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ABSTRACT Clostridioides difficile, which causes life-threatening diarrheal disease,
presents an urgent threat to health care systems. In this study, we present a retro-
spective genomic and epidemiological analysis of C. difficile in a large teaching hospital.
First, we collected 894 nonduplicate fecal samples from patients during a whole year to
elucidate the C. difficile molecular epidemiology. We then presented a detailed descrip-
tion of the population structure of C. difficile based on 270 isolates separated between
2015 and 2020 and clarified the genetic and phenotypic features by MIC and whole-ge-
nome sequencing. We observed a high carriage rate (19.4%, 173/894) of C. difficile
among patients in this hospital. The population structure of C. difficile was diverse with
a total of 36 distinct STs assigned. In total, 64.8% (175/270) of the isolates were toxi-
genic, including four CDT-positive (C. difficile transferase) isolates, and 50.4% (135/268)
of the isolates were multidrug-resistant. Statistically, the rates of resistance to erythromy-
cin, moxifloxacin, and rifaximin were higher for nontoxigenic isolates. Although no van-
comycin-resistant isolates were detected, the MIC for vancomycin was higher for toxi-
genic isolates (P , 0.01). The in-hospital transmission was observed, with 43.8% (110/
251) of isolates being genetically linked to a prior case. However, no strong correlation
was detected between the genetic linkage and epidemiological linkage. Asymptomatic
colonized patients play the same role in nosocomial transmission as infected patients,
raising the issue of routine screening of C. difficile on admission. This work provides an
in-depth description of C. difficile in a hospital setting and paves the way for better sur-
veillance and effective prevention of related diseases in China.

IMPORTANCE Clostridioides difficile infections (CDI) are the leading cause of health-
care-associated diarrhea and are known to be resistant to multiple antibiotics. In the
past decade, C. difficile has emerged rapidly and has spread globally, causing great
concern among American and European countries. However, research on CDI
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remains limited in China. Here, we characterized the comprehensive spectrum of C.
difficile by whole-genome sequencing (WGS) in a Chinese hospital, showing a high
detection rate among patients, diverse genome characteristics, a high level of antibiotic
resistance, and an unknown nosocomial transmission risk of C. difficile. During the study
period, two C. difficile transferase (CDT)-positive isolates belonging to a new multilocus
sequence type (ST820) were detected, which have caused serious clinical symptoms.
This work describes C. difficile integrally and provides new insight into C. difficile surveil-
lance based on WGS in China.

KEYWORDS Clostridioides difficile, antibiotic-resistant, infection and colonization,
nosocomial transmission, virulence gene variants, whole-genome sequencing

C lostridioides difficile, previously known as Clostridium difficile, is a strictly anaerobic,
spore-forming, Gram-positive bacillus, which colonizes the intestinal tract and causes

gastrointestinal infections in health care settings (1). Symptoms of C. difficile infection (CDI)
range from mild diarrhea to serious pseudomembranous colitis, and even life-threatening
toxic megacolon disease (2). Because of the high lethality and relapse rate, CDIs are classi-
fied as an “urgent threat” to the health care system and cause of great concern among US
and European countries (3, 4). RT027, a hypervirulent clone that causes more serious dis-
eases, can produce 16- and 23-times higher levels of toxin A and B, respectively, compared
to other ribotypes (5). Since the outbreak of epidemic clone RT027 in the early 2000s,
research focused on CDI has increased rapidly especially in European and North American
countries (6). In recent years, RT027 clones have been sporadically detected in China, with
an RT027 isolate first being reported in 2012 in Guangzhou (7). Although no outbreaks
have occurred in China to date (8), as hypervirulent strains emerge, increased focus on the
molecular epidemiological surveillance of C. difficile is vital. Antibiotic resistance is becom-
ing increasingly common and is causing a global health crisis (9). C. difficile is known to be
resistant to multiple antibiotics, especially to erythromycin, clindamycin, and fluoroquino-
lone (10). The susceptibility of C. difficile to clinical therapeutic drugs, such as metronida-
zole, vancomycin, and rifaximin, is also declining (11–13), highlighting the need for
increased antimicrobial susceptibility surveillance of clinical C. difficile isolates.

In China, the molecular epidemiology and antibiotic susceptibility profiles of C. difficile
isolates are still not completely understood, especially at the genomic level. With the de-
velopment of sequencing technology, whole-genome sequencing (WGS) is increasingly
becoming the preferred method for studying drug-resistant pathogens in health care sys-
tems (14). Therefore, to improve our understanding of the molecular epidemiologic,
genetic, and phenotypic features of C. difficile in China, we performed an integrated study
that included analysis of the incidence, clinical information, antibiotic resistance profile,
and genomic characteristics of C. difficile isolates in a large teaching hospital in China. This
study laid the foundation for better surveillance and effective prevention of CDI in the
future.

RESULTS
Patient characteristics. Of the 894 nonduplicate fecal samples collected from

February 1, 2019 to January 31, 2020, 173 (19.4%) isolates were cultured successfully,
of which 63.6% (110/173) were identified as toxigenic C. difficile (TCD) (Fig. S1). The
screened patients’ characteristics are shown in Table S1. We found that patients carrying
C. difficile were younger than C. difficile negative patients (P, 0.05). The isolation rate of C.
difficile showed a declining trend with age, which was 22.8% (38/167) in patients under
the age of 18, 20.6% (99/481) in patients between the ages of 18 and 60, and 14.6% (36/
246) in patients older than 60 years of age (Fig. S2A). The same trend was observed with
the TCD isolates (Fig. S2B). Out of the 894 fecal samples, 857 were collected from inpa-
tients hospitalized in 24 distinct wards (Fig. S3A). The C. difficile isolation rates were diverse
among different wards, which was higher in the division of gastroenterology, hematology,
and nephrology and was lower in the division of pulmonary (Fig. S4). Common underlying
diseases in the patients in this study were inflammatory bowel diseases (IBD), malignancy,
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nephrosis, and pneumonia. Significantly higher isolation rates were detected among
patients with malignancy (26.3%, 36/137), IBD (25.7%, 53/206), and nephrosis (25.5%, 27/
106), compared with those with pneumonia (5.2%, 5/97) (P, 0.05) (Fig. S2C and D).

Phylogenetic structure of C. difficile isolates. To better understand the characteris-
tics of C. difficile, another 106 C. difficile isolates collected from the same hospital between
December 1, 2015, and January 31, 2019 were included in the investigation, resulting in a
total of 279 isolates. Overall, 270 (96.8%) isolates were successfully sequenced by next-gen-
eration sequencing and assigned to 36 STs, including 28 known and eight novel STs.
Currently, the population structure of C. difficile comprises six major genomic clades
(clades 1 to 5 and clade-CI) (15). The 28 known STs can be classified into four clades (clade
1, clade 4, clade 5, and clade-CI). To better analyze the phylogenetic structure of C. difficile
isolates, we employed 13 reference genomes belonging to six clades. The pan-genome
analysis identified 1529 core genes in $99% of the 283 genomes, less than a tenth of the
total genes, indicating that the C. difficile genome has extreme levels of plasticity. A maxi-
mum likelihood phylogenetic tree was generated based on 20,057 cgSNPs, and 12
sequence clusters (SCs) were classified by hierBAPs analysis. The SCs ranged in size from 3
to 50 isolates and corresponded to the branches within the tree (Fig. 1A). Analysis of the
phylogenetic tree positions and SCs revealed that the eight new STs were classified as
clade 1 (ST812, ST813), clade 2 (ST820), and clade 4 (ST809, ST810, ST811, ST814). The
results showed that ST3 isolates were separated into two distinct SCs, and eight SCs con-
tained more than one ST. Among these, SC3 comprised multiple low-frequency STs
(Fig. 1B).

Toxic gene variants of C. difficile. Based on virulence gene analysis, 64.8% (175/
270) of isolates belonged to TCD, including the genotypes tcdA1B1cdtA2B2 (146/

FIG 1 Genomic structure of the C. difficile population. (A) A maximum likelihood phylogenetic tree of 283 C. difficile isolates (270 sequenced in this study
and 13 reference genomes) was generated using 20057 cgSNPs from a 5.5 Mb alignment of 1529 core genes. The background shading represents the
MLST clades. The internal (first) circle is colored based on sequence clusters (SCs) by hierBAPs analysis. The second circle is colored MLST data. The outside
circle is the collected dates. Colored stars at the start of the branches represent different toxin profiles. (B) The correlation between three genotyping
methods: clade, MLST, and SCs. The height of the bars indicates the number of isolates. Each bar represents a single SC, and the STs are labeled in the blank.
The colors of the bars represent different clades. (C) MLST distribution in different toxin profiles. The height of the bars indicates the number of isolates. Each bar
represents a single ST, except for the far-right bar containing all the singleton STs. The colors of the bars represent different toxin profiles.

Genome-Based Analysis of C. difficile

Volume 10 Issue 1 e01322-21 MicrobiolSpectrum.asm.org 3

https://www.MicrobiolSpectrum.asm.org


175, 83.4%), tcdA-B1cdtA2B2 (25/175, 14.3%), and tcdA1B1cdtA1B1 (4/175, 2.3%).
For TCD isolates, ST54 (44/175, 25.1%) was the most prevalent type, followed by ST37
(25/175, 14.3%), ST2 (23/175, 13.1%), and ST35 (19/175, 10.9%). ST39 (50/95, 52.6%)
was the most prevalent ST among nontoxigenic C. difficile (NTCD), while ST3 was the
only ST that contained both TCD (22/175, 12.6%) and NTCD (10/95, 10.5%) (Fig. 1C).
Another toxin, namely, C. difficile transferase (CDT), was produced in so-called “hyper-
virulent” strains (16). In total, four CDT-positive isolates were detected during this pe-
riod, of which two isolates belonged to ST11 (clade 5) and two isolates belonged to a
new sequencing type ST820 (clade 2).

The pathogenicity locus (PaLoc) is a 19.6 kb genetic locus that includes five toxin-
associated genes: tcdR, tcdB, tcdE, tcdA, and tcdC (Fig. 2A). Genes tcdA and tcdB, encod-
ing large Clostridium toxin TcdA and TcdB, are the major C. difficile virulence genes. Both
TcdA and TcdB contain four functional domains: an N-terminal glucosyltransferase domain
(GTD), cysteine protease domain (CPD), receptor-binding domain (DRBD), and C-terminal
combined repetitive oligopeptides domain (CROPs) (17). In total, 11 types of TcdA variants
and 16 types of TcdB variants were detected among the 175 TCD genomes. At the amino
acid (AA) level, the minimal similarity of TcdA sequences was 98.8%, while it was only
87.5% for TcdB sequences, showing that the diversity of TcdB was higher than TcdA
(Fig. 2C and D). The relationship between most STs and TcdA/B variants showed one-to-

FIG 2 The relationship between TcdA, TcdB variants, and MLST. (A) The genomic structure of PaLoc in the reference strain C. difficile CD630. (B) Riverplot
graph showing the relationship between TcdA, TcdB variants, and MLST. The flows are colored according to MLST. (C) Amino acid sequence identity
between the 11 types of TcdA variants. (D) Amino acid sequence identity between the 16 types of TcdB variants. Because the TcdA CROP domain
contained many repeat sequences, the complete amino acid sequence was unable to be assembled, so only the first 6330 nucleotide sites (1 to 2110 aa)
were included in the analysis.
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one correspondence, except for ST35 (corresponding to TcdA03 and TcdA04), ST54 (corre-
sponding to TcdB01, TcdB12, and TcdB14), and ST2 isolates (corresponding to TcdB02,
TcdB03, and TcdB11) (Fig. 2B). However, there were only one or two AA substitutions
between the variants that occurred in the same ST isolates, indicating strong consistency
between STs and TcdA/B variants. In addition, six TcdR, three TcdE, and five TcdC variant
types were identified. However, in certain STs, some genes were truncated on account of
mutations. In ST37 isolates, all of TcdA and part of TcdR were truncated. In ST820 isolates,
both TcdC and TcdE were truncated, while in ST11 isolates only incomplete TcdC was
detected (Fig. S5).

Antibiotic resistance spectrum of C. difficile. Multidrug resistance is common
among C. difficile isolates (10). To decipher the antibiotic resistance spectrum, we tested
the antimicrobial susceptibility of the C. difficile isolates. Readouts were obtained for 96.1%
(268/279) isolates. High resistance rates were shown for erythromycin (66.0%, 177/268),
tedizolid (64.6%, 173/268), and clindamycin (62.3%, 167/268), followed by moxifloxacin
(26.1%, 70/268), and rifaximin (9.7%, 26/268). Low resistance rates were shown for tigecy-
cline (3.0%, 8/268), imipenem (0.8%, 2/268), and chloramphenicol (0.4%, 1/268). All isolates
were susceptible to metronidazole, vancomycin, fidaxomicin, and amoxicillin-clavulanic
acid (Fig. 3). In this study, 50.4% (135/268) of isolates were MDR, while only 10.1% (27/268)
were susceptible to all the tested antibiotics. Interestingly, we found that the resistance
rate was higher in NTCD than in TCD isolates for erythromycin, moxifloxacin, and rifaximin
(P , 0.05); while the susceptibility for tedizolid was lower among TCD isolates than NTCD
isolates (P, 0.05), and only TCD isolates were resistant to tigecycline. Although no isolates
were resistant to vancomycin, the susceptibility was lower in TCD than in NTCD isolates
(P, 0.01) (Table 1).

According to the ResFinder and CARD databases, a total of 26 antibiotic resistance
genes (ARG) was detected, which conferred antibiotic resistance to aminoglycoside,
chloramphenicol, lincosamide, trimethoprim, macrolide, streptothricin, and tetracy-
cline. Erythromycin ribosomal methylase genes of class B (ermB), mediating resistance
to antibiotics of the macrolide-lincosamide-streptogramin B (MLSB) family, were
detected in 88% (154/175) of the erythromycin-resistant isolates and 90.9% (149/164)
of the clindamycin-resistant isolates. Chloramphenicol O-acetyltransferase gene (catP)
was detected in 11 isolates, which all showed lower susceptibility to chloramphenicol
(MIC $ 8 mg/liter) (Fig. 3). DNA gyrase GyrA/GyrB and RNA polymerase RpoB confer
mutational resistance to fluoroquinolones and rifamycin. All the 65 moxifloxacin-resist-
ant strains had mutations in the gyrA or/and gyrB genes corresponding to T82I and
D81N for GyrA and D426N and D426A for GyrB, and substitution on GyrB D426 only
resulted in low-level resistance (MIC = 8 mg/liter). All the 26 rifaximin-resistant isolates
had a mutation corresponding to a R505K substitution in RpoB, which was consistent
with a previous report (Table 2) (12).

C. difficile nosocomial transmission. Nosocomial transmission is one of the major
routes of pathogen transmission. To elucidate the cause of the C. difficile epidemic, 251
isolates from inpatients from 22 distinct wards were included in the analysis (Fig. S3B).
Up to 43.8% (110/251) of the isolates were genetically linked to the genetically closed
previous case (single nucleotide variation [SNV] # 3), while only 30.7% (77/251) of the
isolates were genetically distinct from all the previous isolates, indicating C. difficile
transmission could present in this hospital (Fig. 4A). A total of 335 genetically linked
case pairs was identified (pairwise SNVs # 3), while only nine (2.7%) case pairs were
considered to have ward contact, 65 (19.4%) case pairs were likely caused by ward con-
tamination, and 23 (6.9%) case pairs were considered to have hospital contact. The
results were similar when we changed the threshold from SNV = 0 to SNV # 10
(Fig. 4B). Based on SNVs # 3, a total of 133 genetic clusters was classified, of which 30
clusters contained more than one isolate, and the largest cluster contained 15 isolates
(Fig. 5A). The detailed in-hospital transmission routes were shown in the transmission
network based on SNVs, ward, and sampling time (Fig. 5B). These results showed that
there was no strong correlation between epidemiological linkages and genetic
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linkages, indicating the existence of other potential transmission routes, such as medi-
cal facility contamination or neglected intermediate hosts.

In total, 251 isolates were obtained from 234 inpatients, of which 14 inpatients had two
or more isolates taken at different times. Patient 8, for whom a TCD isolate was detected,
acquired an NTCD isolate after 297 days. For patient 2 and patient 4, NTCD isolates (pair-
wise SNVs # 10) were detected for all tests, indicating a long period of colonization (270
and 288 days). For another 11 patients, TCD isolates were detected for all tests, indicating
a colonization time ranging from 4 days to 326 days. Patient 1 and patient 9 appeared to
be reinfected after 153 or 94 days, as the SNVs between the two TCD isolates were 45 and
24, respectively. The other nine patients were considered to have undergone relapse or
had a long period of TCD colonization as the pairwise SNVs were , 10. These results
showed that patients may be colonized with C. difficile for a longer period than previously
expected, reaching at least 288 days with NTCD and 326 days with TCD isolates (Fig. 6).

FIG 3 Distribution of antimicrobial resistance elements. The phylogenetic tree was structured as in Fig. 1A. The branches and the color strip next to the
tree are colored according to SCs. From left to right, the red heatmap represents the ARGs identified by the Resfinder and CARD databases, the green
heatmap represents the amino acid substitutions, and the blue heatmap represents the resistant phenotype. The dark color indicates presence (resistance),
and the light color indicates absence (susceptibility).
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As C. difficile can colonize the intestine of patients asymptomatically, the role of
nosocomial transmission between CDI and asymptomatic colonized patients remains
controversial (18–20). Here, we classified culture-positive cases with clinically signifi-
cant diarrhea ($3 times per 24 h or unshaped) as CDI and cases without diarrhea as C.
difficile asymptomatic colonization (CDAC) (19). Of the 110 isolates genetically linked
to a prior case, 50% of the isolates were associated with CDI cases, whereas 50% of the
isolates were associated with CDAC cases (Fig. S6).

DISCUSSION

According to the high mortality and relapse rates, an increasing number of studies
have focused on CDI over the last 2 decades. The research has shown that C. difficile
epidemiology and molecular types are diverse around the world (21). In China, most
studies have only focused on the incidence and antibiotic-resistant phenotypes of C. diffi-
cile isolates. In this study, we performed a large genomic analysis of C. difficile isolates from
patient samples taken over 4 years in a single health care center. Furthermore, detailed
clinical information and epidemiological data were included to thoroughly investi-
gate the strain characteristics and nosocomial transmission. To our knowledge, this
is the first genomic study investigating the integrated characterization of C. difficile
in a Chinese hospital.

Based on previous studies, young children have high rates of C. difficile carriage and
advanced age is regarded as the risk factor for CDI (22, 23). Our results showed that
the positive rate of detection of C. difficile in patients below 18 years of age was signifi-
cantly higher than for other age groups, while the C. difficile carriage rate among the
older patients was even lower than the median aged patients. It suggested that
patients of any age had the potential for C. difficile carriage, which indicated the poten-
tial need for routine monitoring of this organism. Additionally, higher positive rates
were detected in patients with malignancy, IBD, and nephrosis, which were associated
with another CDI risk factor, hypo-immunity (22).

TABLE 2 Amino acid substitutions in gyrA, gyrB, and rpoB

Mutation sites
Moxifloxacin (no. of
isolates) Mutation sites Rifamycin (no. of isolates)

gyrA gyrB Ra S ND rpoB R S ND
T82I 23 H502N, R505K, I750M 22
T82I S366A 32 R505K 1
T82I S366A, R447K 1 R505K, I548M 1
T82I, M299V 1 R505K, I750M 2
T82I, M324I V130I 3 I750M 62 1
T82I, K413N Q160H, S366V, S416A 1 I750V 27 2
D81N 1 D1160E 2
D81N S366A 1 16 pointsb 1

D426A 1 WT 148 1
D426N 3

M299V D426N 1
S366A 49 1
S366A, D465N 1
I139R 28 2
V130I 9

M324I V130I 7
M299V 5
A99V, M299V 1
K413N Q160H, S366V, S416A 1
T581N 1
12 pointsc 8 pointsd 1
WT WT 95 1
aR, resistant; S, susceptible; ND, not detected.
bT227S, E291Q, D312E, A316D, D350N, S575A, E603D, N744S, D747E, Q748K, I750E, K751R, V951I, S1038T, E1019D, D1232E.
cN4K, V194I, L406Q, E410D, K413N, D444E, S478A, V546I, A613T, K628R, E664D, E693D.
dV130L, I139V, I348L, S366A, S416A, V563A, E581D, E586D.
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Global epidemics of CDI have shown that C. difficile is frequently transmitted around
the world (24). However, molecular epidemiology is still diverse between different con-
tinents. Unlike the predominant type ST1 and ST11 in European and American coun-
tries, ST35, ST3, ST37, and ST54 were the most prevalent type in China (25, 26), which
was generally consistent with our findings. In recent years, the hypervirulent isolate
RT027, which is CDT-positive, has been increasingly reported (6). During our study pe-
riod, two CDT-positive isolates, belonging to the new ST (ST820), were detected from a
55-year-old female patient during two separate admissions. The patient had severe di-
arrhea on both occasions but improved after vancomycin treatment. There were 20
and 191 aa substitutions detected in TcdA and TcdB, respectively, and tcdC, a reverse
regulation gene that can inhibit toxin expression, was truncated in these isolates
(Fig. S5). It is worth noting that these isolates are resistant to clindamycin, which is
associated with the outbreak of C. difficile during the previous epidemic (27). Although
no other ST820 isolates are detected subsequently, it is significant that a new hypervir-
ulent strain has emerged in this region. A robust surveillance system is essential to pre-
vent the outbreak of hypervirulent strains.

FIG 4 The relationship between genetic linkages and epidemiological linkages. (A) SNVs between each case and the most genetically closed previous case.
(B) The percentages of the epidemiological-linked case pairs in genetically linked case pairs according to the different SNV thresholds (from SNV = 0 to
SNV # 10). CD630 was used as the reference genome.
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In our study, 64.8% of the isolates were TCD and predominated by ST54, ST37, ST2,
and ST35. Several studies suggested that tcdA and tcdB variants could affect the diag-
nosis, vaccine development, and even the disease severity (28–30). Multiple different
toxin variants were detected among the 175 TCD isolates, containing 11 types of TcdA

FIG 5 Transmission networks of C. difficile positive inpatients based on SNVs, wards, and sampling time. Only 30 multiple case clusters are shown. Filled
colors indicate the ward information. (A) The x-axis indicates the collection date. Each plot represents an isolate. Isolates sharing more than three SNVs
with any prior isolates were defined as a distinct cluster and were plotted on a separate horizontal line. (B) The shape of arrows represents the sample
interval: solid line (in 28 d), dashed line (28 d to 365 d), and vertical slash (.365). The arrowhead points to the isolates collected later.

FIG 6 Samples isolated from the same patient at different times. Each plot represents an isolate, and
each line represents a patient. Genetically related isolates are shown in the same color. TCD isolates
are represented by circles and NTCD isolates by triangles. Isolates connected with solid lines indicate
0 to 3 pairwise SNVs, while isolates connected with dashed lines indicate 4 to 10 pairwise SNVs.
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and 16 types of TcdB variants, and the diversity of TcdB was higher than TcdA. A strong
consistency was found between toxin variants and MLST, indicating that tcdA and tcdB
were stable in C. difficile without frequent mutation and horizontal transmission.
Meanwhile, a recent study considered that MLST, ribotype, and toxin variants were not
always consistent (30), and another study suggested that the tcdB genes not only fre-
quently mutate, but also continuously transfer and exchange among C. difficile strains (31).
The toxin variants should be continuously monitored in future studies for a better under-
standing of the pathogenesis of C. difficile and the development of effective vaccines.

The PaLoc is replaced by a 115 bp noncoding region in NTCD isolates (32). To date,
research has focused on NTCD isolates because they can acquire PaLoc via a conjuga-
tion-like mechanism (33). In our research, up to 35.2% of the isolates were NTCD, of
which 52.6% belonged to ST39. The MIC results showed that the antibiotic resistance
rates were higher in NTCD isolates for erythromycin, moxifloxacin, and rifaximin.
Furthermore, up to 80.0% (24/30) of the moxifloxacin-resistant and 90% (18/20) of the
rifaximin-resistant NTCD isolates belonged to ST39. Considering the high detection
rate and antibiotic resistance rate of ST39 isolates, more attention should be paid to
the molecular epidemiology and antibiotic resistance surveillance, in case of an out-
break of C. difficile ST39 in this region.

Because reference genome selection could influence the result of SNV calling (34),
we used two reference genomes CD630 (clade 1) and M68 (clade 4) for calling the
SNVs. The results were similar with each of the different reference genomes (Fig. 4 and
Fig. S7). As clade 1 was predominant in our study, we decided to use CD630 as the ref-
erence genome for all SNV analyses. A high proportion (43.8%) of genetically linked
isolates were detected in our study. We compared the pairwise SNVs from the same
STs and the results showed that the most prevalent types in this study, ST39, and ST54,
had the lower pairwise SNVs than other STs (Fig. S8). As the proportion of genetically
linked isolates was associated with the local prevalent types (19), this could explain the
larger fraction of genomic linkages in our study.

Patients with symptomatic infection or asymptomatic colonization may shed spores
into the environment, where spores could persist for months (20, 35, 36). In this study,
the proportions of isolates genetically linked to a prior CDI or CDAC case were equal,
indicating CDI and CDAC patients had the same potential to cause the spread of C. dif-
ficile. In addition, our results showed that the colonization of C. difficile in patients could
persist for almost a year, which was the potential risk of C. difficile in-hospital transmission.
Therefore, routine screening of C. difficile on admission should be considered for all
patients. Nonetheless, there were still many genetically related isolate pairs without evi-
dence of contact, indicating the existence of other transmission routes. Further studies are
required to better understand the transmission routes for developing more effective pre-
vention strategies.

There are a few limitations to our study. First, only one colony was collected and
sequenced from each sample; therefore, mixed infections by two or more C. difficile
isolates were likely missed. Second, as C. difficile can form spores when in contact with
oxygen, it can survive in a harsh environment such as the hospital environment for a
long time. It may also colonize the intestinal tract of health care workers, relatives, and
friends without symptoms. In this study, only patients were included for C. difficile
screening, which could explain the lower proportion of epidemiological linkage among
the genetically linked isolates. Further research should collect samples from the envi-
ronment and close contacts, which might help to explain the nosocomial transmission
more comprehensively.

In conclusion, on account of the high detection rates, serious antibiotic resistance,
and diverse genome characteristics of the C. difficile isolates from the hospital in China,
more attention should be paid to molecular epidemiological surveillance. As WGS is
becoming a powerful tool for pathogen monitoring, a C. difficile surveillance system
based on WGS should be established in China to prevent the nosocomial transmission
of C. difficile and even outbreaks of infection.
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MATERIALS ANDMETHODS
Strains and patients. A total of 953 stool samples was collected between February 1, 2019 and

January 31, 2020, from the First Affiliated Hospital of Sun Yat-sen University, a hospital with more than
2,000 beds in Guangzhou, China. After removing the duplicated samples, 173 C. difficile isolates were
cultured successfully from 894 independent samples. To obtain a more comprehensive understanding
of C. difficile characteristics in this region, another 106 isolates collected between December 1, 2015 and
January 31, 2019 from the same hospital were included for further analysis, consisting of a total of 279
isolates. Detailed clinical information was collected after discharge.

Isolation and identification. Stool samples were cultured on taurocholate cycloserine-cefoxitin fruc-
tose agar in an atmosphere comprising 90% N2, 5% H2, and 5% CO2 at 37°C for 48 h. The colonies were
identified according to the typical morphology and odor of C. difficile and were confirmed by PCR of the
housekeeping gene tpi and matrix-assisted laser desorption-ionization mass spectrometry. Multiplex
PCR was performed to identify TCD isolates (37). Isolates that were either tcdA or tcdB positive were
defined as TCD.

Antimicrobial susceptibility testing. MIC assays were performed by the agar dilution method as
recommended by the Clinical and Laboratory Standard Institute (CLSI) with 12 antimicrobial agents. C.
difficile ATCC 700057 was used as a control, at least in duplicate from independent cultures. The panels
included metronidazole, vancomycin, fidaxomicin, tigecycline, rifaximin, clindamycin, erythromycin,
chloramphenicol, moxifloxacin, tedizolid, imipenem, and amoxicillin-clavulanate. Susceptibility was
interpreted based on the CLSI and European Committee on Antimicrobial Susceptibility Testing
(EUCAST) breakpoints. Isolates resistant to three or more antibiotic classes were considered to be multi-
drug-resistant (MDR) according to the CLSI.

Genome sequencing and analysis. The C. difficile clinical isolates were grown in Brucella broth sup-
plemented with vitamin K1 and chlorhematin for 18 to 24 h at 37°C anaerobically. DNA was extracted
and purified using the Qiagen QiaAmp kit. Genomes were sequenced by Illumina technology. Raw reads
were quality controlled by fastp and assembled by SPAdes (v.3.6.1) with the “–careful” parameter (38).
Contigs $1 kb in length were kept. Kraken2 was used for decontamination, then Quast (v.4.4) was used
for assessing the quality of assemblies, and Prokka (v.1.12) was used for annotation. STs were assigned
by C. difficile PubMLST (https://pubmlst.org/cdifficile/), and new STs were submitted for assignment im-
mediately. Pan-genome analysis was performed by Roary (v.3.12.0) (39). The core-genome single-nucleo-
tide polymorphisms (cgSNPs) were extracted by SNP-sites (40). After strict filtration, a maximum likeli-
hood phylogeny based on cgSNPs was constructed by RAxML (v.8.2.10) with 100 bootstrap replicates
and visualized by iTOL (https://itol.embl.de/). Hierarchical bayesian analysis of population structure
(hierBAPS) was carried out to assign sequence clusters (SCs) based on the core genome.

Virulence gene variants analysis. The virulence genes were detected by ABRicate (v.0.8.7) based
on the Virulence Factor Database (VFDB). The tcdA (1 to 6330 bp), tcdB (7098 bp), tcdC (699 bp), tcdR
(185 bp), and tcdE (501 bp) gene sequences were obtained by BLASTn, which searched de novo assem-
blies compared with reference sequences from C. difficile strain CD630 (GenBank accession no.
AM180355.1). Then, the sequences were translated into amino acid (aa) sequences for variant classifica-
tion. The R package “ggalluvial” and “pheatmap” were applied to draw the river plots and heatmaps.

Resistance gene analysis. The resistance genes were detected by ABRicate (v.0.8.7) based on the
Resfinder and CARD databases. For detecting mutations, the gyrA, gyrB, and rpoB sequences were
extracted and compared with the reference sequences from C. difficile strain CD630 with BLASTn. Only
nonsynonymous mutations were kept for further analysis. The heatmap was visualized by iTOL.

Calling of single-nucleotide variants. For calling the single-nucleotide variants (SNVs), the raw reads
were mapped against the reference genome sequence of C. difficile strain CD630 and M68 (GenBank acces-
sion no. FN668375.1) through Burrows-Wheeler alignment (BWA) (41). After sorting the reads by SAMtools,
Gatk HaplotypeCaller was employed to call the SNVs. Gatk VariantFiltration was then performed to obtain
high-quality SNVs, using the parameters “-filter ‘QUAL , 30.0’ -filter ‘QD , 2.0’ -filter ‘MQ , 40.0’ –window
10 –cluster 2.”

Transmission analysis. Based on the analyses by Eyre et al. (42), we considered that isolates with 0
to 3 SNVs were genetically linked. Isolates were considered genetically distinct if they possessed more
than 10 SNVs. Patients who shared time (two positive samples collected within 28 days) on the same
ward were considered having ward contact. Patients admitted to the same ward, but up to 28 days
apart, were considered to have possible ward contamination. Ward contamination was assumed to per-
sist for 365 days. Patients who shared time in the same hospital without ward contact were considered
having hospital contact (43). For patients from whom multiple samples were taken, more than 10 SNVs
between isolates were considered a new strain (42). Boxplot and bar charts were created by R package
“ggplot2,” scatterplots were created by GraphPad Prism 8 software and transmission networks were per-
formed by Cytoscape (v.3.8.2).

Statistical analysis. Statistical analysis was performed using GraphPad Prism 8 software by a Mann–
Whitney U test and chi-square test (n $ 40; with Yale’s correction for continuity if 1 , T # 5). P , 0.05
was considered statistically significant.

Data availability. Sequences generated during this study can be found in the NCBI database under
BioProject PRJNA686004.
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