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Abstract

Many automatically analyzable scientific questions are well-posed and a variety of infor-

mation about expected outcomes is available a priori. Although often neglected, this

prior knowledge can be systematically exploited to make automated analysis operations

sensitive to a desired phenomenon or to evaluate extracted content with respect to this

prior knowledge. For instance, the performance of processing operators can be greatly

enhanced by a more focused detection strategy and by direct information about the ambi-

guity inherent in the extracted data. We present a new concept that increases the result

quality awareness of image analysis operators by estimating and distributing the degree of

uncertainty involved in their output based on prior knowledge. This allows the use of sim-

ple processing operators that are suitable for analyzing large-scale spatiotemporal (3D+t)

microscopy images without compromising result quality. On the foundation of fuzzy set

theory, we transform available prior knowledge into a mathematical representation and

extensively use it to enhance the result quality of various processing operators. These

concepts are illustrated on a typical bioimage analysis pipeline comprised of seed point

detection, segmentation, multiview fusion and tracking. The functionality of the proposed

approach is further validated on a comprehensive simulated 3D+t benchmark data set

that mimics embryonic development and on large-scale light-sheet microscopy data of a

zebrafish embryo. The general concept introduced in this contribution represents a new

approach to efficiently exploit prior knowledge to improve the result quality of image analy-

sis pipelines. The generality of the concept makes it applicable to practically any field with

processing strategies that are arranged as linear pipelines. The automated analysis of

terabyte-scale microscopy data will especially benefit from sophisticated and efficient

algorithms that enable a quantitative and fast readout.

Introduction

Available prior knowledge is often not sufficiently considered by automatic processing pipe-

lines. Consequently, a great amount of potentially useful extra information remains unused.
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Particularly in the domains of image processing and image analysis, the visual analysis of

acquired image data offers a large repository of usable a priori information that can often easily

be verbalized by experts of the respective application fields. In contrast to this, examples of the

successful incorporation of prior knowledge are, e.g., the approaches described in [1, 2]; these

make use of information about the expected object number as well as their associated physical

size in order to adjust and improve seed point detection algorithms. Analogously, properties

such as size, shape, geometry, intensity distributions and the like can be used to improve the

performance of image segmentation algorithms [3–5]. Such prior knowledge is often embed-

ded into the algorithms via shape penalization terms that are appended to the energy func-

tional of a graph-cut [4, 6] or a level-set segmentation [7] or by generalized Hough transforms

that can detect arbitrary shapes [8]. Object properties such as size, shape and movement

dynamics can also be used to formulate efficient correction heuristics for object tracking algo-

rithms [9–11].

A great, but often underrated potential for algorithmic improvements lies in the estimation

of uncertainties of the automatically produced results and should ideally be considered by sub-

sequent processing steps [12]. On the pixel level, this uncertainty can be used to assess the

information quality of a single pixel due to sensor imperfections or temperature dependence

[12, 13]. Furthermore, the localization uncertainty of geometric features such as corners, cen-

troids, edges and lines in images was assessed in [14–17]. An approach to evaluate the quality

of image registration algorithms was presented in [18]. Apart from quality assessment, uncer-

tainty quantification also plays a role in areas such as face recognition and other biometric

technologies [19–21], the tracking of shapes in ultrasound images [22] or to evaluate the

impact of noisy measurements on the validity of diagnosis results [23]. An uncertainty formu-

lation based on fuzzy set theory was employed to perform pixel- or object-based classification

tasks [24–26]. A further possibility of exploiting uncertainty information is to optimize param-

eter values of a respective operator in a feedback fashion such that the outcome minimizes a

previously defined optimization criterion as demonstrated in [27, 28]. Another example is the

improvement of a graph-based watershed implementation, where uncertainties are used to

assess the influence of individual edges on the final segmentation outcome [29].

Hitherto, however, a uniform approach to systematically transform, embed and use the

available prior knowledge to improve both existing and new algorithms has been missing.

Although the sequential arrangement of processing operators is a widely used concept in

image analysis, results propagated through the pipelines are mostly not assessed by the

individual pipeline components with respect to their result quality. Thus, errors made in

early processing steps tend to accumulate and may negatively affect the final result quality.

Additionally, many existing methods for processing tasks such as seed point detection, seg-

mentation and tracking are often not directly applicable to large-scale 3D+t data sets due to

enormous memory or computation time demands.

Throughout the present contribution, uncertainty is considered to be imperfect knowledge

about the validity of a piece of extracted information produced by an image analysis operator

with respect to available prior knowledge. We use the term uncertainty propagation to refer to

sharing information about result quality among different pipeline components and use this

information to derive efficient improvement heuristics to enhance the final outcome of the

pipelines [30, 31].

The work presented in this paper contains parts of a recently published PhD thesis by one

of the authors (J. Stegmaier) [32] and is based on our previous concept paper [31], where we

sketched the concept of using fuzzy set theory to transform available prior knowledge into a

mathematical representation. A list of symbols is provided in S1 Table. Here, we briefly reca-

pitulate the theoretical framework and perform an extensive validation of the proposed
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concepts to enhance the performance and to improve the results of image analysis operators

by data filtering, uncertainty propagation and explicit exploitation of information uncertainty.

In particular, we extend an exemplary image analysis pipeline comprised of seed point detec-

tion, segmentation, multiview fusion and tracking with uncertainty handling. We demonstrate

how simple processing operators can be extended with uncertainty handling to improve large-

scale analyses of 3D+t microscopy images. All methods are quantitatively validated on a com-

prehensive simulated validation benchmark data set that mimics embryonic development and

is inspired by epiboly movements of zebrafish embryos. Moreover, we show qualitative results

obtained with the presented framework on large-scale light-sheet microscopy data of develop-

ing zebrafish embryos.

Methods

Uncertainty propagation in image analysis pipelines

The image analysis pipeline concept. Most image analysis pipelines make use of multiple

processing operators that are arranged as a linear processing pipeline and perform specialized

tasks, such as improving or transforming the image signal, or extracting information from

the images (Fig 1). The Nop sequentially connected operators receive either an input image

(denoted by Ii), extracted features (denoted by X i) or both from their preceding processing

operator with i 2 {1, . . ., Nop} being the ID of the operator.

The output set X i of processing operator i is an (Ni × Nf,i) matrix with Ni data tuples and

Nf,i features. For processing operators without any feature output, X i is an empty matrix and

only the processed image is passed to the next operator.

Identification of suitable prior knowledge. Prior knowledge can be obtained from expert

knowledge, literature, experimental evidence or knowledge databases. Through visual analysis

of acquired data, experts can often easily identify recurring patterns, intensity properties or the

appearance of objects and can describe these in natural language. An exemplary overview of

such prior information derived from microscopy images is summarized in Table 1. Here, prior

information is listed in bottom-up order, i.e. starting at the acquisition stage via the content of

a single image, through to the comparison among time series of images or features. Naturally,

the listing is not exhaustive and suitable features have to be carefully selected to match the

underlying image material and analysis problem. In the following sections, the presented natu-

ral language expressions will be used to transform the prior knowledge of different sources to a

consistent mathematical representation using the concept of fuzzy sets.

Quantifying prior knowledge using fuzzy set membership functions. To transform the

prior knowledge presented in Table 1 into a mathematical representation, we make use of

fuzzy sets that have been introduced by Zadeh in 1965 [33]. The simple yet powerful concept

of fuzzy sets enables natural language descriptions of observed phenomena to be easily mapped

to a numerical representation and can also be used to model vague knowledge or partially true

statements. While estimating density functions for a probabilistic framework might be cum-

bersome, time consuming or simply not possible due to a lack of data, fuzzy sets can be easily

parameterized based on prior knowledge that is usually available from (biological) experts in

Fig 1. General image analysis pipeline comprised of Nop sequentially arranged processing operators. Each operator directly

depends on the quality of the input images (I*) or features (X �) provided by its predecessor (adapted from [31]).

https://doi.org/10.1371/journal.pone.0187535.g001
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the field or can be derived from a few representative data points. Additionally, valid objects

may exhibit a different size, shape or appearance but are still equally correct. Thus, plateau

regions in trapezoidal fuzzy set membership functions offer a convenient and practically

motivated way of modeling such diversity among valid objects. Last but not least, the close

connection to natural language expressions makes fuzzy set theory easily understandable, even

without a strong mathematical background.

Analogous to the characteristic function of a classical set, a fuzzy set A can be defined by its

associated membership function (MBF) mA : X 7! ½0; 1� that maps each element of a universe

of discourse X to a value in the range [0, 1] [33]. This assigned value in turn directly reflects

the fuzzy set membership degree (FSMD) of the respective element to the fuzzy set A. The spe-

cial cases mAðxÞ ¼ 1 and mAðxÞ ¼ 0 indicate that x is fully included or not part of the fuzzy set

A, respectively [34]. The most common membership functions used in practice are trapezoidal

membership functions, which can be parameterized to model singletons, triangular and rect-

angular MBFs. A trapezoidal membership function can be formulated as

mAðx; θÞ ¼ max min
x � a
b � a

; 1;
d � x
d � c

� �

; 0

� �

; ð1Þ

with the parameter vector θ = (a, b, c, d)> that is used to control the start and end points of the

respective transition regions. Here, we make use of a standard partition, i.e., maximally two

neighboring fuzzy sets overlap and have non-zero membership values for a certain value of x
and the respective membership degrees for any input value of x sum up to 1 (Fig 2).

As an example, consider an object detection algorithm where a size-based feature of each

object serves as an indicator of its appropriateness. As described in [35], the linguistic terms

could be determined by five possible outcomes, where the extracted size feature . . .

1. . . . perfectly matches the expected value (Correct).

2. . . . is smaller than expected but might be useful (Small).

Table 1. Prior knowledge for 3D+t image analysis and exemplary natural language expressions.

Source Description Example

Image Acquisition Acquisition-specific prior knowledge such as illumination conditions, detection path,

image resolution, physical spacing of voxels, high-quality image regions, point spread

function (PSF) or the detection path.

Image quality decreases from . . . to . . .

Intensity Signal-dependent information like the intensity range, time-variant characteristics of

objects (e.g., photobleaching in fluorescence microscopy), signal-to-noise ratio and

global statistical properties of the image intensity values.

Valid objects are brighter than . . .

Localization Positional information of the objects or object properties in absolute image coordinates.

Furthermore, localization of extracted properties or objects relative to each other can be

used to define neighborhood relations.

Object type . . . only appears close to

location . . .

Spatial Extent Object properties such as size, volume, principal components, convex hull extents or

bounding volumes.

Object type . . . is larger than . . . but

smaller than . . .

Geometry Geometrical properties like dimensionality, symmetry, shape, proportions and relative

localization of features within an object.

Object type . . . has a line-like shape with

a central symmetry axis.

Morphology Combination of intensity-based and geometrical properties, e.g., to link information about

patterning, texture, structure and color to geometrical properties such as shape and

symmetry.

Object . . . is spherical, bright and has a

textured surface.

Object Interaction Characterization of between-object properties like clustering, adhesion, repulsion,

division or regional density changes.

Object behavior . . . rather appears in

dense regions.

Spatio-Temporal

Coherence

Dynamically changing quantities such as object growth, movement direction, speed,

object appearance and disappearance.

Object moves maximally . . . pixels

between two subsequent frames.

https://doi.org/10.1371/journal.pone.0187535.t001
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3. . . . is larger than expected but might contain useful information (Large).

4. . . . is too small and not useful (Too Small, e.g., noise or artifacts).

5. . . . is too large and not useful (Too Large, e.g., segments in background regions).

Available prior knowledge can be used to determine the parameterization of the associated

fuzzy sets and an exemplary standard partition is shown in Fig 2A. If only one outcome of the

operators is of importance (e.g., Case 1 in the above-mentioned example), it is possible to use

only one linguistic term and to aggregate all other cases by its complement (Fig 2B). We use

mAifl
: R! ½0; 1� to denote the fuzzy set membership function for image analysis operator i,

feature f 2 {1, . . ., Nf,i} and linguistic term l 2 {1, . . ., Nl}. Thus, the n-th data tuple produced

by operator i obtains the FSMD value mAifl
ðxi½n; f �Þ to the fuzzy set Aifl for each feature f and

each linguistic term l.
Combination of fuzzy set membership functions. Fuzzy set membership degree values

of multiple features that characterize a linguistic term (e.g., if an object of interest is bright and

elongated at the same time) can be combined using a fuzzy pendant to a logical conjunction

[30]. A conjunction of Nf,i fuzzy set membership functions for linguistic term l can be defined

using the general t-norm operator \ (triangular norm):

mlc;Ail
ðxi½n�Þ ¼ \f¼1;...Nf ;i

ðmAifl
ðxi½n; f �ÞÞ: ð2Þ

Features that should not contribute to the combined fuzzy set membership function can be

disabled by setting the corresponding MBFs to the constant value 1 (identity element of

the conjunction) and the complement of the combined linguistic term is simply given by

1 � mlc;Ail
ðxi½n�Þ as illustrated in Fig 2B. Common fuzzy t-norm operators are the multiplica-

tion, the bounded difference and the minimum operator [36]. In S1 Note, we provide an over-

view of the three major t-norm/t-conorm pairs and discuss the respective advantages and

drawbacks of the different operators.

Uncertainty propagation in image analysis pipelines. We use the FSMD values associ-

ated with each data tuple to perform a feed-forward propagation of the reliability of extracted

data to downstream operators. For each data vector that is produced by operator i, we calculate

the degree of membership to the respective fuzzy sets and append it to the feature output X i. If

only a classification into correct vs. incorrect objects needs to be performed (Fig 2B) or if a lin-

guistic term is described by a combination of different fuzzy sets (Eq (2)), a single FSMD value

Fig 2. Different possibilities to partition the input space of a feature x using trapezoidal membership functions. In (A), each of the

linguistic terms has a separate fuzzy set and (B) shows a reduced version with only two fuzzy sets that correspond to the desired class and

its complement. In (B), different possibilities to summarize the correct objects arise. Besides restricting the class to the correct set as done in

(B), the correct fuzzy set could be extended by the potentially useful classes (Small and Large). However, the appropriate formulation has to

be chosen application dependent.

https://doi.org/10.1371/journal.pone.0187535.g002
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is appended per data tuple. Besides using the FSMD values for object classification, the gradual

membership values to one or the other class can explicitly be used to perform object filtering,

weighted object fusion, extended information propagation or to resolve ambiguities.

Uncertainty-based object rejection. The first application of the uncertainty framework

is to filter the extracted output information X i produced by an operator i using thresholds

αil 2 [0, 1]. According to the FSMD values mlc;Ail
ðxi½n�Þ calculated for each data tuple

xi½n� 2 X i, xi[n] is only passed to the next pipeline component if mlc;Ail
ðxi½n�Þ � ail for the

membership to a desired set. The reduced set which serves as input for operator i + 1 is

denoted by ~X i. To keep all extracted information, the threshold is set to αil = 0. In contrast,

when αil = 1, no uncertain information is passed to operator i + 1. Based on application specific

criteria or object properties, this FSMD-based object rejection readily allows false positive

detections to be filtered out, as demonstrated in the following sections on seed point detection

and segmentation, respectively.

Extended information propagation to compensate operator flaws. Second, we allow

operators to fall back on information of penultimate processing steps if predecessors do not

deliver good results. For instance, if an operator i fails to sufficiently extract information from

its provided input data (e.g., missing, merged or misshapen objects), it can inform downstream

operators about these flawed results. Using a second threshold βil 2 [αil, 1] for each operator,

the FSMD level below which the information of the previous steps should be additionally

propagated can be controlled. This means that instead of only forwarding the αil-filtered set

~X i � X i produced by operator i to operator i + 1 a set Oi ¼
~X i [

~O i� 1 with i� 2 and O1 ¼
~X 1

is passed through the pipeline.

~O i� 1 represents the subset of elements in Oi−1 which were not successfully transferred into

useful information by operator i, i.e., elements xi−1[n] 2 Oi−1 that generated output xi½n� 2 ~X i

with ail � mlc;Ail
ðxi½n�Þ < bil. Such elements characterize information of operator i − 1 that

might be useful in later steps to correct flawed results of operator i. If βil = 1 all information of

i − 1 that produced an uncertain outcome is propagated to the successor i + 1. If βil = αil only

the information ~X i produced by operator i is propagated. In the current version of the frame-

work, the respective processing operators are responsible for calculating Oi and the respective

FSMD values.

This approach successfully resolved tracking conflicts that originated from under-segmen-

tation errors as described in the results section.

Resolve ambiguities using propagated uncertainty. In addition to filtering and propa-

gating the operator information within the pipeline, uncertainty information can explicitly be

used by the processing operators to improve their results. Depending on the degree of uncer-

tainty of information, parameters or even whole processing methods can be adapted if needed.

Although the adaptations required by a particular algorithm cannot be generalized, we present

two potential applications: the fusion of redundant seed points and the correction of under-

segmentation errors.

The general scheme for the proposed uncertainty propagation framework is summarized in

Fig 3 and is applied to an exemplary image analysis pipeline in the next sections.

Extending and enhancing algorithms with uncertainty treatment

Based on the general concept presented in the previous section, we applied it to an exemplary

image analysis pipeline comprised of seed point detection, segmentation, multiview fusion and

object tracking. For each operator, FSMD values were estimated based on prior knowledge

and used for algorithmic improvements where possible. We used a simulated benchmark data

Fuzzy-based propagation of prior knowledge to improve large-scale image analysis pipelines
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set that mimicked 3D microscopy images containing fluorescently labeled nuclei of an artificial

embryo (S1 and S2 Videos). The benchmark was inspired by the epiboly movements happen-

ing in early zebrafish development. After the blastula stage is complete, cells located at the

animal pole of the embryo spread and thin toward the vegetal pole, yielding cell layers that

entirely cover the sphere-shaped yolk cell [37].

The use of simulated image data for validation is advantageous because it allows a single

comprehensive data set for the validation of all pipeline components. This enables specific bot-

tlenecks or error sources in the processing pipelines to be uncovered, instead of testing each of

the pipeline components separately on different benchmarks. Furthermore, different acquisi-

tion deficiencies such as different point-spread-functions, decreasing signal-to-noise ratios or

multiview acquisition deficiencies can be simulated. The immediate availability of a reliable

ground truth enables a quantitative validation without the bias observed for manually anno-

tated benchmark data that suffers from intra- and inter-expert variability. As the simulated

benchmark is close to the target application of the pipeline, namely quantitatively analyzing

terabyte-scale 3D+t fluorescence microscopy images, the developed concepts and algorithms

can easily be put into practice, e.g., for false positive reduction of a segmentation algorithm or

for segmentation-based multiview fusion [32, 37].

Details on benchmark generation can be found in S2 Note, S1 Fig and [38]. Abbreviations

for the different algorithms are given in round brackets and a quantitative comparison of the

result quality is provided in the results section.

Seed point detection. In [39], a blob detection method based on the Laplacian-of-Gauss-

ian (LoG) maximum intensity projection was used to localize fluorescently labeled cellular

nuclei in 3D microscopy images. A 3D input image was filtered with differently scaled LoG

filters with standard deviations σ matching the expected object radius r using the relation

s ¼ r=
ffiffiffi
2
p

. Subsequently, the 3D maximum projection of these LoG-filtered images was

formed and local extrema were extracted from this projection image (LoGSM). Although the

proposed method worked well in many scenarios, it frequently missed objects that did not

exhibit a strict local maximum due to an intensity plateau (e.g., elongated objects, overexpo-

sure or discretization artifacts). To eliminate this behavior, we used the�-operator instead of

the<-operator to additionally detect non-strict local extrema (LoGNSM). However, this

increased the amount of false positive detections in background regions and along elongated

objects.

Detections in background regions were removed using an intensity threshold (twmi) applied

to the mean intensity of a small window surrounding the potential detection. The remaining

seed points were mostly located properly on the detected objects and remaining false positive

Fig 3. Extended image analysis pipeline concept. Extracted output information of each operator can be filtered according to its

uncertainty (*1), operators can access information produced by penultimate predecessors (*2) and processing operators can specifically

adjust their processing behavior based on FSMD values of extracted information. Solid lines indicate the main information flow, dash-dotted

lines the propagation of previously calculated results and dotted lines emphasize influence on the selection of propagated information. In

addition to the flow of extracted features (X �,Ω*, ~X �,
~O�), the operators may pass processed images, image parts or forward the input image

(I*) to the subsequent processing operator.

https://doi.org/10.1371/journal.pone.0187535.g003
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detections largely originated from objects that were detected multiple times. To combine

redundant objects to a single object, a fusion approach based on hierarchical clustering was

used (LoGNSM+F). The hierarchical cluster tree was computed using Ward’s minimum vari-

ance method to compute distances between clusters, i.e., the within-cluster variance was mini-

mized to obtain equally sized clusters [40]. Final clustering was obtained from the complete

cluster tree using a distance-based cutoff tdbc that was set to the smallest expected object

radius rmin, to fuse close redundant detections and to prevent fusion of neighboring objects. A

single detection per object was obtained by averaging the feature vectors of all detected seeds

in a cluster. In S6 Fig, a screenshot of the graphical user interface used for semi-automatic

parameter optimization is shown. Furthermore, S7 Fig shows different parameter settings of

the twmi threshold parameter and illustrates how an optimal parameter value can be visually

determined.

As the seed detection stage usually represents one of the first analysis steps, no preceding

uncertainty information was considered. To inform down-stream operators about the

expected result quality, the uncertainty of the detected seed points was estimated using the

window mean intensity, the maximum seed intensity and the z-position features of the

extracted objects (LoGNSM+F+U). Besides discarding obvious false positive detections in

background regions (intensity-based thresholds), the fuzzy sets for the z-position were

adjusted such that seed detections in low contrast regions (farther away from the detection

objective) had lower membership degrees to the class of correct objects than objects in the

high contrast regions (closer to the detection objective). The final fuzzy set membership degree

of an object to the fuzzy set of correct objects was determined using the minimum of the

obtained membership degrees and was appended as a new feature to the output matrix of the

seed detection algorithm. To filter false positives we set the forward threshold slightly above

zero to α11 = 0.0001 (forward threshold for Operator 1 and Linguistic Term 1). Color-coded

visualizations of the detected seed points and the fuzzy sets for the different features are shown

in Fig 4.

Segmentation. After the seed detection stage, a segmentation operator was used to

extract the regions and regional properties of all detected objects from the simulated 3D image

stacks. For demonstration purposes, we further improved an algorithm based on adaptive

thresholding using Otsu’s method [41] and a watershed-based splitting of merged objects [42]

(OTSUWW) as described in [39]. This approach used propagated information from the seed

detection stage and estimated FSMD values of extracted segments to improve the algorithmic

efficiency and the segmentation quality (OTSUWW+U).

Based on the extracted statistical quantities of the benchmark images (Table 2), we derived

the parameter vector θ = (a, b, c, d)> of the trapezoidal fuzzy set membership function for each

considered feature using the minimum and maximum values as a, d parameters, respectively.

The remaining parameters b, c were set to the 5%-quantile and the 95%-quantile. This parame-

terization ensured that all values smaller or larger than the maximum values obtained a mem-

bership degree of zero and that 90% of the data range was assigned a membership value of one.

Of course, this parameterization is application and data dependent and can be customized, e.

g., to adjust the behavior for extrema at the lower and upper spectrum of the value range. For

simplicity, the focus was put on volume and size information of the objects. In the absence of

ground truth data, the transition regions for the fuzzy sets can be identified by a manual analy-

sis of objects that deviate from the expectation at the lower and the upper feature value range,

e.g., using software tools such as Fiji, ICY or Vaa3D [43–45]. Alternatively, simple graphical

user interfaces that allow interactive post-corrections and parameter adjustments for specific

algorithms can be implemented as shown in the example of seed detection in S6 Fig and as dis-

cussed in [46, 47].
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As depicted in Fig 5, the shapes of the fuzzy set membership functions derived from the sta-

tistical quantities resemble the respective distribution observed in the feature histograms. We

used the min-operator to combine the individual fuzzy set membership degrees to a single

value, i.e., the combined FSMD value directly corresponded to the membership degree of the

feature that deviated the most from the specified expected range (see S1 Note). Of course, the

size criteria discussed here should only be considered as an exemplary illustration. There are

various other features that can potentially be used to assess and improve segmentation results,

e.g. integrated intensity, edge information, local entropy, local signal-to-noise ratios (SNR),

principal components, weighted centroids and many more. Furthermore, if colocalized

Fig 4. Maximum intensity projection of a 3D benchmark image along the Z, Y and X axis superimposed with detected seed points

(A, B, C). Seed points are colored according to their FSMD to the class of a correct detection ranging from red over blue to green for low,

medium and high membership degree, respectively. The fuzzy sets used for the individual features are depicted in (D) and the min-operator

was used as a fuzzy conjunction to obtain the final membership degree. The uncertainty gradient along the z-axis was introduced due to the

signal attenuation at locations farther away from the detection objective and was used in later steps to resolve multiview fusion ambiguities.

https://doi.org/10.1371/journal.pone.0187535.g004

Table 2. Statistical quantities of the benchmark data set.

Feature Min Max Mean Std. Med. 5% qt. 95% qt.

Volume 449 2016 993.6 247.2 990 617 1405

Width 13 31 19.9 2.6 20 15 24

Height 13 34 19.9 2.5 20 15 24

Depth 3 11 6.2 1.0 6 5 8

Minimum, maximum and quantile values were used to formulate fuzzy sets for each of the features. Individual fuzzy sets were combined using the minimum

operator, to obtain a single membership degree value to the fuzzy set of being a valid object.

https://doi.org/10.1371/journal.pone.0187535.t002
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channels are investigated, complementary information can be used to formulate more com-

plex decision rules. In the case of a fluorescently labeled nuclei and membranes that are imaged

in different channels [3, 5, 48], rules like “each cell has exactly one nucleus” can be formalized

in the same way using the fuzzy set membership functions for a quantification of the available

prior knowledge.

The identified FSMD values of segmented objects were then used to detect under-segmen-

tation errors produced by Otsu’s method that needed to be further split to match the expected

object size. The OTSUWW+U implementation used the seed points of the LoGNSM+F+U

method to correct the under-segmentation errors of the original Otsu segmentation. In con-

trast to the splitting approach described in [39, 42] (OTSUWW), the uncertainty-guided

watershed splitting technique was only applied to objects that were known to be larger than

expected. Using a parallelization strategy similar to the one discussed in [39], all segments with

combined FSMD values below β21 (backward threshold for Operator 2 and Linguistic Term 1)

that corresponded to objects larger than expected (Case 3, see Methods) were distributed

among the available CPU cores and a seeded watershed approach was used for object splitting

in each of the cropped regions of the image [42]. This approach was much faster than directly

applying the watershed algorithm on the entire image (OTSUWW), due to the uncertainty-

guided, locally applied processing of erroneous objects. After splitting merged objects, the con-

nected components of the image were re-identified and the uncertainty values were re-evalu-

ated. This updated information was then provided to the subsequent processing operators.

To further improve the results with respect to false positive detections observed for higher

noise levels, segments with combined FSMD values below α21 = 0.1 (forward threshold for

Operator 2 and Linguistic Term 1), i.e., objects that were smaller than the expected object size

(Case 2 and Case 4, see Methods) were removed from the label images. To facilitate the imple-

mentation of the uncertainty-guided segmentation, a single fuzzy set for the correct class of

objects (Case 1, see Methods) was used to identify objects that needed further consideration.

To determine if objects with low FSMD values were smaller or larger than the expectation, a

comparison to the boundaries of the expected valid range was performed (trapezoidal fuzzy set

parameters b, c). Threshold values were identified using the interactive graphical user interface

presented in [48].

Fig 5. Feature histograms and derived fuzzy sets. Feature histograms (top) and fuzzy set membership functions (bottom) for volume

(θvol = (449, 617, 1405, 2016)>), width (θw = (13, 15, 24, 31)>), height (θh = (13, 15, 24, 34)>) and depth (θw = (3, 5, 8, 11)>).

https://doi.org/10.1371/journal.pone.0187535.g005
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Tracking. The final step of the image analysis pipeline was the tracking of all detected

objects in order to identify the correct correspondences of detected objects over time in all

acquired images. For illustration purposes, a straightforward nearest-neighbor tracking

approach implemented in the open-source MATLAB toolbox SciXMiner was used [35, 49].

Each object present in a frame was associated with the spatially closest object in the subsequent

frame. This procedure was applied to every frame of the data set in order to obtain a complete

linkage of all objects.

In addition to tracking the results of the segmentation methods introduced in the previous

section, we tested an alternative approach that combined a flawed segmentation with provided

seeds (OTSU+NN+U). Inspired by conservation tracking methods [10], we left the flawed seg-

mentation results produced by the respective algorithms unchanged and provided detected

seed points to the tracking algorithm instead of actually using the seed points for splitting in

the image domain [31]. As shown in the results section, the watershed-based object splitting

was essential to improve the segmentation quality achieved by OTSU. Nevertheless, the track-

ing algorithm could be extended to decide what information was reliable and suitable for

tracking; and it could optionally fall back to the provided seed points if the segmentation qual-

ity was insufficient. Therefore, we used the FSMD values provided by the segmentation stage.

Using an empirically determined threshold of β31 = 0.9 (backward threshold for Operator 3

and Linguistic Term 1), all objects with an aggregated FSMD value lower than the threshold

were not tracked with the actual segment, but with the seed points contained in the respective

segment. The forward threshold parameter was set to α31 = 0.0 in order to report all tracking

results.

Results

The functionality of the proposed approaches was validated on simulated 3D benchmark

images. The data sets contained images with different numbers of objects (SBDE1), different

noise levels (SBDE2 and SBDE3) and a set of 50 sequential time points with 1000 moving and

interacting objects (SBDE4). The SBDE4 data set included a multiview simulation, i.e., at each

time point, two simultaneous images from opposite direction were generated. An overview of

the generated benchmark data sets is provided in S2 Table and a brief description of the data

set generation using our XPIWIT software tool [50] is provided in S2 Note and in S1 and S2

Figs.

Seed point detection validation

To validate the proposed improvements of the LoG-based seed detection algorithm, the

SBDE1, SBDE2 and SBDE3 benchmark data sets were used (S2 Table) with the parameters

listed in S3 Table and the performance measures described in S3 Note. The obtained values are

summarized in Table 3, where each entry of the table corresponds to the arithmetic mean

value of the independently obtained results of the ten benchmark images of SBDE1.

Quantitative analysis confirmed that the proposed extensions of LoGSM could improve the

algorithmic performance by up to 9.2% with respect to the F-Score. Although LoGSM had few

false positive detections, it missed many objects due to the strict maximum detection (recall of

0.77 and precision of 1.0). The recall was improved by 18.2% to a value of 0.91 by additionally

allowing non-strict maxima (LoGNSM). However, this adaption concurrently raised the num-

ber of false positives and thus lowered the precision by 16.0% to 0.84, as objects with maximum

plateaus were detected multiple times. These multi-detection errors were successfully removed

using the proposed fusion technique, which was reflected in an F-Score value of 0.95 for

LoGNSM+F(+U), i.e., compared to the LoGSM method, the F-Score was increased by 9.2%.
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With regard to processing times, the additional effort required for redundant detection was

almost negligible, as the non-strict maximum detection simply detected more seed points dur-

ing the same iteration over the image. The seed point fusion was performed directly in the fea-

ture space and was therefore also insignificant compared to the preceding processing steps.

For the feature set described here, using the uncertainty-based object rejection (LoGNSM+F

+U) only slightly improved the results compared to directly fusing and filtering the data using

the hard intensity threshold and increased the processing time by 35%. LoGNSM+F yielded

almost identical results and required only 6% more processing time compared to LoGSM.

Nevertheless, all objects were equipped with an uncertainty value that was propagated through

the pipeline and proved to be beneficial to filter, fuse and correct the extracted data in subse-

quent steps. In addition, it should be noted that the processing time required for the analysis

of larger images easily exceeds that of fuzzy set calculations.

Furthermore, we tested seed detection performance under different image noise conditions

using the SBDE2 data set, which contained images with different settings for the additive

Gaussian noise standard deviation (σagn 2 [0.0005, 0.01]). Seeds from these images were

extracted using the LoGSM, LoGNSM, LoGNSM+F and LoGNSM+F+U algorithms and the

intensity thresholds were determined for each of the noise levels individually using the semi-

automatic graphical user interface described in [47]. For higher noise levels, the number of

detections in background regions increased and detections in low contrast regions became

ambiguous. The manual threshold was therefore adjusted such that the false positive detections

were minimized and only unambiguous seeds were considered. This continuous threshold

adaptation was the reason for constant (Fig 6A and 6C) or increasing precision (Fig 6B) in

noisy image regions, because false positives were easier to identify than false negative detec-

tions. Objects were robustly detected down to a signal-to-noise ratio of 5 (Fig 6), which was

close to the visual limit of detection [51] and emphasized the uncertainty-based improvements.

The same analysis was performed on a data set with different levels of Poisson noise (SBDE3)

and the results are shown in S3 Fig.

Segmentation validation

The segmentation performance was validated using the SBDE1, SBDE2 and the SBDE3 data

sets (S2 Table). In addition to the algorithms OTSU, OTSUWW, OTSUWW+U, the segmenta-

tion quality obtained by the TWANG method (see [39] for details) was added and quantita-

tively compared to a TWANG version (TWANG+U) that relied on the improved seed

detection operator introduced in the previous section (LoGNSM+F+U). The respective

parameterization and a brief description of each algorithm is provided in S4 Table) and the

Table 3. Quantitative assessment of the seed detection performance.

Method TP FP FN Recall Precision F-Score Distance Time (s) KVox./s

LoGSM 681.1 3.3 202.8 0.77 1.00 0.87 1.60 7.23 7259.82

LoGNSM 813.7 160.0 70.2 0.91 0.84 0.87 1.64 7.66 6858.39

LoGNSM+F 811.7 4.5 72.2 0.91 0.99 0.95 1.59 7.70 6819.58

LoGNSM+F+U 812.5 4.3 71.4 0.91 0.99 0.95 1.59 9.77 6170.05

Quantitative performance assessment of the LoG-based seed detection methods. The criteria are true positives (TP), false positives (FP), false negatives

(FN), recall, precision, F-Score, the distance to the reference (Dist., smaller values are better) as well as the achieved time performance measures in

seconds (smaller values are better) and voxels per second (larger values are better). All values represent the arithmetic mean of the individually processed

benchmark images.

https://doi.org/10.1371/journal.pone.0187535.t003
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validation measures are summarized in S3 Note and [52]. In Table 4, the quantitative segmen-

tation quality results obtained on the SBDE1 data set are summarized. The Rand index (RI)

value was almost identical for all algorithms and OTSU yielded the highest value. The

enhanced adaptive threshold-based techniques yielded an 11.0% better Jaccard index (JI) value

than TWANG+U and the best normalized sum of distances (NSD) value was obtained by

OTSUWW+U. Considering the results for RI, JI and NSD, the global threshold-based tech-

niques (OTSU�) produced slightly more accurate results (0.3%, 5.3% and 12.0%, respectively)

for the objects they resolved compared to the best results of the TWANG-based methods.

However, both TWANG-based methods produced the minimal amount of topological errors

with respect to split and merged objects compared to all OTSU-based methods. The number

of added objects was minimal for OTSUWW+U. TWANG+U produced slightly more added

objects than TWANG but efficiently detected far more objects. Thus, the F-Score values

achieved by TWANG+U were further increased by 8.4% compared to TWANG, i.e., TWANG

+U produced the best results with the fewest topological errors (F-Score 0.9). The low amount

of split and merged nuclei for TWANG originated from the single-cell extraction strategy that

was used instead of a global threshold as performed in the OTSU-based methods. The rela-

tively large amount of added objects detected by the TWANG segmentation were mostly not

real false positive detections, but segments with more than 50% of the voxels intersecting with

Fig 6. Assessment of the seed detection performance for the different levels of additive Gaussian noise contained in the SBDE2
data set. The performance measures recall, precision and F-Score are plotted versus the additive Gaussian noise level parameter σagn for

LoGSM (A), LoGNSM (B) and LoGNSM+F(+U) (C). As LoGNSM+F and LoGNSM+F+U produced identical results with respect to recall,

precision and F-Score, the plots are combined to a single panel (Table 3). The influence of the noise level on the signal-to-noise ratio of the

images is plotted in (D). Optimal thresholds for the twmi parameter were identified using an interactive graphical user interface depicted in S6

Fig. Furthermore, examples for different parameter settings and the identified optimal parameters are shown in S7 Fig.

https://doi.org/10.1371/journal.pone.0187535.g006

Table 4. Quantitative assessment of the segmentation performance.

Method RI JI NSD (×10) HM Split Merged Added Missing Rec. Prec. F-Score Time (s) KVoxel/s

OTSU 97.92 27.82 3.77 6.67 25.00 370.50 42.40 264.00 0.29 0.78 0.42 6.11 8589.46

OTSUWW 97.91 27.99 3.29 6.48 88.60 96.30 57.90 276.20 0.58 0.78 0.67 42.41 1237.72

OTSUWW+U 97.91 27.98 3.15 5.61 50.60 57.80 13.30 268.40 0.64 0.90 0.75 26.40 2035.66

TWANG 97.67 26.59 3.58 4.62 0.00 6.70 75.80 193.50 0.77 0.90 0.83 11.02 4774.83

TWANG+U 97.81 25.30 3.64 4.75 0.00 12.40 103.70 59.50 0.91 0.89 0.90 11.15 4728.84

The criteria used to compare the algorithms are the Rand index (RI), the Jaccard index (JI), the normalized sum of distances (NSD) and the Hausdorff

metric (HM) as described in [52]. Additionally, the topological errors were assessed by counting split, merged, added and missing objects. Precision, recall

and F-Score are based on the topological errors by considering split and added nuclei as false positives and merged and missing objects as false negatives,

respectively. The achieved time performance was measured in seconds (smaller values are better) and voxels per second (larger values are better). All

values represent the arithmetic mean of the individually processed benchmark images.

https://doi.org/10.1371/journal.pone.0187535.t004
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the image background instead of the actual object. Thus, these detections were erroneously

considered as false positives.

With regard to processing times OTSU was the fastest approach; however, it was not really

an option for a reliable analysis of the image data, because without the uncertainty-based

extension the segmentation results were of poor quality. TWANG and TWANG+U were 1.8

times slower than the plain OTSU method but 2.4 and 3.8 times faster than OTSUWW and

OTSUWW+U, respectively. TWANG+U was the most precise approach (F-Score 0.9). Fur-

thermore, OTSUWW+U was 1.6 times faster than OTSUWW due to the focused object split-

ting and produced better results due to the improved seed detection and noise reduction.

These results confirmed that uncertainty information can be efficiently exploited to guide

computationally demanding processing operators to specific locations, thereby speeding up

processing operations while preserving or even improving result quality.

Exemplary FSMDs of the final segmentation results of different algorithms are depicted in

Fig 7. These visualizations allow assessment of segmentation quality and the identification of

potential problems even by non-experts. All algorithms suffered from light attenuation in the

Fig 7. Maximum intensity projections of the raw image and exemplary volume renderings of the automatic segmentation results

produced by OTSU, OTSUWW+U and TWANG+U from different viewpoints (XY, XZ and YZ). The FSMD of individual detected objects

was estimated using the morphological criteria volume and size and was used for coloring (red over blue to green for low, medium and high

membership degree, respectively).

https://doi.org/10.1371/journal.pone.0187535.g007
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axial direction. In particular, the techniques that relied on a single global intensity threshold

had problems identifying the objects located in these low-contrast regions. Besides missing

many objects, OTSU also merged many of the high intensity objects into a single large blob.

Due to lower sampling in the z-direction, many mergers occurred in this direction. However,

these merged regions could, to a large extent, be successfully split using the proposed seed-

based splitting techniques (OTSUWW, OTSUWW+U). As TWANG directly operated on the

provided seeds, it was still able to extract most of the objects in these regions and yielded even

higher recall values using the LoGNSM+F+U seed points. However, due to the low-contrast,

the segmentation quality of the extracted segments in these regions was reduced. In Table 3,

this is reflected by the increased number of added objects for TWANG and TWANG+U,

which were mostly no real false positives as described above.

To investigate the impact of the signal-to-noise ratio of the images on the segmentation

quality, the benchmark data set SBDE2was processed using all five algorithms. The segmenta-

tion quality of all adaptive thresholding-based methods was heavily affected by the noise level

of the images yielding poor precision and recall values even for the lowest noise levels (Fig 8A

and 8B). This was caused by the global threshold, which merged a lot of objects and detected a

high amount of false positive segments. The uncertainty-based method OTSUWW+U success-

fully preserved the increased recall of OTSUWW and at the same time substantially increased

the precision to an almost perfect level for noise parameters of σagn < 0.003 (Fig 8C). The

increasing number of small segments observed for OTSU and OTSUWW could be efficiently

filtered using the uncertainty-based object rejection. As TWANG heavily depended on the

quality of the provided seeds, the observed curves in Fig 8C and 8D show a high correlation to

Fig 8. Performance evaluation of the segmentation methods OTSU (A), OTSUWW (B), OTSUWW+U (C), TWANG (D) and TWANG

+U (E) on images of the SBDE2data set with different signal-to-noise ratios. The methods based on adaptive thresholding (OTSU,

OTSUWW) suffered from high noise levels and produced a successively increased amount of false positive detections, which could be

efficiently suppressed using the uncertainty framework-based extension (OTSUWW+U). The result quality of both TWANG versions directly

correlated with the quality of the provided seed points, i.e., TWANG+U benefited from the improved detection rate of LoGNSM+F+U.

https://doi.org/10.1371/journal.pone.0187535.g008
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seed detection performance (Fig 6A and 6C) and render it as a suitable method even for higher

noise levels. The improved seed detection of LoGNSM+F+U also directly affected the quality

of the TWANG+U segmentation. Note that the seed points were adjusted for each of the noise

levels, i.e., subtle variations in the precision and recall (Fig 8D and 8E) values were caused by a

subjective manual threshold adaptation. Qualitatively, the same algorithmic behavior was

observed on the Poisson noise flawed image material (SBDE3) and the results obtained on this

benchmark data set are shown in S4 and S5 Figs.

Tracking validation

The tracking validation was performed on the SBDE4 data set, which consisted of 50 frames

with two simultaneously acquired rotation images for each frame, yielding a total number of

100 frames that needed to be processed. Segmentation was performed using OTSUWW,

OTSUWW+U, TWANG and TWANG+U separately for all time points and view angles. To

obtain a single set of objects for each time point, segmentation results of different view angles

were fused using the segment-based fusion approach described in S4 Note. The centroids of all

detected objects were then used to perform the nearest neighbor tracking (NN). In addition,

OTSU+F+NN+U was applied to the test data set, i.e., the Otsu-based threshold was applied to

both rotation images independently and the resulting binary images were then fused using the

maximum pixel value of the two images. FSMD values were then estimated on the connected

components of the fused image using the same fuzzy sets that were used in the segmentation

step. The obtained tracking results are summarized in Table 5 and Fig 9.

Without uncertainty treatment, both pipelines reached the lowest tracking accuracy with

respect to the tracking quality measure (TRA, see S3 Note) due to an increased number of

missing objects (recall of 0.89 for OTSUWW+NN, and 0.88 for TWANG+NN) and a high

number of false positive detections (precision of 0.82 for OTSUWW+NN). Of course, these

missing objects directly correlated with the number of missing edges and explain the 222.4%

(OTSUWW+NN) and 139.9% (TWANG+NN) higher amount of missing edges compared to

the best scoring algorithm in this category (OTSU+F+NN+U). Furthermore, OTSUWW+NN

suffered from many merged regions, which contributed to an 8.2% lower recall value than

OTSU+F+NN+U. In contrast to this result, all uncertainty-enhanced methods provided com-

parable results, with the best results achieved by OTSU+F+NN+U and TWANG+U+NN.

Table 5. Quantitative assessment of the tracking performance.

Method TP FP FN Redundant Missing Merged Rec. Prec. F-Score TRA Time (s) KVoxel/s

OTSUWW+NN 905.33 194.10 110.67 5.51 256.88 94.33 0.89 0.82 0.86 0.81 51.36 1020.81

OTSUWW+U+NN 941.94 65.65 74.06 2.63 141.39 55.04 0.93 0.93 0.93 0.89 33.68 1556.68

TWANG+NN 889.73 1.73 126.27 13.75 191.16 3.29 0.88 1.00 0.93 0.86 14.27 3674.06

TWANG+U+NN 943.90 1.76 72.10 5.16 96.55 3.27 0.93 1.00 0.96 0.92 21.55 2432.89

OTSU+F+NN+U* 989.63 9.84 26.37 0.67 79.67 59.33 0.97 0.99 0.98 0.94 18.66 2809.72

Quantitative performance assessment of a nearest neighbor tracking algorithm (NN) applied on different segmentation results. Two algorithms without

uncertainty-based improvements (OTSUWW, TWANG) were compared to enhanced pipelines that explicitly incorporated prior knowledge-based

uncertainty treatment (OTSUWW+U, TWANG+U). Furthermore, an OTSU-based segmentation with additional seed points from LoGNSM+F+U (OTSU+F

+NN+U) was used with an adapted tracking algorithm. Note that the segmentation produced by OTSU+F+NN+U was not usable for other purposes than

tracking due to many merged regions (indicated by (*)). The validation measures correspond to true positives (TP), false positives (FP), false negatives

(FN), redundant edges (Red.), missing edges (Miss.) and merged objects (Merg.). Furthermore, recall, precision, F-Score and the TRA measure were

calculated as described in S3 Note. Processing times are average values for applying segmentation and tracking on a single image and were measured in

seconds (lower values are better) and voxels per second (higher values are better).

https://doi.org/10.1371/journal.pone.0187535.t005
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Although the amount of false negatives of TWANG+U+NN was almost half that of TWANG

+NN, the detection rate was still the largest problem of this pipeline resulting in a 21.2% higher

amount of missing edges compared to OTSU+F+NN+U. However, OTSU+F+NN+U still

suffered from the same under-segmentation tendency as observed for OTSUWW+NN and

Fig 9. Quantitative performance assessment of a nearest neighbor tracking algorithm (NN) applied on different segmentation

results obtained on the SBDE4data set. Two algorithms without uncertainty-based improvements as described in [39] (OTSUWW,

TWANG) were compared to enhanced pipelines that explicitly incorporate prior knowledge-based uncertainty treatment (OTSUWW+U,

TWANG+U, OTSU+F+NN+U). (*) indicates that the respective algorithm did not produce a usable segmentation image, as the correction

was solely performed at the tracking step.

https://doi.org/10.1371/journal.pone.0187535.g009
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OTSUWW+U+NN; consequently, missing edges were its main problem. With respect to false

positive detections both TWANG-based methods provided the best results with precision val-

ues of 1.0, because simultaneous multiview acquisition enabled high quality seed detection.

This reflects an improvement of the precision obtained by the TWANG-based methods of

22.0% compared to OTSUWW+NN, which did not have an uncertainty-based object exclu-

sion and thus an increased amount of false positive detections in background regions. The rea-

son for the slightly higher number of redundant edges observed for the two TWANG-based

methods is not yet fully clear. Most likely, the seed detection already provided a redundant

seed to the segmentation method, which produced two nearby segments that were in turn

counted as a redundant segment by the tracking evaluation. However, even for the worst algo-

rithm in this category (TWANG+NN) redundant edges were only observed for 1.4% of the

tracked objects and thus play a minor role compared to the other tracking errors. As shown in

Fig 9, the number of false negatives and merged objects directly correlated with the density of

the objects, i.e., the closer the objects were to each other, the more under-segmentation errors

occurred. However, this was not the case for TWANG-based methods due to the explicit prior

knowledge about the object size that was incorporated to the algorithm. The OTSU+F+NN+U

method produced the best tracking result and was the second fastest method (TRA value of

0.94 and average processing time of 18.7s) closely followed by TWANG+U+NN (TRA value of

0.92 and average processing time of 21.6s). Compared to OTSUWW+NN, TWANG+U+NN

and OTSU+F+NN+U provide superior quality in all categories and in particular an increase

of the TRA measure by 13.6% and 16.0%, and a decrease of processing times by 58.0% and

63.7%, respectively. Thus, the two latter methods represent the best quality vs. speed trade-off

and are suitable for large-scale analyses. Although OTSU+F+NN+U provided excellent results

in this comparison, it should be noted that the extracted segmentation masks were largely

merged and an object splitting approach as performed for OTSUWW would be required if

object properties need to be known. However, an additional object splitting approach would

eradicate the performance benefit of the method and pipelines such as TWANG+U+NN pipe-

line should be favored in this case.

Falling back on seed point information was not beneficial for segmentation methods like

TWANG, where the algorithmic design already only extracts a single segment per seed point

and literally no merged objects exist. Future work could potentially address a combination of

the LoGNSM+F+U and the OTSU-based segmentation for seed detection and to feed these

seeds to the TWANG algorithm, to reach both a further reduced amount of missed objects and

a reduced amount of merged objects. Moreover, the temporal coherence was not yet consid-

ered in the investigated framework, i.e., additionally allowing a nearest neighbor matching

over multiple frames could potentially also help to reduce the number of missing and redun-

dant detections.

Application to light-sheet microscopy images of zebrafish embryos

The presented framework was successfully used for the automated analysis of large-scale 3D+t

microscopy images of developing zebrafish embryos [37–39, 47]. In particular, we used the

LoGNSM+U method, i.e., seed points were detected using a non-strict local maximum detec-

tion with a subsequent fusion of redundant detections and a false positive suppression based

on the axial location of the seeds as well as their fluorescence intensity information. These

seeds were then provided to the TWANG algorithm as described in [39] and the segments of

different views were combined using a segment-based fusion approach (S4 Note and [37]).

Finally, a nearest-neighbor tracking was applied to the detected objects to obtain the move-

ment trajectories (TWANG+U+NN). As there were about 8 million dynamically interacting
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objects in total for the investigated time period of about 3–10 hours post fertilization (hpf),

manual labeling and validation were impossible. Qualitative results of seed detection, segmen-

tation and the tracking stage are depicted in Fig 10 and movement dynamics are shown in S3

Video. The OTSU-based approaches were not suitable for processing these images and led to

a large amount of missed detections and under-segmentation errors. This was mainly caused

by intensity variations, light scattering and successively decreasing image quality in the axial

direction. A direct comparison of the results obtained by TWANG and OTSU are shown in S8

Fig). Moreover, the memory demands of the watershed-based post-processing approaches lim-

ited their application to the full-sized 3D images as discussed in [39].

Fig 10. Application of the presented framework to 3D+t light-sheet microscopy images of zebrafish embryos. The panels show the

maximum intensity projections on the XY, YZ and XZ planes. Seed points were extracted using the LoGNSM+F+U method and the

improved seed points were used for segmentation using the TWANG+U method. Extracted objects of two opposite views were combined

using a segment-based fusion approach (S4 Note) and the fused object locations were then used for tracking (TWANG+U+NN). The first

three columns show results of a single view at approximately 8 hours post fertilization (hpf) with the color-code according to the FSMD

values of the extracted objects (red over blue to green for low, medium and high FSMD values). The last column shows the results after

multiview fusion and tracking at about 10 hpf using a cell density for coloring. In addition, the embryo was oriented along the coordinate axes,

such that the anteroposterior axis was aligned with the Y axis (animal pole on the top) and the dorsoventral axis aligned with the X axis

(dorsal to the right) [37]. Data were taken from our previously published work [37–39, 47]. Scale bar, 100 μm.

https://doi.org/10.1371/journal.pone.0187535.g010
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Conclusions

In this contribution, we presented a general concept for the mathematical formulation of prior

knowledge and showed how image analysis pipelines can be equipped with formalized prior

knowledge in order to make more elaborate decisions. The framework includes the propaga-

tion of estimated result uncertainties, which inform downstream pipeline operators about the

validity of their input data and potentially improve their results. Besides these general con-

cepts, we demonstrated how an exemplary pipeline consisting of seed point detection, segmen-

tation, multiview fusion and tracking could be systematically extended by the proposed

uncertainty considerations in order to filter, repair and fuse produced data. The performance

of all proposed improvements was quantitatively assessed on a new and comprehensive valida-

tion benchmark inspired by light-sheet microscopy recordings of live specimen. In compari-

son to plain pipelines, the extensions demonstrated superior performance compared to the

plain pipelines and only had a low impact on the processing times due to the lightweight

adaptations of the propagated feature matrices. Thus, the proposed framework represents a

powerful approach to improve the quality and efficiency of image analysis pipelines. Several

components of the presented framework were successfully used to analyze large-scale 3D+t

light-sheet microscopy images of developing zebrafish embryos as described in the previous

section and [35, 37].

For simplicity, we primarily focused on simple processing methods to illustrate the general

concepts. However, extending more complex seed detection, segmentation or tracking algo-

rithms with the presented concepts of filtering, splitting and fusion should work analogously if

the uncertainty-based corrections are considered as a post-processing strategy of each process-

ing operator. The tracking step in particular offers great potential for further improvements.

The uncertainty framework could be exploited to classify movement events, e.g., the detection

of object divisions or the reconstruction of missing objects using the temporal coherence of

the objects. Moreover, it may be interesting to investigate the influence of the point spread

functions onto the quality of image analysis operators and to potentially exploit knowledge

about their respective anisotropic shape for uncertainty assessment. However, that was beyond

the scope of this paper and will be addressed in upcoming work. In addition to the algorithmic

improvements, we showed how the respective fuzzy sets can be parameterized based on avail-

able prior knowledge, such as feature histograms or knowledge about acquisition deficiencies.

The respective shape of the fuzzy sets had to be determined based on the desired outcome. For

instance, the false positive suppression at the seed point detection stage could be performed

with a fixed threshold instead of an explicit usage of fuzzy sets for the intensity-based features.

However, modeling the increasing uncertainty (decreasing FSMD value) in regions farther

away from the detection objective using a trapezoidal shape turned out to be more appropriate.

Further work on the automatic determination of the involved fuzzy sets is needed, e.g., using a

semi-automatic approach for a manual classification of a representative subset of data.

Supporting information

S1 Note. Fuzzy conjunction operators.

(PDF)

S2 Note. Validation benchmark.

(PDF)

S3 Note. Performance assessment.

(PDF)
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S4 Note. Multiview fusion.

(PDF)

S1 Fig. Pipeline schematic of the benchmark simulation. (A) Illustration of the embryo sim-

ulation. Starting with an initial object, multiple division cycles were simulated including object

interaction, object divisions and morphological constraints. Due to inner and outer bounding

spheres and the between-object interactions, cells migrated from the animal pole (AP) to the

artificial vegetal pole (VP), which produced a behavior similar to the epiboly movement of zeb-

rafish embryogenesis. (B) The performed steps for a realistic simulated 3D+t benchmark. The

left column reflects the object simulation and returned raw images that contained dynamic

objects and the associated ground truth data. The right column contains the acquisition simu-

lation, which distorted the simulated images by an artificial signal attenuation, a point spread

function simulation (PSF), a dark current image simulation, Poisson distributed photon

shot noise and additive Gaussian noise. Steps shaded in gray could optionally consider image

rotation, if a multiview experiment was simulated and the output operators are indicated by

dashed edge lines (adapted from [38]).

(TIF)

S2 Fig. Maximum intensity projections of simulated benchmark images. (A) Maximum

projections of an extracted division cycle of one simulated nucleus [53]. Time increases from

left to right and top to bottom. Single objects were randomly initialized and simulated for a

predefined experimental duration. This approach yielded a simulated embryo including object

movement, object interaction and object divisions with available ground truth (B). Generated

raw image sequences were manipulated to simulate various acquisition conditions, such as dif-

ferent levels of additive Gaussian noise (C). The ground truth enabled a quantitative analysis

of the algorithmic performance on realistic image data.

(TIF)

S3 Fig. Seed detection performance for LoGSM (A), LoGNSM (B) and LoGNSM+F(+U)

(C) on the SBDE3 data set with different levels of Poisson noise. The performance measures

recall, precision and F-Score are plotted versus the Poisson noise scale (inversely correlated

with the noise level, see [54] for implementation details). The qualitative behavior matches the

one observed for additive Gaussian noise. The influence of the Poisson noise scale on the sig-

nal-to-noise ratio of the images is visualized in (D). Optimal thresholds for the twmi parameter

were identified using the interactive graphical user interface depicted in S6 Fig. Furthermore,

examples for different parameter settings and the identified optimal parameters are shown in

S7 Fig.

(TIF)

S4 Fig. Performance evaluation of the segmentation methods OTSU (A), OTSUWW (B),

OTSUWW+U (C), TWANG (D) and TWANG+U (E) on images of the SBDE3 data set

with different levels of Poisson noise. The methods based on adaptive thresholding suffered

from high noise levels and produced a successively increased amount of false positive detec-

tions (OTSU, OTSUWW), which could be efficiently suppressed using the uncertainty frame-

work-based extension (OTSUWW+U). The precision jump at the penultimate noise level

observed for OTSUWW+U is actually not an artifact, but caused by a decreased amount of

erroneous detections in the lower z-layers that fall below the minimum size criterion due to

increased noise-related object splits (see column OTSUWW+U in Fig 7). However, it should

be noted that such artificially high noise levels are unlikely to occur for real fluorescence

microscopy images of stained cellular nuclei. Analogous to the results obtained for different

additive Gaussian noise levels, the result quality of both TWANG versions directly correlated
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with the quality of the provided seed points, i.e., TWANG+U benefited from the improved

detection rate of LoGNSM+F+U.

(TIF)

S5 Fig. Maximum intensity projections of two raw images and exemplary volume render-

ings of the automatic segmentation results produced by OTSU, OTSUWW, OTSUWW+U,

TWANG and TWANG+U for two different Poisson noise levels (signal-to-noise ratio

(SNR) of 2.5 and 3.5, respectively). A random color-code was applied to visualize under- and

over-segmentation errors. Both OTSU and OTSUWW did not produce satisfactory results

with a lot of background noise detections and under-segmentation errors. The uncertainty-

based improvements help to improve the quality for OTSUWW+U, and TWANG(+U) per-

formed reasonably well depending on the quality of the provided seeds.

(TIF)

S6 Fig. Screenshot of a graphical user interface used for semi-automatic adjustment of the

framework parameters. The three main panels depict the maximum intensity projection

views of the XY, XZ and YZ plane of an image containing simulated cell nuclei (white objects)

with superimposed centroids of detected objects (1). Undesired objects can be filtered based

on the feature values, such as spatial constraints or intensity constraints (2). Settings can be

propagated to all other images of the project to accelerate the workflow and filtered results can

be saved as �.csv files for further processing (3). All parameters used in the uncertainty prop-

agation framework, i.e., the fuzzy set membership parameterization of any of the available fea-

tures can be performed in this GUI. The color-code from red (low FSMD) over blue (medium

FSMD) to green (high FSMD) provides an instant visual feedback of the membership degree

obtained for the individual objects and helps to identify the optimal settings (4).

(TIF)

S7 Fig. Results of the LoGNSM+F+(U) seed detection algorithm obtained on two images

of different levels of Poisson noise. The columns show the filtered seed points for different

settings of the twmi threshold parameter with a too low threshold (left column, many false

positive detections), a too high threshold (center column, many false negatives) and a visu-

ally determined good threshold (right column, best visually observable balance of false posi-

tives and false negatives). For higher noise levels, finding an optimal threshold becomes

ambiguous, due to low signal to noise ratio at lower z-slices. Thus, the selection of the thresh-

old largely depends on the respective preference of the user and can cause small fluctuations

in the quantitative evaluation for different noise levels (see Figs 6 and 7 in the main text as

well as S3 and S5 Figs).

(TIF)

S8 Fig. Exemplary comparison of applying OTSU and TWANG to a large-scale light-sheet

microscopy image of fluorescently labeled cell nuclei of a zebrafish embryo (single time

point at about 9 hours post fertilization). OTSU completely failed to extract meaningful

information in this case and only captured a few correct nuclei by chance. TWANG could

resolve most of the nuclei correctly and by design largely avoids under-segmentation errors.

As the results provided by the plain OTSU algorithm were not properly extracting the embry-

onic shape, the watershed-based post-processing steps used in OTSUWW and OTSUWW+U

were skipped. The results of TWANG+U are visually indiscernible from the plain TWANG

results and we thus only show one panel for convenience. Furthermore, due to the image size

of about 5 GB per frame, applying the 3D watershed algorithm on the entire image was not

possible given the memory limitations of 32 GB on our test computer. A lack of ground truth

for these large-scale data sets only allowed a qualitative comparison (see [39] for details). Scale
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bar: 100μm.

(TIF)

S1 Table. Nomenclature, abbreviations and symbols used in the present manuscript.

(PDF)

S2 Table. The benchmark datasets used for the validation experiments. Columns list the

dataset identifier (Name), the number of images (Im.), the number of noise levels (N.), the

number of objects (Objects), the image resolution, the noise parameter ranges for σagn and the

dataset description.

(PDF)

S3 Table. Abbreviations, parameterizations and descriptions of the investigated seed

detection algorithms.

(PDF)

S4 Table. Abbreviations, parameters and descriptions of the segmentation algorithms.

(PDF)

S1 Video. 3D renderings of the simulated benchmark data set used for validation of the

presented methods. The left half of the video shows the ground truth labels with a random

color code. The right part shows the simulated raw image after small video snippets of simu-

lated cell nuclei were placed at the simulated cell locations.

(MOV)

S2 Video. Slices of a simulated benchmark image including the acquisition simulation. In

comparison to the raw image shown in S1 Video, image noise, signal attenuation and signal

blur can be observed.

(MOV)

S3 Video. Tracking results obtained with the described pipeline on 3D+t light-sheet

microscopy data of a developing zebrafish embryo for about 3–10 hpf. Seed point detection

(LoGNSM+F+U), segmentation (TWANG+U) and segment-based multiview fusion (S4

Note) were used to obtain reliable detections of the fluorescently labeled nuclei for each of the

frames. Using a nearest-neighbor tracking algorithm (TWANG+U+NN), trajectories of the

individual objects were identified. The embryo was oriented along the coordinate axes, such

that the anteroposterior axis was aligned with the Y axis (animal pole on the top) and the dor-

soventral axis aligned with the X axis (dorsal to the right) [37]. Data were taken from our pre-

viously published work [37–39, 47]. The color-code represents the density of objects ranging

from blue over green to red for low, medium and high density, respectively. Cells continuously

divide over the course of development and the depicted stages range from a few thousand cells

up to more than 20000 cells at the end of the movie [37]. At later stages, convergence and

extension movements cause increased cell densities along the prospective anteroposterior axis

of the animal.

(MOV)
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