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Abstract: Hepatocyte growth factor (HGF) has been investigated as a regulator for immune reactions
caused by transplantation and autoimmune diseases and other biological functions. Previous studies
demonstrated that cDNA-encoding HGF administration could inhibit acute graft-versus-host disease
(GVHD) after treatment via hematopoietic stem cell transplantation. This study aimed to show the
preparation of HGF protein on yeast cell surfaces to develop a tool for the oral administration of
HGF to a GVHD mouse model. In this study, full-length HGF and the heavy chain of HGF were
genetically fused with α-agglutinin and were successfully displayed on the yeast cell surface. This
study suggested that yeast cell surface display engineering could provide a novel administration
route for HGF.

Keywords: cell surface; hepatocyte growth factor-displaying; yeast cells; oral administration; graft
versus host disease

1. Introduction

Hepatocyte growth factor (HGF) is homologous to plasminogen, is secreted as the
inactive form, and is activated by proteolytic processing [1]. In addition, HGF has a phys-
iological function in hepatocytes and other cells. These functions include mitogenesis,
migration, anti-apoptosis, and angiogenesis and play an important role in the regeneration
and protection of tissues and organs [2–4]. Currently, HGF is important in clinical applica-
tions for acute organ diseases such as myocardial infarction, cerebral infarction, fulminant
hepatitis, and acute renal failure [5–7]. The growth factor is therapeutic for chronic diseases
such as pulmonary fibrosis, chronic renal failure, liver cirrhosis, cardiomyopathy, and
arteriosclerosis obliterans [8–10].

In addition, graft-versus-host disease (GVHD) could be inhibited by HGF [11,12].
GVHD is caused by bone marrow transplantation or blood transfusion to treat leukemia,
lymphomas, bone marrow failure syndrome, and immunodeficiency disorders [13]. Acute
GVDH following an allogeneic hematopoietic stem cell transplant (HSCT) is an immune-
triggered process, leading to a severe immune disorder and organ dysfunction caused by
donor T cells [14]. However, donor cells also attack residual leukemic cells and host immune
cells after HSCT, inhibiting leukemic relapse and graft rejection after HSCT. Therefore, to
perform HSCT successfully, continuous donor T cell activation should be maintained to
inhibit leukemic relapse, graft rejection, and organ dysfunction. Using a murine model
of acute GVHD, Kuroiwa et al., demonstrated that the transfection of the human HGF
cDNA into skeletal muscle inhibited apoptosis of intestinal epithelial cells and donor T-cell
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infiltration into the liver, thereby ameliorating the enteropathy and liver injury caused
by acute GVHD [15]. The molecular structure of HGF is a heterodimer consisting of
a heavy chain (α-chain; 69 kDa) and a light chain (β-chain; 35 kDa) [16]. By binding to
tyrosine receptor c-Met, full-length HGF (84 kDa) plays a role in cell proliferation, migration
enhancement, morphogenesis, and anti-apoptosis [2,17]. Conversely, the heavy chain of
HGF, known as NK4, can bind to c-Met and function as an antagonist to HGF [18,19].
Therefore, the administration of full-length or heavy-chain HGF would aid in examining
whether GVHD can be regulated by using an appropriate method.

In recent studies, a cell surface display system using microorganism cells [20] has
been developed as a biotechnological tool to conveniently produce a foreign protein on the
cell wall. Various host cells have been investigated for this cell surface display method,
including Escherichia coli, Lactobacillus casei, Bacillus subtilis and Saccharomyces cerevisiae [21].
Among various microbial cells in a molecular display system, the budding yeast S. cerevisiae
is the most suitable host for displaying a eukaryotic protein. Anchoring proteins for
displaying a protein on the microbial cell surface have also been examined. For example,
α-agglutinin, Aga1/Aga2, and Flo1 proteins were proven to function well to display a
foreign protein on the S. cerevisiae cell surface [21,22].

Antigenic proteins have been investigated in order to produce oral vaccines as medici-
nal applications of cell surface display engineering. For example, antigenic proteins derived
from Candida albicans [23,24], Influenza virus [25], or human papillomavirus [26] were dis-
played on cell surfaces using genetic engineering. Furthermore, displayed proteins could
function as oral vaccines, enhancing immunological responses against target pathogens. In
that regard, the oral administration of the HGF protein by the molecular display system
might control GVHD [15].

In this study, we showed that the HGF construct could be displayed on the surface of
S. cerevisiae. To anchor the HGF protein on the yeast cell surface, α-agglutinin was selected
for the stable display based on a previous study [21,27]. Furthermore, the appropriate
cultivation periods of yeast cells so as to produce the HGF protein on their surface were
also examined.

2. Materials and Methods
2.1. Strain and Media

The E. coli strain DH5α [F—, Φ80dlacZ∆M15, ∆(lacZYA-argF)U169, deoR, recA1, endA1,
hsdR17(rK

—, mK
+), phoA, supE44, λ—, thi-1, gyrA96, relA1] [28] was used as a host for the

manipulation of recombinant DNA. The E. coli strain was grown in Luria–Bertani medium
[1% (w/v) tryptone, 0.5% (w/v) yeast extract, 0.5% (w/v) NaCl, and 0.1% (w/v) glucose].
The S. cerevisiae strain BY4741 (MATa his3-1 leu2 met15 ura3) was used for the cell surface
display of antigenic proteins. Yeast extract peptone dextrose medium [1% (w/v) yeast
extract, 2% (w/v) peptone, and 2% (w/v) glucose] was used for the transformation of yeast
cells. Yeast cells that carried a plasmid were grown in synthetic drop-out medium [2%
(w/v) glucose, 0.67% (w/v) yeast nitrogen base without amino acids, 1% (w/v) casamino
acids, and supplemented with appropriate amino acids]. The cell density was measured at
600 nm.

2.2. Plasmid Construction and Transformation of Yeast Cell

The plasmid pDHGF-FL used to display human HGF on the surface of S. cerevisiae cells
was constructed by amplifying the full-length HGF-encoding sequence by polymerase chain
reaction (PCR) using the following primers: Ffu, 5′-GTTTCTGCCAGATCTATGTGGGTGA
CCAAACTCCTGCCA-3′ and Rfu, 5′-AGATCCACCCTCGAGTGACTGTGGTACCTTATAT
GTTAA-3′ and human HGF cDNA [11]. The fragment of the gene encoding the full-length
HGF was inserted into BglII/XhoI-digested pULD1 [29] using the In-Fusion HD Cloning
kit (Clontech, Mountain View, CA, USA). Furthermore, pDHGF-HC, used for displaying
the HGF heavy chain on the surface of S. cerevisiae cells, was constructed following the pro-
cedure used for pDHGF-FL. For the amplification of the heavy chain of HGF, the following
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primers were used: Ffu, 5′-GTTTCTGCCAGATCTCAAAGGAAAGGAAGAAATACAATT-
3′ and Rfu, 5′-GAGTCCACCCTCGAGTCGCAATTGTTTCGTTTTGGCACA-3′. Thus, the
full-length HGF-encoding sequence and the heavy chain of the HGF-encoding sequence
were fused to the 5′ end of the cell-wall anchoring protein (α-agglutinin-encoding sequence)
in these plasmids. The constructed plasmids were introduced in E. coli DH5α for propa-
gation. Next, plasmids were introduced into S. cerevisiae BY4741 using the lithium acetate
method [30] for the protein surface display. The nucleotide sequence of the constructed
plasmids was confirmed using an ABI PRISM 3130 Genetic Analyzer (Applied Biosystems,
Foster City, CA, USA).

2.3. Immunostaining

Yeast cells were collected by centrifugation at 6000× g for 5 min, washed with
phosphate-buffered saline (PBS; 50 mM phosphate, 150 mM NaCl, pH 7.4), and adjusted
to 3.2 × 108 cells mL−1 with PBS. Next, 200 µL of the cell suspension was centrifuged at
6000× g for 5 min. The collected cells were incubated in PBS containing 1% (w/v) bovine
serum albumin at 25 ◦C for 1 h [31]. Surface-blocked cells were incubated with 3 mg mL−1

of goat antibody against the hHGF (R&D, Minneapolis, MN, USA) in PBS for 1.5 h at 25 ◦C.
These cells were then washed with PBS and incubated in 3 mg mL−1 of AlexaFluor488-
conjugated mouse anti-goat IgG antibody (Invitrogen, Waltham, MA, USA) in PBS for 1.5 h
at 25 ◦C, and rewashed.

2.4. Immunofluorescence Observation

Yeast cell fluorescence was observed using an Olympus BX51 microscope (Olympus,
Tokyo, Japan). In addition, fluorescence units were measured using the SpectraMax M2
Microplate Reader (Molecular Devices, San Jose, CA, USA) with excitation and emission
wavelengths of 495 and 519 nm, respectively.

3. Results and Discussion
3.1. Plasmid Construction and HGF-Displaying Yeast

To display full-length HGF or its heavy chain, we constructed plasmid pDHGF-
FL and pDHGF-HC, respectively (Figure 1). Both HGF sequences were confirmed as
being correctly cloned into plasmids by comparing them with the GenBank sequences
(accession numbers M29145 [32] and L02931 [16]). Next, they were introduced in S. cerevisiae
BY4741. Confirmation of a successful transformation with these plasmids was performed
by auxotrophic selection and colony direct PCR. In the colony PCR, the sizes of fragments
corresponding to the full length or heavy chain of HGF were confirmed on the respective
plasmids. The strains harboring pDHGF-FL or pDHGF-HC were named BY4741/HGF-FL
and BY4741/HGF-HC, respectively.
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Figure 1. Plasmid constructs for HGF display on the yeast cell surface. (A) Genetic fusion of HGF and
α-agglutinin. Leu2-d in the plasmid is inserted for a multiple copy in the yeast cell. (B) Schematics of
HGF production on the yeast cell surface. HGF, hepatocyte growth factor.

3.2. Immunofluorescence Observation

After the cultivation, the displayed full length and heavy chain of HGF were confirmed
by immunofluorescence microscopy (Figure 2). The strain BY4741/HGF-HC had more
fluorescence that was emitted by cell surfaces than BY4741/HGF-FL did, suggesting that
the heavy chain is more easily displayed on the yeast cell surface than the full-length HGF.

A B C

D E F

Fig. 2.  Shibasaki et al. 

BY4741/HGF-FL BY4741/HGF-HC Control

Figure 2. Immunofluorescence microscopic observation of HGF on Saccharomyces cerevisiae.
(A–C) Light field micrograph. (D–F) Fluorescence micrograph. (A,D) BY4741/HGF-FL; (B,E),
BY4741/HGF-HC; (C,F), BY4741/pULD1 (control). Dashed circles in (D) indicate areas with fluores-
cent cells. HGF, hepatocyte growth factor. Scale bar = 5 µm.

3.3. Cultivation Conditions of HGF-Displaying Yeast

The optical density (OD600) was measured up to 72 h after cultivation initiation
to evaluate the genetically engineered yeast growth conditions (Figure 3A). During the
logarithmic growth phase (6–24 h in culture), cells displaying both full-length HGF and
the heavy chain of HGF showed a slow proliferation. In the stationary phase (48–72 h),
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the growth was 82–89% (full length) or 78–82% (heavy chain) that of the control strain.
These data suggest that displaying HGF molecules may affect metabolism associated with
yeast cell growth. Additionally, a previous study on the cell surface display of enhanced
green fluorescent protein (EGFP) using a similar vector system showed similar results [33].
Considering these cases of cell surface display, the synthesis of HGF’s multiple domains
after their translation might consume extra-cellular resources, affecting cell growth.

Figure 3. Evaluation of HGF-displaying cells during culture. (A) Cell growth. Circle, control; square,
BY4741/HGF-FL (full length), diamond, BY4741/HGF-HC (heavy chain). (B) The fluorescence
intensity from the yeast cell surface was measured and expressed in relative fluorescence units
(RFU). Gray, BY4741/HGF-FL; White, BY4741/HGF-HC. Data represent the means ± SD of three
independent experiments. SD, standard deviation; HGF, hepatocyte growth factor.

The fluorescence of yeast cells stained with AlexaFluor488 was analyzed using a
multi-well plate reader to observe changes in the relative amounts of HGF displayed on the
yeast cell surface during cultivation. Fluorescence intensity is correlated to the amounts of
displayed molecules [34,35]. The displayed HGF amounts increased for the first 24 h of
the growth cycle (Figure 3B). However, there was a considerable difference between the
full-length HGF and the heavy chain of HGF in terms of increasing the displayed molecules.
The displayed HGF heavy-chain protein production was approximately 1.4-fold higher
than that of the full-length HGF at 24 h of cultivation (Figure 3B). This might be attributed
to differences in their molecular sizes. The full-length HGF (84 kDa) is approximately
1.2-fold heavier than the heavy chain (69 kDa), hindering the display of full-length HGF on
yeast cells. For a more precise analysis, these comparisons should be done using different
anti-HGF IgG antibodies that can recognize different epitopes. Additionally, other yeast
strains should also be examined for a high-level display on the yeast cell surface.

4. Conclusions

In this study, we demonstrated for the first time that both the full-length and heavy
chain of HGF could be displayed on the yeast cell surface. HGF was displayed on the
surface depending on the cultivation time for up to 24 h. The fluorescence microscopic ob-
servation (Figure 2) and quantitative evaluation using the fluorescence intensity (Figure 3B)
consistently suggested that the heavy-chain form is easier to display on the yeast cell
surface than the full-length HGF.

In further research, we will carry out a functional analysis of the administration of
HGF-displaying yeast cells to GVHD model animals. The activity of HGF displayed on the
yeast cell surface can be optimized since cell surface engineering also provides an easy way
to introduce mutations into a displayed protein to produce a library and find variants with
enhanced activities [25]. However, further investigations are necessary to develop these
engineered yeast cells for oral HGF administration in GVHD model animals. For example,
the optimization of yeast culture conditions to increase the amount of protein on the cell
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surface and the quantification of displayed HGF should be performed. By optimizing
these conditions, yeast displaying HGF could be a convenient and inexpensive approach to
treating GVHD.
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