probabilities and their logit transformations. For each model, 25th percentile, median, and 75th 
percentile performances over 100 initializations are visualized in Figure 2g, h. 

Quantification and Statistical Analysis 

For the statistical purpose, each fly was treated as an independent sample. p-values presented are either 
from Wilcoxon signed-rank (within-fly, across stimulus condition comparisons) or rank sum tests (across 
genotype comparisons). 
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Description Genotype Figure 
wildtype +; +; + 1, 3, 5, S1  
T4/T5>GCaMP6f nSyb-phiC31/+; R59E08AD/ UAS-SPARC-I-GCaMP6f; R42F06DBD/+ 4ef, S3ab 
HS>jGCaMP7b w/+; +; R27B03/UAS-jGCaMP7b 4gh, S3cd 
CH>jGCaMP7b w/+; +; R35A10/UAS-jGCaMP7b 4gh, S3cd 
H2>jGCaMP7b w/+; +; R47F01/UAS-jGCaMP7b 4gh, S3cd 
Hx>jGCaMP7b w/+; OddGal4/+; UAS-jGCaMP7b/+ 4gh, S3cd 
FD1>jGCaMP7b w/+; +; R14C03/UAS-jGCaMP7b 4gh, S3cd 
c202a>shi +; c202aGal4/UAS-shits; +/ UAS-shits 6a 
c202a>+ +; c202aGal4/+; + 6a 
split L2>shi w/+; R53G02AD/ UAS-shits; R29G11DBD/UAS-shits 6a 
split L2>+ w/+; R53G02AD/+; R29G11DBD/+ 6a 
split L1 + L2>shi w/+; R48A08AD/UAS-shits; R29G11DBD/UAS-shits 6a 
split L1 + L2>+ w/+; R48A08AD/+; R29G11DBD/+ 6a 
split L3>shi w/+; R64B03AD/UAS-shits; R14B07DBD/UAS-shits 6a 
split L3>+ w/+; R64B03AD/+; R14B07DBD/+ 6a 
split L4>shi w/+; R31C06AD/UAS-shits; R34G07DBD/UAS-shits 6a 
split L4>+ w/+; R31C06AD/+; R34G07DBD/+ 6a 
split L5>shi w/+; R21A05AD/UAS-shits; R31H09DBD/+ 6a 
split L5>+ w/+; R21A05AD/+; R31H09DBD/+ 6a 
split C2>shi w/+; R20C11AD/UAS-shits; R25B02DBD/UAS-shits 6a 
split C2>+ w/+; R20C11AD/+; R25B02DBD/+ 6a 
split C3>shi w/+; R35A03AD/UAS-shits; R29G11DBD/UAS-shits 6ab 
split C3>+ w/+; R35A03AD/+; R29G11DBD/+ 6ab 
SS00809>shi w/+; R19F01AD/UAS-shits; R71D01DBD/UAS-shits 6a 
SS00809>+ w/+; R19F01AD/+; R71D01DBD/+ 6a 
R13E12>shi +; +_tshGal80; R13E12Gal4/UAS-shits 6ab 
R13E12>+ +; +; R13E12Gal4/+ 6ab 
R55D08>shi w/+; +/UAS-shits; R55D08Gal4/UAS-shits 6a 
R55D08>+ w/+; +; R55D08Gal4/+ 6a 
SS00316>shi w/+; R48A07AD/UAS-shits; R79H02DBD/UAS-shits 6a 
SS00316>+ w/+; R48A07AD/+; R79H02DBD/+ 6ab 
SS02432>shi w/+; R48A07AD/UAS-shits; VT046779DBD/UAS-shits 6a 
SS02432>+ w/+; R48A08AD/+; VT046779DBD/+ 6ab 
R74G01>shi w/+; +/tshGal80; R74G01Gal4/UAS-shits 6a 
R74G01>+ w/+; +; R74G01Gal4/+ 6a 
SS00811>shi w/+; R28D05AD/UAS-shits; R82F12DBD/UAS-shits 6a 
SS00811>+ w/+; R28D05AD/+; R82F12DBD/+ 6a 
R35H01>shi w/+; +/tshGal80; R35H01Gal4/UAS-shits 6a 
R35H01>+ w/+; +; R35H01Gal4/+ 6a 
R24C08>shi w/+; +/tshGal80; R24C08Gal4/UAS-shits 6a 
R24C08>+ w/+; +; R24C08Gal4/+ 6a 
R22D12>shi w/+; +/tshGal80; R22D12Gal4/UAS-shits 6a 
R22D12>+ w/+; +; R22D12Gal4/+ 6a 
R26H07>shi w/+; +/tshGal80; R26H07Gal4/UAS-shits 6a 
R26H07>+ w/+; +; R26H07Gal4/+ 6a 
R20D11>shi w/+; +/tshGal80; R20D11Gal4/UAS-shits 6a 
R20D11>>+ w/+; +; R20D11Gal4/+ 6a 
R23G11>shi w/+; +/tshGal80; R23G11Gal4/UAS-shits 6a 
R23G11>+ w/+; +; R23G11Gal4/+ 6a 
R15C05>shi w/+; +/tshGal80; R15C05Gal4/UAS-shits 6ab 
R15C05>+ w/+; +; R15C05Gal4/+ 6ab 
R75H07>shi w/+; +/tshGal80; R75H07Gal4/UAS-shits 6ab 
R75H07>+ w/+; +; R75H07Gal4/+ 6ab 
R38H06>shi w/+; +/tshGal80; R38H06Gal4/UAS-shits 6a 
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R38H06>+ w/+; +; R38H06Gal4/+ 6a 
vGlut x ort>shi +; vGlutOK371AD/tshGal80; ortC1-3DBD/UAS-shits 6a 
vGlut x ort>+ +; vGlutOK371AD/+; ortC1-3DBD/+ 6a 
SS02427>shi w/+; R19G04AD/UAS-shits; VT017422DBD/UAS-shits 6a 
SS02427>+ w/+; R19G04AD/+; VT017422DBD/+ 6a 
R30B06>shi w/+; +/tshGal80; R30B06Gal4/UAS-shits 6a 
R30B06>+ w/+; +; R30B06Gal4/+ 6a 
R11C05>shi w/+; +/tshGal80; R11C05Gal4/UAS-shits 6a 
R11C05>+ w/+; +; R11C05Gal4/+ 6a 
R47G08>shi w/+; +/tshGal80; R47G08Gal4/UAS-shits 6a 
R47G08>+ w/+; +; R47G08Gal4/+ 6a 
R38A07>shi w/+; +/tshGal80; R38A07Gal4/UAS-shits 6a 
R38A07>+ w/+; +; R38A07Gal4/+ 6a 
R47E05>shi w/+; +/tshGal80; R47E05Gal4/UAS-shits 6a 
R47E05>+ w/+; +; R47E05Gal4/+ 6a 
R58G11>shi w/+; +/tshGal80; R58G11Gal4/UAS-shits 6a 
R58G11>+ w/+; +; R58G11Gal4/+ 6a 
R58G03>shi w/+; +/tshGal80; R58G03Gal4/UAS-shits 6a 
R58G03>+ w/+; +; R58G03Gal4/+ 6a 
R60C01>shi w/+; +/tshGal80; R60C01Gal4/UAS-shits 6a 
R60C01>+ w/+; +; R60C01Gal4/+ 6a 
R76B06>shi w/+; +/UAS-shits; R76B06Gal4/UAS-shits 6a 
R76B06>+ w/+; +; R76B06Gal4/+ 6a 
R20A02>shi w/+; +/UAS-shits; R20A02Gal4/UAS-shits 6a 
R20A02>+ w/+; +; R20A02Gal4/+ 6a 
R60D05>shi w/+; +/UAS-shits; R60D05Gal4/UAS-shits 6a 
R60D05>+ w/+; +; R60D05Gal4/+ 6a 
SS00316>shi w/+; R48A07AD/tshGal80; R79H02DBD/UAS-shits 6b 
SS02432>shi w/+; R48A07AD/tshGal80; VT046779DBD/UAS-shits 6b 
R13E12 x 
ChAT>GFP 

w/+; R13E12AD/+; ChATDBD/UAS-myr::GFP S4a 

R13E12 x vGlut>GFP w; vGlutAD/+; R13E12DBD/UAS-myr::GFP S4a 
R13E12 x 
GAD1>GFP 

w/+; R13E12AD/+; GAD1DBD/UAS-myr::GFP S4a 

R13E12 x ChAT>shi +; R13E12AD/tshGal80; ChATDBD/UAS-shits S4b 
R13E12 x ChAT>+ +; R13E12AD/+; ChATDBD/+ S4b 
R13E12 x vGlut>shi w/+; vGlutAD/tshGal80; R13E12DBD/UAS-shits S4b 
R13E12 x vGlut>+ w/+; vGlutAD/+; R13E12DBD/+ S4b 
R13E12 x GAD1>shi +; R13E12AD/tshGal80; GAD1DBD/UAS-shits S4b 
R13E12 x GAD1>+ +; R13E12AD/+; GAD1DBD/+ S4b 
Mi4>jGCaMP7b w/+; R48A07AD/+; R79H02DBD/UAS-jGCaMP7b 7abcd 

 

Table S1. Genotypes of flies used in the experiments.  
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Stimulus Description (duration) Figures 
Islands of 
motion  

Backgrounds of binary random checkerboard patterns with 5º resolution 
rotating horizontally at 80 º/s were paired with foregrounds with 15º 
resolution square-shaped windows, which were randomly placed and 
covered 20% of the screen on average. The foreground pattern was either 
uniform mean gray (uniform), stationary binary random checkerboard with 5º 
resolution (stationary), or 5º binary random checkerboard updated at 15 Hz 
(flicker). (3 s) 

1ef, 6ab, 
S4b 

Islands of 
motion 
(translational) 

Same as the “Islands of motion”, but the background was symmetrized about 
the central meridian such that the checkerboard flowed forward or backward. 
(3 s) 

1hijk 

Moving bars A single black vertical bar with 10º width swept across the entire horizontal 
extent of the screen at 80 º/s, on the same three foreground patterns as in 
the “Islands of motion” stimuli. (3.4 s) 

1mn 

Islands of 
motion (1D) 

Same as the “Islands of motion”, but the foreground patterns are either 
horizontal or vertical binary barcode patterns with 5º resolution, either 
stationary or randomly updated at 15 Hz. (3 s) 

1pq, S1bc 

Sliding islands 
of motion 

Same as the “Islands of motion”, but the windows on the foreground moving 
in the direction and speed of the backgrounds. (3 s) 

S1ef 

Contrast sweep Same as the “Islands of motion”, but the contrasts of foreground patterns 
were changed between 0% to 100%. 

3a 

Fraction sweep Same as the “Islands of motion”, but the fractions of the windows on the 
foreground were changed between 0% to 100%. 

3b 

Velocity sweep Same as the “Islands of motion”, but the velocities of the background were 
changed between 10 º/s to 320 º/s. 

3c 

Frequency 
sweep 

Same as the “Islands of motion” with flickering foregrounds, but the update 
rates of the foreground were changed between 0 Hz (identical to the 
stationary condition) to 30 Hz. (3 s) 

3d 

Wavelength 
sweep 

Same as the “Islands of motion”, but the foreground patterns were sinusoidal 
plaids generated by superimposing vertical and horizontal sinusoidal 
gratings with wavelengths ranging from 5º to 90º. (3 s) 

3e 

Islands of 
motion (single 
polarity 
foreground) 

Same as the “Islands of motion”, but the binary patterns in the foreground 
had contrast pairs of either (-1, 0), (-0.5, +0.5), or (0, +1), where -1 and 1 
respectively correspond to black and white. (3 s) 

3f 

Islands of 
motion (uniform 
foreground with 
different 
luminance) 

Same as the “Islands of motion” with uniform foregrounds, but the contrast of 
the foreground was either -0.5 or +0.5. (3 s) 

3g 

Interocular 
transfer stimuli 

Different combinations of translating random binary checkerboard in either 
direction (i.e., the background pattern in “Islands of motion”) or the three 
foreground patterns in “Islands of motion” were presented on the left and 
right visual fields. A 30º wide mean gray vertical band was placed around the 
vertical meridian to make sure stimuli on each side only hit one eye. (3 s)  

5 

 

Table S2. Stimuli for behavioral experiments. 
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Stimulus Description (duration) Figures 
Localized island 
of motion 

Same as the “Islands of motion” for the behavioral experiment, but the 
background velocity was 40 º/s and the foreground had a single circular 
window with 15º diameter. A 5º thick buffer zone with mean gray was set 
around the window. (2 s) 

4ef, S3ab 

Islands of 
motion 
(imaging) 

Same as the “Islands of motion” for the behavioral experiment, but the 
background velocity was 40 º/s. (2 s) 

4gh 

Full-field 
checker 

5º binary random checkerboards, either stationary or randomly updated at 
15Hz. (2 or 3 s) 

7abcd, S3c 

Full-field 
rotation 

5º binary random checkerboards rotating horizontally at 40 º/s. (2 or 3 s) 7abcd, S3d 

 

Table S3. Stimuli for imaging experiments. 

 

 

Stimulus Description (duration) Used for 
Island of motion 
probe 

Same as the “Localized island of motion”, but the background moved in 
the four cardinal directions. (3 s) 

T4/T5 

Sea of motion 
probe 

Same as “Island of motion probe”, but moving background was presented 
outside the circular window + the buffer zone, instead of inside. Inside the 
window remained gray. (3 s) 

T4/T5 

Local edge 
probes 

A 15º tall, black or white vertical edge moved horizontally at 40 º/s. (3 s) T4/T5 

Square wave 
probes 

Full-contrast vertical square waves with the wavelength of 30º moved 
horizontally at 30 º/s, interleaved with stationary square waves. (4 s) 

HS, CH, H2, 
Hx, FD1 

ON-OFF probe Full-field, full-contrast, alternating flashes of ON and OFF, each lasting for 
3 seconds, repeated for 5 cycles. (6 s) 

Mi4 

 

Table S4. Probe stimuli for imaging experiments. 
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