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Abstract
Age-dependent changes in DNA methylation allow chronological and biological age
inference, but the underlying mechanisms remain unclear. Using ultra-deep sequencing of
>300 blood samples from healthy individuals, we show that age-dependent DNA methylation
changes are regional and occur at multiple adjacent CpG sites, either stochastically or in a
coordinated block-like manner. Deep learning analysis of single-molecule patterns in two
genomic loci achieved accurate age prediction with a median error of 1.46-1.7 years on
held-out human blood samples, dramatically improving current epigenetic clocks. Factors
such as gender, BMI, smoking and other measures of biological aging do not affect
chronological age inference. Longitudinal 10-year samples revealed that early deviations
from epigenetic age are maintained throughout life and subsequent changes faithfully record
time. Lastly, the model inferred chronological age from as few as 50 DNA molecules,
suggesting that age is encoded by individual cells. Overall, DNA methylation changes in
clustered CpG sites illuminate the principles of time measurement by cells and tissues, and
facilitate medical and forensic applications.
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Introduction
The prediction of chronological and biological age from biological samples offers vast
opportunities in clinical diagnostics, monitoring, forensics and aging research1,2.
Chronological age, defined as the amount of time since birth, correlates strongly with health
status; biological age, while harder to define, may provide more accurate information on
aging and the propensity for disease3–5.
One promising biomarker for age prediction is DNA methylation - the addition of a methyl
group to a cytosine in the context of a CpG dinucleotide5–8. This epigenetic modification
plays a crucial role in various aspects of normal development and disease. During early
development, dynamic processes shape the final methylation landscape, which is essential
for the specialized functions of various tissues in the developing organism. Once
established, these methylation patterns remain stable throughout life and encode the cellular
identity of each cell type. DNA methylation regulates and suppresses the expression of
silenced genes9–14 in a cell-type-specific manner, and indeed the majority of the 28 million
CpG sites in the human genome are methylated, whereas gene promoters, enhancers, and
CpG islands are often unmethylated, either in all cells or in specific cell types15–17. These
patterns demonstrate robustness to environmental cues, and present an outstanding
similarity across healthy individuals17.
However, accumulating evidence has shown that few loci do show dynamic changes in DNA
methylation18, often associated with aging and diseases such as cancer. Pioneering studies
by Horvath and colleagues revealed that a small fraction of CpG sites across the human
genome undergo predictable methylation or demethylation with age5,19. The methylation
patterns of combinations of dozens to hundreds of such sites have been extensively utilized
as epigenetic clocks for chronological and biological age prediction20–22.
Despite the extensive progress made, current approaches for methylation-based epigenetic
age determination suffer from limitations which restrict their accuracy and the biological
insight they provide. Epigenetic clocks have been primarily developed using information from
Illumina methylation arrays (27K, 450K or EPIC), which measure the average methylation
level at a predefined limited set of individual CpGs. As a result, these data cannot detect
information embedded in genomic clusters of adjacent CpG sites, and are therefore limited
in capturing the full scope of age-related DNA methylation changes. This limitation is
significant because DNA methylation does not occur uniformly across the genome; rather, it
acts in a regional manner, influencing gene expression, chromatin structure, and regulatory
processes in specific regions. Indeed, the biochemistry of DNA methylation dynamics is
typically regional, with methylation and demethylation enzymes often acting on multiple
adjacent cytosines in a processive concomitant manner13,23. Based on this, we hypothesize
that age-related changes in DNA methylation occur in a regional manner within clusters of
CpG sites, which cannot be measured in a combinatorial way by methylation arrays.
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Only few epigenetic clocks based on methylation in adjacent CpGs were proposed24,25.
Zbieć-Piekarska et al. used targeted pyrosequencing of five genomic CpG sites, and
reached a mean absolute error of 3.9 years26. TIME-seq, a tagmentation-based approach,
reached a mean absolute error of 3.39 years27. Yamagishi et al. focused on seven CpG sites
located in the promoter of ELOVL2 and achieved a mean absolute error of 5.3 years28.
Finally, the methylation at four age-related regions was shown to predict age in forensic
applications, with a median absolute error (MAE) of 5.35 years29. Thus, the information
embedded in the methylation status of a region with multiple clustered age-responsive sites
remains unclear. More recently, single-cell DNA methylation sequencing assays were
developed. These approaches capture the methylation status across multiple neighboring
CpGs sites, but their sequencing depth is extremely limited, often at 0.1× or below. As a
result, only a small fraction of age-related loci are covered across the genome and their
general utility in accurately predicting age is limited30–32.
A second limitation of current epigenetic clocks concerns data analysis. Most array-based
epigenetic clocks are based on linear regression models (e.g. elastic-net33), resulting in a
MAE of 2.5-5 years25,34. Yet, as we and others have shown, methylation in some CpG sites is
not linearly correlated with age18,20,35,36. Recently, deep neural networks trained on
array-based data resulted in an MAE of ~2.2-2.7 years, using ~1000 CpGs37. We have
recently reported GP-age, a non-linear cohort-based computational algorithm that further
improves on current clocks, resulting in a MAE of 1.89-2.1 years based on 30-80 CpGs
selected from the 450K and EPIC arrays18. Finally, the cost and turnaround times of
array-based measurements are typically high, limiting utility relative to targeted analysis of
few informative loci.
Here we present a novel framework for methylation-based chronological age determination
that integrates targeted DNA methylation sequencing of selected loci with deep neural
network analysis. We examined 45 CpG sites previously reported to be age-responsive, and
used multiplex targeted-PCR followed by ultra-deep sequencing to determine the
methylation status of these CpG sites, along with multiple adjacent CpGs within the same
region, using genomic DNA from blood samples obtained from 300 healthy donors across
three independet cohorts. This allowed us to explore age-related DNA methylation changes
that occur in a regional manner within clusters of CpG sites, revealing that some regions
change stochastically and others in a block-like coordinated manner. We then developed a
novel framework for methylation-based chronological age prediction, integrating
single-molecule combinatorial patterns across multiple methylation sites. We trained a fully
connected deep neural network, resulting with a robust epigenetic clock that obtains a
median accuracy of 1.46-1.7 years on held-out samples, regardless of environmental
factors. We explored the impact of environmental factors. We further explore the minimum
number of cells required to encode elapsed time, and discuss potential applications in
forensics and in aging and rejuvenation research.
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Results
The methylation neighborhood of age-related CpGs
To explore the nature of CpGs sites surrounding age-related CpGs, we began by focusing on
data from Illumina 450K and EPIC DNA methylation arrays, identifying CpG sites highly
correlated with age, and examining the methylation of neighboring sites. This allowed us to
study how likely it is to establish a computational analysis of multiple neighboring CpGs,
sequenced together, and to assess methylation dynamics of CpGs in the vicinity of
age-related sites. Utilizing a published dataset of 11,910 blood methylomes of healthy
donors aged 0-103 years18, we focused on CpGs that exhibit strong correlation with age
(absolute Spearman correlation coefficient rho≥0.4) and show a large absolute change of
DNA methylation levels during adulthood (a change of ≥ 20 percent points between ages 20
and 80). These thresholds identified a total of 2,374 age-related CpG sites, for which we
examined the presence of neighboring CpG sites (up to 450 bp, to fit within a single
amplicon), and their correlation with age. Remarkably, nearly 70% of age-related sites have
neighboring CpGs (Fig. 1A). Incidentally, 10% of these neighboring sites are included in the
methylation array design, allowing us to calculate their correlation with age. CpGs within 50
bp from the top 2,374 age-correlated CpGs are strongly correlated with chronological age
(Spearman |ρ|>0.35, Fig. 1B), suggesting that age-related methylation changes often occur
across multiple neighboring sites, rather than at individual positions.

Figure 1: 450K/EPIC age-associated DNA methylation sites are often surrounded by additional
CpGs correlated with age. (A) Top 2,374 age-correlated sites were identified using 11,910 blood
DNA samples from Varshavsky et al.18. Of these, only 31% are single (blue), whereas most
450K/EPIC age-related sites are surrounded by multiple CpGs (up to 25bp away), which are typically
not measured using DNA methylation arrays. (B) The average correlation between DNA methylation
and age is shown for the top 2,374 sites (red dot, center), as well as neighboring CpG sites that are
present on the methylation array (gray dots, grouped by relative distance).
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Consequently, we hypothesized that a targeted bisulfite-PCR approach followed by
ultra-deep next-generation sequencing, could shed light on age-related methylation
dynamics by measuring the combinatorial patterns of multiple CpGs in thousands of DNA
fragments at a single-molecule resolution (Fig. 2A).

Figure 2: Clusters of age-related changes. (A) Schematic of targeted PCR-sequencing following
bisulfite conversion, facilitating concurrent mapping of multiple neighboring CpG sites at a depth
>5,000×. Red and green, methylated and unmethylated CpGs; asterisk, CpG present in array. (B) For
each amplicon (row) we plot the Spearman correlation coefficient for each CpG, showing high
concordance between age and DNA methylation levels across multiple, clustered, CpG sites.
Amplicons are aligned by DNA methylation array CpG.
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Development of age-responsive multi-CpG markers and a cohort of healthy donors
To identify clusters of CpGs whose methylation strongly correlates with age, we considered
the most correlated sites from the published dataset of 11,910 blood methylomes, as well as
additional genomic regions previously associated with age18,20,21,34. We expanded each of
these array-based CpG sites to include nearby CpG sites, and designed targeted PCR
primers to co-amplify and sequence 45 target regions following bisulfite conversion. The
amplicons were on an average 134bp long, and had 8.5 CpGs per amplicon, and represent
a mixture of genomic regions that either gain or lose methylation with age, including gene
promoters, introns, CpG islands, polycomb CpG islands, flanking regions, distal enhancers
and more (Table S1).
We then collected blood samples from 296 self-declared healthy donors, aged 17 to 78,
extracted DNA, and treated with bisulfite38. This was followed by multiplexed PCR
amplification of over ~2000 genome equivalents (10 ng), and sequencing at an average
depth of 12,839 fragments per amplicon (Table S1). Samples were then divided into training
set samples (n=205, 42 of which marked as validation samples for hyperparameter tuning),
and held-out test samples (n=91), after stratifying by age (Fig. S1). The three sets show
similar age distributions and are balanced for gender. Additional data provided by the donors
included weight, height, smoking status, smoking years, and brief medical history (Table S2).
Figure 2B shows the absolute Spearman correlation between DNA methylation and age, for
each individual CpG site we measured. Each row shows one such genomic region
(amplicon), centered by the original age-related CpG site from the methylation array design,
with surrounding CpGs spanning to the right and left. Indeed, at most amplicons, we observe
a number of multiple age-related CpG sites are clustered in proximity (Fig. 2B, Table S3).

Clustered, stochastic, non-linear methylation changes at the ELOVL2 locus
We begin by examining how blood DNA methylation changes with age, across a set of
adjacent CpG sites in one particularly informative locus. In Fig. 3, we illustrate the average
methylation of 17 sites at the 154bp-long ELOVL2 amplicon (chr6:11044843-11044997,
hg19), across 205 training samples aged 17-78. As previously showed, CpG #7 in our
amplicon (cg16867657) is highly correlated with age. Yet, it is a part of nine CpG sites
(#2-10), located within a small region of 57bp, that show a dramatic consistent accumulation
of methylated molecules with advanced age. Remarkably, despite their physical proximity
(CpGs #5-7 are directly adjacent, others are within few bases), these age-responsive CpG
sites all show different dynamics throughout life - they show a range of baseline methylation
levels (CpG #2 vs #4, or #8 vs #9), as well as differences in their annual rate of change.
Additionally, these sites are flanked by a CpG site (#1) that shows no DNA methylation
changes whatsoever; as well as a group of seven CpGs (#11-17) that show a small but
consistent rate of annual DNA methylation gain (Figs 3, Table S3).
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Figure 3: Clustered, non-linear age-related methylation changes. (A) Shown are 17 CpG sites
from the ELOVL2 amplicon (chr6:11044843-11044997, hg19). Each dot represents the average DNA
methylation from deeply sequenced blood DNA, from a single donor. X-axis: chronological age on a
0-100 scale; Y-axis: methylation on a 0-100% scale. Marked in red are CpG sites strongly associated
with age, with absolute Spearman correlation ≥ 0.8 and methylation range ≥ 20 percentage points.
Data points are fitted using a linear model (red line) or a first-order rate equation (blue line). (B) DNA
sequence at the ELOVL2 amplicon. Age-associated sites are highlighted in red. ELOVL2 CpG #7
(cg16867657) is marked.

Intriguingly, the commonly used linear models, that assume a constant change in
methylation levels during adulthood39–42, provide a rather poor fit for most age-specific
changes. Conversely, we show that a simple rate equation, by which a fixed percent of
unmethylated molecules changes each year, offers a better fit for most CpG sites (Fig. 3).
Specifically for CpG#7 (cg16867657), used by many epigenetic clocks, the non-linear fit is
significantly more accurate than the linear fit, with RMSEs of 2.8% vs 3.4%, respectively
(p≤3.6e-5). Importantly, the rate equation model offers a mean prediction error of 3.2 years
(based on a single CpG site), compared to 4.2 years when using the linear model.
Similar principles were observed for additional CpGs at multiple regions, including regions
that demethylate with age (Fig. S2).
Overall, age-correlated CpGs are often located in clusters, and the sites measured by
methylation arrays are often not the ones to change the most (Fig. S3). Suggesting that
neighboring sites, and especially the combinations of multiple sites, could offer an improved
age prediction from methylation.
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Stochastic vs. block-like methylation changes at neighboring CpG sites
To better understand the dependencies between methylation of neighboring CpGs, we focus
on the methylation patterns of individual single molecules. Each sequenced read was
analyzed, and the binary patterns of covered CpGs was recorded. We then examined the
frequency of each possible binary pattern at donors of different ages.
Indeed, we identified two very distinct modes of age-related methylation changes that are
undistinguished when examining data from DNA methylation arrays. Some genomic regions
show stochastic, position-independent methylation changes, by which each individual CpG is
randomly changed, independently of changes in neighboring sites (Fig. 4A, top). Conversely,
other genomic regions seem to show a block-like coordinated change of multiple neighboring
CpG sites (Fig. 4A, bottom), by which all adjacent sites exhibit the same methylation level,
and resulting with a mixture of fully methylated and fully unmethylated molecules.
At the ELOVL2 locus (Fig. 4B), young donors are characterized by unmethylated DNA
fragments across all nine age-responsive sites (CpGs #2-10). This pattern gradually gives
way to an ensemble of “dotted” molecules with mixed methylation, until fullly methylated
molecules become the most abundant pattern at older donors (Fig. 4B).
To quantify how coordinated each pair of CpGs is, while considering individual age-related
changes, we devised a computational score based on conditional mutual information. This
score measures, for donors of every age, how much of the uncertainty of one CpG site is
reduced by knowing the methylation state of the other site (in bits). We then average across
all ages to quantify the overall mutual information between two CpGs.
For highly variable CpGs, we observe high entropy for each individual site, but near-zero
pairwise mutual entropy, suggest that the sites are mostly independent. Conversely, high
pairwise values suggest that the two CpGs change concordantly, in a coordinated way. To
account for age-related dynamics, the mutual information score we calculated was estimated
for each age independently, then weighed and summed across all ages (see Methods). As
shown in Figure 4D, the nine CpGs at the ELOVL2 locus are nearly independent of each
other, with near-zero pairwise mutual information.
Intriguingly, we also observed a second mode of age-related methylation changes,
characterized by coordinated demethylation of multiple neighboring CpGs. Figure 4C depicts
the abundance of patterns across a neighboring set of eight age-related CpG sites at the
C1orf132 locus. Unlike the stochastic changes noted in ELOVL2, age-related methylation
changes in this locus occur in a block-like manner, by which nearly all CpGs are either
methylated or unmethylated. These block-like concordant changes across multiple
neighboring CpGs is typical of cell-type-specific differentially methylated regions, as
previously reported by us and others17,23,43, but not in the context of cellular aging.
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Figure 4: Stochastic vs. block-like age-related methylation changes at neighboring CpG sites.
(A) We propose a model by which an unmethylated region could gain methylation by stochastic
accumulation of individual changes, or by block-like concordant changes across multiple CpG sites.
(B) The observed frequency of multiple binary patterns across nine CpGs sites, at the ELOVL2 locus,
at five ages (18, 20, 30, 50 and 70). A strong lifetime gain of methylation is observed, by which the
fully unmethylated molecule (all white) becomes less frequent as more and more CpG sites are
randomly methylated, until this region is mostly methylated at older ages. (B) Same as (A), for the
C1orf132 locus. Here, the CpG sites are strongly related, and the fully methylated pattern is replaced
over the years by the fully unmethylated pattern. (D) The ELOVL2 locus is characterized by highly
variable CpGs (with high entropy) that are largely independent of each other (low pairwise mutual
information). (E) Conversely, C1orf132 is characterized by strong pairwise coordination.
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Indeed, a pairwise analysis of the C1orf132 amplicon using conditional mutual information,
identified a coordinated block of eight CpGs (Fig. 4). These two archetypical modes of
change were observed in additional age-responsive amplicons that we tested, including
TP73 and CCDC102B (stochastic) and FHL2, SPAG9 and GRM2 (block-like) (Figs. S4).
These two principles are further visualized in Fig. S5, showing a gradual stochastic
accumulation of methylation, shifting from the fully unmethylated to the fully methylated
pattern (or vice versa), for some regions; alternatively, other block-like regions directly switch
from one pattern to the other, without going through the interim, mixed, patterns.
Recently, Tong et al examined the stochastic processes that underlie epigenetic clocks44.
Importantly, their analysis and simulations were based on 450K and EPIC arrays, limited to
average methylation values at individual sites, and therefore cannot accommodate the
different principles of coordinated and independent changes described here. In contrast, the
45 regions in our study show a combination of DNA methylation changes that accumulate as
we age at a single molecule level, either stochastically (at individual CpG sites), or in a
coordinated manner (across a set of CpG sites).
Moreover, our results warrant biochemical examination of the mechanism of DNA
methylation change with aging, including analysis of chromatin accessibility and processivity
by methylation enzymes e.g. TET and DNA methyltransferases.

MAgeNet, a deep neural network for chronological age prediction
Next we devised an epigenetic clock, based on multiplexed PCR followed by sequencing, to
infer chronological age. Unlike previous approaches that predicted age from average
methylation levels at individual CpGs, we wished to integrate the combinatorial methylation
patterns of multiple CpGs sites at individual DNA molecules, in thousands of sequence
reads from few age-related regions. For accurate and robust predictions, we designed three
complementary representations for each sample, reflecting different degrees of abstraction
and processing. For a locus with K age-related CpGs, the first representation holds the
average methylation at each individual CpG; the second representation contains the
abundance of fully unmethylated reads, of reads methylated at exactly one CpG, at two,
three, and so on, (a total of K+1 features, from 0 through K); the third representation
contains the abundance of each possible combinatorial pattern across the K CpGs, to a total
of 2K possible options (Fig. 5A).
Overall, of the 45 genomic regions we measured, 16 genomic regions showed a dramatic
change in at least three consecutive CpG sites, defined by an absolute Spearman
correlation of 0.8, as well as an absolute change in methylation of 20 percentage points
during adulthood (Methods, Table S3). We then trained various models, including the linear
elastic net regression model, the non-linear GAM regression model45, and deep learning
(fully connected neural networks)46,47, using the three different representations of the data.
This allowed us to quantify the importance of different representations and the accuracy
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obtained for different loci by each model. For improved robustness, and to account for the
varying number of sequenced reads per sample, the sequencing data (for both training and
test-set samples) was augmented by generating 128 random subsets of 8,192 reads each,
by sampling (with replacement) from the original data. This also accounts for the variable
number of sequenced reads from each donor or locus. A principal component analysis of
these high-dimensional data revealed that 92% of the variance could be explained by a
single dimension, which is also highly indicative of age (Fig. S6).
We designed MAgeNet, a deep fully connected neural network for chronological age
prediction from targeted PCR-based DNA methylation sequencing from blood (Fig. 5A).
Hyper-parameters were selected using a grid search and L1 loss (on the validation set), and
the optimal model for each marker was then retrained on all training data (see Methods). We
also trained regression models for each amplicon and tested the models on the held-out
test-set samples. Four genomic regions: ELOVL2, C1orf132, FHL2, and CCDC102B,
showed comparable prediction accuracy, with MAE≤4 years, and root mean square error
(RMSE) below 7 years (Table S4). For forensic applications, we also calculated the MAE and
RMSE scores for donors aged 50 or younger (MAE50, RMSE50, Figs. 5, S7, Tables S5-S6).

Ultra-accurate age prediction from blood DNA methylation
Strikingly, we found that PCR-based targeted bisulfite sequencing, capturing the
combinatorial patterns of multiple age-related neighboring CpGs from just one genomic
locus, outperforms all known epigenetic clocks. For example, a deep learning model trained
on the ELOVL2 locus solely, composed of nine age-related CpGs, achieves a MAE of 1.8
years for held-out test samples; or 1.54 years for donors below 50 (MAE50, Figs. 5, S7). A
model based on eight CpGs at the amplicon at C1orf132 achieves a MAE50 of 2.1 years; the
nine-CpG amplicon near FHL2 yields a MAE50 of 3.3 years, and a model based on four
CpGs near CCDC102B presents a MAE50 of 2.8 years.
The models we trained also allow us to compare, for each amplicon and in an unbiased way,
how different representations and different models affect prediction accuracy. For the
stochastic ELOVL2, the full combinatorial representation was as accurate as the simpler
representation based on how many CpGs are methylated, in each individual read, and both
representations outperformed the common representation of beta values (average
methylation levels) at individual CpGs. Importantly, regardless of data representation, the
two non-linear models - generalized additive models (GAM) and deep neural networks -
outperform linear regression models.
Next we combined multiple amplicons to increase the accuracy and robustness of age
prediction. We merged the feature-based representation of each marker and trained a larger
network. Indeed, a joint end-to-end model of two loci (ELOVL2 and C1orf132) outperformed
all single-locus models, and achieved a median absolute error of 1.7 years across the test
set samples. Importantly, the model’s median accuracy for donors 17-50 years old was 1.36
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years, and 0.9 years for test-set donors between 17 and 35 years old (Figs. 5, S7), thus
offering state-of-the-art accuracy for various applications in forensics, medicine, and aging
research.

Figure 5: MAgeNet outperforms other linear and non-linear regression models for age
prediction from DNA methylation. (A) A deep neural network for age prediction from fragment-level
targeted DNA methylation data. Following targeted sequencing, each library was represented using
individual CpG methylation levels, the abundance of fragment-level counts of methylated CpGs (e.g.
“all-but-one”), and a combination of all binary patterns. These were the input of a 7-layer fully
connected deep network, with non-linear ReLU activation functions and 256 or 512 neurons per layer.
(B) Deep learning predictions (y-axis) vs actual age (x-axis) are shown for the ELOVL2 locus, for
C1orf132, for all four markers (including FHL2, and CCDC102B), and for a combined two-marker
model. The latter model achieved a median abs. error of 1.7 years on held-out test-set donors (or 1.36
years for donors aged 50 or less). (C) A comparison of median errors (Y-axis) for linear, non-linear,
and deep learning models. The most accurate predictions are typically obtained by deep learning
models (blue), rather than the commonly used linear model (elastic-net, green), or a generalized
non-linear model (orange). Overall, the most accurate predictions were achieved by deep learning
models. ELOVL2 achieved a median error of 1.8 years (1.54 for donors ≤ 50), or a combination of
ELOVL2 and C1orf132, with a median error of 1.7 years (1.36 years below 50), using multiplexed
targeted PCR sequencing data.
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Minimum number of cells needed for age inference
We next examined the minimal number of cells required to accurately predict chronological
age, as information on this matter may shed light on principles of aging, and have practical
implications in forensics, where the amount of available material is often very limited. For
this, we took two complementary approaches. First, we sub-sampled our sequenced PCR
libraries to simulate lower library complexity and sequencing depth. For example, when
simulating 100 cells, we randomly sampled 100 reads for each locus (for each donor),
effectively reducing the average depth of sequencing for the whole dataset from 12,839× to
100×. We then repeated the age prediction pipeline described above. Overall, we applied
this procedure 100 times with n=10, 20, 50, 100, 200, 500, 1000, 2000, 5000 and 10000
sampled reads. As Figure 6A shows, 500 DNA molecules per region are sufficient for highly
accurate age prediction, with a median accuracy (MAE50) of 1.53 years (±0.2). Even DNA
equivalent to 20-50 cells was sufficient to predict age with a median absolute error of 3-4
years. These results reflect upon the ability to predict age from single-cell DNA methylation
data, where the sequencing depth per cell is extremely low (at ~0.1×), and the overall
coverage per locus is low30,31.
Second, we applied MAgeNet to 23 whole-genome bisulfite sequencing samples we recently
published17, containing methylation data of genomic DNA from white blood cells from healthy
adults (mean age 57 years). Focusing on reads that fully cover the ELOVL2 and C1orf132
loci (~25×), we applied MAgeNet and achieved a median absolute accuracy of 3.58 years
(Figs. 6B, S8). These results provide an independent validation for the performance of our
clock, and support the idea that a small number of cells may suffice for age prediction.

Figure 6: Age predictions are robust to environmental and physical characteristics and require
few cells. (A) Sampling analysis shows the expected median error (y-axis) from increasingly smaller
PCR libraries, demonstrating accurate age predictions from as little as 200-500 sequenced PCR
products. (B) Age prediction from whole-genome bisulfite sequencing17 shows accurate predictions at
an effective depth of 25× in two loci, suggesting that age could be inferred from fewer than 50 blood
cells.
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Age-dependent vs cell-composition DNA methylation changes
The findings described above are based on methylation of DNA from whole blood, and are
potentially affected by differential cell type composition (which is known to change with
age)48,49. To assess the performance of our methylation markers in predicting age from pure
cell types, we collected DNA from eight healthy donors aged 25 to 63 and FACS-isolated
neutrophils, monocytes, B cells and T cells. We extracted DNA, treated with bisulfite,
PCR-amplified and sequenced to an average depth of 12,303× (Fig. S9). Interestingly, we
found that some age-related methylation changes reflect slow changes in the cellular
composition of blood DNA, rather than a gain or loss of methylation18,50. For example, the
C1orf132 locus is losing methylation in some cell types, but remains hypermethylated in T
cells (Fig. S10).
Importantly, the nine age-correlated CpGs in the ELOVL2 locus showed no significant bias
across blood cell types, suggesting that methylation changes in this locus are primarily
driven by age. These results suggest an intriguing interpretation of the deep neural network,
by which the integration of ELOVL2, a cell-type-independent marker, with C1orf132, a
cell-type-dependent marker, improves prediction accuracy by integrating a wider spectrum of
age-related phenomena.

Chronological age prediction is not influenced by measures of biological aging
We next turned to examine whether individual characteristics affect the prediction accuracy
of our targeted epigenetic clock. Higher BMI was previously associated with epigenetic age
acceleration51,52. Smoking-related methylation alterations were also reported53, although the
effect of smoking on age-responsive methylation is unclear. Sex differences were also
shown to affect epigenetic clocks54. To explore these factors we divided donor samples
based on these criteria and determined the accuracy of prediction in each group. We found
no effect of smoking status, BMI and sex on the accuracy of age prediction (Figure 6, Table
S7). These findings suggest that the two-loci chronological age predictor we trained is robust
to environmental and hormonal cues.
To validate these findings, we turned to another independent cohort. The Jerusalem
Perinatal Study (JPS) monitors thousands of individuals born in Jerusalem between 1964
and 197655,56. We analyzed blood samples from 52 donors, taken 10 years apart, at the ages
of ~32 and ~42, and processed the samples as described above. We then applied the
two-loci (ELOVL2, C1orf132) epigenetic age model and predicted chronological age. Overall,
the median accuracy of MAgeNet was 1.73 years, providing an independent validation to the
performance of the algorithm.
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Figure 6: Age predictions are robust to environmental and physical characteristics. (A)
Comparison of donor sub-groups shows no bias to age prediction (Y-axis) introduced by sex,
body-mass index (BMI) and smoking status. (B) A comparison of predicted epigenetic age (X-axis) vs
predicted biological age (Y-axis), using blood samples from the Jerusalem Perinatal Study (JPS),
shows no effect of biological age on the predicted epigenetic age. Red lines mark the average
chronological age of the group. (C) Longitudinal analysis of blood samples from the Jerusalem
Perinatal Study (JPS) cohort revealed a median error of 1.73 years for donors aged 30-33 (red dots).
Analysis of blood taken from the same patients 10 years later (blue dots) showed a relative median
error of 1.38 years, suggesting that deviations in epigenetic age prediction are due to earlier life
events or genetics, and that methylation changes at the ELOVL2 and c1orf132 amplicons accurately
record the passage of time.

Alongside the chronological age of the JPS donors, we analyzed various biological
measurements including blood glucose, total cholesterol, triglycerides, BMI, waist
circumference, and diastolic and systolic blood pressure. For the initial time point (age 32),
additional measurements were available, including blood urea nitrogen (BUN), creatinine,
uric acid, C-reactive protein (CRP), alkaline phosphatase (ALP), albumin and an estimate of
biological age (BA), as predicted based on these biomarkers57. We found that none of the
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biological measurements affected chronological age prediction (Fig. 6), with one exception:
for ~32 years old donors, higher triglycerides levels in the blood seem to affect the
epigenetic age prediction error (Spearman -0.3, FDR ≤ 0.017, Table S8, Fig. S11). We
speculate that methylation of ELOVL2 may affect the function of its gene product, a fatty acid
elongase. Nevertheless, this effect was not observed for the group of ~42 year old
participants, further strengthening our claim of the clock robustness and independence from
biological age.

Consistent 10-year longitudinal predictions
We compared the deviations of the clock predictions from chronological age for the two time
points in the JPS cohort. At 32, the MAgeNet predictions obtained a median accuracy of
1.73 years, compared to median accuracy of 2.2 years, 10 years later. We therefore focused
on each individual donor, and compared if the two deviations were coordinated. Indeed, the
difference between the two predicted ages was highly correlated with the chronological
difference between tests, with a relative median error of 1.38 years (Fig. 6C). In other words,
a pre-existing deviation between actual and predicted epigenetic age is likely to be carried
over to the future, and current deviations could indicate early life events or genetic factors
that affected the clock in the past, after which the passage of time was faithfully recorded.

Discussion
Most methylation-based epigenetic clocks were developed to reflect chronological as well as
biological age, such that deviations from chronological age are interpreted as a reflection of
accelerated or decelerated aging. We aimed to target the molecular mechanisms that
encode purely chronological age, to better understand the underlying biology of how elapsed
time is encoded in cells and to provide tools for research and forensic applications. The
approach that we developed is based on two principles. First, targeted PCR-sequencing of
selected age-responsive loci, to assess the methylation status of multiple neighboring CpGs;
Second, deep learning based on fully connected neural networks utilize non-linear activation
functions at each artificial neuron. MAgeNet, the resulting algorithm, offers a compelling
alternative to DNA methylation arrays, with a dramatic improvement in the accuracy of
chronological age prediction at reduced cost and a faster turnaround time. Performance was
assessed using held-out samples from our collection of 300 blood samples, and further
validated using samples from two independent cohorts – a 10-year longitudinal analysis of
52 donors from the Jerusalem Perinatal Study, as well as 23 donors subjected to WGBS of
genomic DNA from blood. Notably, while donors of the first two cohorts were almost
exclusively Israeli Jews and Arabs, the WGBS samples were obtained from donors in the
USA17, suggesting that this assay captures universal age-related methylation patterns.
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Performance of MageNet compared with existing epigenetic clocks
The original Horvath clock, using 353 individual CpGs measured using Illumina BeadChip
arrays from whole blood, predicted age with a mean error rate of 3.9 years20. More recent
clocks designed to predict chronological age reached accuracy down to 2.2 years when
using 1000 CpGs37, while our own analysis of published array data resulted in accuracy of
1.89 to 2 years when using 30 to 80 CpGs18. The top performing algorithm described here,
using deep targeted sequencing of two loci, ELOVL2 and C1orf132, combined with deep
learning models, predicts chronological age with a median error of 1.7 years on unseen
samples. Furthermore, we report an accuracy of 1.36 years on individuals under 50, and 0.9
years for individuals 35 or younger, representing a substantial improvement in accuracy.
Notably, our model is based on a total of 17 CpG sites (nine at the ELOVL2 amplicon, and
eight within C1orf132), but takes advantage of their binary combinatorial patterns. The
superior performance of MAgeNet reflects the fact that it is robust to various environmental,
clinical and hormonal changes that may affect biological, but not epigenetic, age prediction.

Insights into the encoding of age by DNA
Our findings offer several insights into the biology of age encoding by DNA methylation.
First, while the underlying biochemical mechanism remains a mystery, we found that
age-related methylation changes occur across multiple adjacent CpGs, consistent with the
typical regional nature of DNA methylation dynamics during development. Furthermore, we
found that regional age-dependent methylation changes can occur either in a block-like
coordinated manner, or independently and stochastically at each individual CpG site, as
recently demonstrated44,58. This suggests that the molecular mechanisms underlying
age-related methylation changes involve distinct pathways. We speculate that
age-dependent activity of DNMT and TET enzymes is determined by factors such as DNA
binding proteins, nucleosome positioning conferring steric hindrance, histone modifications
and chromatin packaging. Further studies may look at these potential determinants at high
resolution to understand how they dictate invariable methylation changes in specific loci.
Most of the 45 markers we examined are gene-centered and overlap with regulatory regions,
including promoters and genic regions, as well as CpG islands and polycomb CpG islands,
as previously suggested for aging and cancer7,59–61, underscore the crucial role of DNA
methylation in gene regulation, and highlights age-related effects on transcription programs.
Second, the observation that deviations of clock prediction from chronological age are
typically perpetuated to later measurements of the same individual, suggests that deviation
is a one-time rare event; consequently, it appears that methylation changes at these loci are
generally a faithful measure of elapsed time encoded in DNA, rather than a measure of
chronological age in the formal sense. Future studies will address the time during which
such deviations occur, and the potential determinants e.g. events taking place during
differentiation and development, or genetic factors. We note that the lack of correlation
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between errors in age prediction and multiple environmental or physiological factors
suggests that such early deviations are not a reflection of biological age.
Third, our findings reveal an interesting relationship to blood cell composition. We found that
the best performing algorithm involved a locus that changed methylation with time
(ELOVL2), and a locus that also reflected the characteristic age-related alterations in blood
cell composition (C1orf132, marking T cells which are known to become less abundant in
blood with advanced age)49,62. This also predicts that clocks using C1orf132 will be
error-prone when an individual has altered blood counts e.g. during infection.
Fourth, the fact that model performance for individuals under 35 or 50 is better than the
entire population (accuracy of 0.9 years, 1.36 years, or 1.7 years, respectively) suggests that
in advanced age, remarkably small but nonetheless significant methylation noise
accumulates which leads to reduced accuracy of encoding elapsed time.
Finally, our finding may shed some light on a fundamental question in the biology of aging -
is biological age encoded by each individual cell or is it a function of a population of cells
(e.g. the proportion of senescent cells). Our study does not answer this question, but it does
show that at least elapsed time is encoded by a small number of cells, potentially in the
methylation pattern of each cell, and can be accurately inferred from a small number of DNA
molecules63.

Practical implications
A straightforward utility of chronological age clocks is in the analysis of samples from
unknown individuals, as often required in forensic case work. We note that the higher
accuracy of our model for individuals under 35 or 50 years of age (test-set accuracy of 0.9 or
1.36 years, respectively) is beneficial in this regard, since most crime suspects are in this
age range. We also note that the ability to infer chronological age from an extremely small
number of cells is an important precondition for most forensic cases; for example, touch
DNA typically allows the extraction of 0.5ng DNA, representing 100 genome equivalents.
Finally, the current clock is optimized for blood DNA; forensic applications will require
adaptation to additional body fluids such as saliva or sperm.

Limitations and future directions
The methodology described here has several limitations, which present both challenges and
opportunities for improvement. The reliance on PCR followed by sequencing introduces
noise in the form of PCR duplicates, which likely accounts for much of our intra-assay
variation. Duplicates can be avoided, for example by using unique molecular identifiers
(UMIs), and we predict that scoring each template molecule only once will allow for a further
increase in accuracy of the method. Another potential limitation of study is the narrow
ethnicity of our donors – essentially just Jews and Arabs. However the ability of the model to
infer age from WGBS of donors from the USA supports the generalizability of the model.
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Methods
Sample collection
Population-based studies were approved by the ethics committee of Hadassah Medical
Center. Procedures were performed under the Declaration of Helsinki. The donors have
provided written informed consent.

Library preparation
Blood samples were collected in EDTA tubes. DNA was extracted from 200 µl of blood using
the “blood and tissue” Qiagen kit. Then, 500 ng of the solution was treated with bisulfite and
amplified with PCR using primers designed for bisulfite-treated DNA. Pooled PCR products
were subjected to multiplex NGS using the NextSeq 500/550v2 Reagent Kit (Illumina).
Sequenced reads were separated by barcode, aligned to the target sequence on the human
reference genome (hg19), and analyzed using custom programs as previously described64.
Read pairs were merged, and sequenced DNA fragments were projected to a more compact
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methylation-specific representation, where non-CpG positions are discarded, methylated
cytosines are denoted by C, and unmethylated ones by T, using wgbstools65.

Non-linear age models using rate equations
Rate equations, and specifically ordinary differential equations (ODEs) describe the rate of
change of a quantity with respect to time. The methylation dynamics of each CpG was
modeled using two parameters, including the initial beta value (average methylation), as well
as the relative rate of change, equivalent to the fixed percent of methylated molecules that
undergo demethylation per year. These kinetics could be explicitly simulated using the
Runge-Kutta method, or directly expressed using an exponentially decaying function. For
CpG that gain methylation, the model assumes the percent of unmethylated CpGs that are
methylated, per year. For the implementation and the derivation of the optimal rate of the
ODE we used the minimize algorithm from the scipy.optimize library of Python 3.9, using L2
loss function.

Conditioned Mutual Information:
Pairwise mutual information was applied to quantify how coordinated or independent two
CpGs are, while controlling for age-related changes in each CpG. Specifically, for each age
k, we estimated the pairwise mutual information Ik(X;Y) was calculated for every pair of CpG
sites X and Y, by computing the difference between the marginal entropy Hk(X) and the
conditional entropy Hk(X |Y). We then averaged across all ages, weighting by the number of
samples available for each age. Entropies were calculated by merging all train-set samples
from age k, and using a Bayesian estimation of the average methylation per CpG. For this,
we focused (for each age k) on sequenced reads covering both CpGs, and counted the
abundance of each binary combination (TT, TC, CT, CC) across the two CpGs X and Y. The
age-dependent probability of methylation Pk(X=C) for CpG X was then estimated with a
pseudocount of one, and the marginal entropy computed as minus the sum of Pk(X=C) log2
Pk(X=C) and Pk(X=T) log2 Pk(X=T). Similarly, the conditional entropy of X given Y was
calculated as minus the sum of Pk(X=a, Y=b) log2 Pk(X=a, Y=b) / Pk(Y=b), summing over four
possible assignments for a and b. High mutual information suggests that knowing the value
of Y is informative of the value of X, for each age k. Further, as Hk(X | X) equals zero, the self
mutual information Ik(X;X) equals the entropy of that CpG Hk(X), in bits.

Non-linear age models using generalized additive models (GAM)
Generalized additive models are a non-linear alternative to linear regression models. Here,
the targeted variable is described as a linear sum of non-linear linkage functions applied to
each predictor variable. For example, the age-dependent average methylation at each CpG
site could be modeled using a spline or some smoothing function, which are then weighted
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and summed to predict age. The Python GAM implementation pygam (DOI
10.5281/zenodo.1208724) was used with default settings.

Statistical tests
Effect of demographic and environmental traits, including sex, BMI, and smoking was tested
using Python’s t-test implementation (scipy.stats.ttest_ind). Donors were binned by age, in
10-year intervals, and an equal number of donors were randomly sampled for each group.
To compare the goodness-of-fit for different (nested) regression models, we used the
F-statistic, which compares the relative improvements in fit (using the residual sum of

squares), normalized for the number of sample and parameters: , and p-value𝑓 =
𝑅𝑆𝑆1−𝑅𝑆𝑆2
𝑝2−𝑝1
𝑅𝑆𝑆2
𝑛−𝑝2

was assigned using the tail CDF of the F-distribution, and corrected for multiple hypothesis
testing using Benjamini-Hochberg.

Selection of age-correlated CpG sites
Prior to training the model, each CpG was tested independently for correlation with age
using Spearman rank correlation, after grouping donors by age in a one-year bins. CpGs
with Spearman correlation ≥ 0.8 that also showed a methylation range of change ≥ 20
percent points were selected for future analysis. For robustness, methylation range was
defined by fitting a linear model to beta values and considering the absolute difference
between predicted methylation at ages 20 and 80.

Data processing and deep neural networks
Fragments were clipped to cover age-related CpGs (Table S3). Gapped fragments, or
fragments with missing CpGs were ignored. The original 296 samples were split into train,
test, and validation sets, stratified by age. Each sample was then augmented by generated
128 random subsets of 8,192 reads (sampled with replacement). For each set of fragments,
covering a region of K age-related CpGs, three sets of methylation features were computed.
First, we computed the average methylation level at each CpG (1 through K). Secondly, the
abundance of fragments with exactly {0, 1, 2, …, K} methylated sites (out of K) was
computed. Finally, the abundance of each of the 2K possible methylation patterns, across the
sequenced fragments was computed per sample. Features were concatenated to a single
vector of length 2K+2K+1, serving as input for the network. A deepl learning architecture was
designed based on fully connected neural networks, consisting of seven hidden layers of
constant size. For regions of k≥4 CpGs, a hidden layer of 256 neurons were applied, or 512
neurons for k≥5, with a ReLU activation function. No regularization (pseudocounts) was
applied for training. Different amplitudes of dropout were considered, as well as learning rate
in the range of 3e-7 through to 3e-6. We used the ADAM optimization algorithm (with beta1
= 0.9, beta2 = 0.99, for weights update), with mini-batches of 128 samples. These
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parameters were selected using a grid search on the validation samples, using L1 loss. The
deep learning model was implemented using the PyTorch library.

Whole-genome bisulfite-sequencing data
Blood WGBS data was obtained from Loyfer et al.17. Data was analyzed using wgbstools,
software suite we developed65, to convert the BAM files to binary DNA methylation data at
single-fragment level (PAT files), and select fragments that fully cover the selected
age-related CpGs, for each amplicon. Fragments were then augmented and processed as
described for the PCR data.

Model performance
Model performance on the test-set was assessed using the median absolute error (MAE),
median absolute error for donors aged 50 or younger (MAE50), and root mean square error
(RMSE and RMSE50). Each model was evaluated on the held-out test set. For each donor
in the held-out test set, the sequenced data was sampled, with replacement, 128 times, age
was predicted for each sample, and then averaged to produce a single chronological age
prediction per sample.

23

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 5, 2024. ; https://doi.org/10.1101/2024.12.03.626674doi: bioRxiv preprint 

https://paperpile.com/c/vYIutL/MkFMh
https://paperpile.com/c/vYIutL/5hHch
https://doi.org/10.1101/2024.12.03.626674
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Figures:

Supp. Figure 1: Age histogram for 205 training samples (left and middle) and 91 held-out test set samples (right).
The train and test sets were split by a ratio of 70%/30% stratified by bins of 10 years, then the train set was split
by a ratio of 80%/20% to train and validation sets.

Supp. Figure 2: Same as Figure 2, for additional loci. (A) C1orf132 (chr1:207996978-207997090, 10 CpGs),
(B) FHL2 (chr2:106015715-106015844, 14 CpGs), and (C) CCDC102B (chr18:66389329-66389475, 4 CpGs).
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Supp. Figure 3: Clusters of age-related changes. For each amplicon (color) and for each CpG site (dot) we
plot the Spearman correlation coefficient (X-axis) vs. the absolute range of methylation during adulthood (Y-axis).
Intriguingly, CpGs that are the most correlated with age in each amplicon are not necessarily measured by
450K/EPIC arrays (black dot).

Supp. Figure 4: Same as Figure 3, for the FHL2, CCDC102B, SPAG6, TP73, and GRM2 locus. FHL2 shows
block-like changes for the first six CpGs, out of nine age-related CpGs. GRM2 is highly coordinated.
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Supp. Figure 5: Stochastic gradual changes vs blocky (two-state) transitions. Each panel shows the
prevalence of patterns with K methylated sites, from 0 (fully unmethylated, left) to all sites (fully methylated, right),
for each sample, sorted by age (rows). ELOVL2 and TP73, for example, show a gradual change from mostly
unmethylated fragments (young), to mostly methylated fragments (old). Conversely, C1orf132 shows a sharp
blocky transition from fully methylated fragments (top right corner) to fully unmethylated ones (bottom right),
whereas GRM2 shows a flipped blocky transition.
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Supp. Figure 6: PCA analysis of the augmented high-dimensional data representation shows high
concordance with age. Each cluster corresponds to one donor, where dots mark 128 randomly sampled subsets
of 8192 reads. The high-dimensional representation of the data includes 531 features - 9 CpGs; 10 fragment-level
features representing the abundance of fragments with exactly 0, 1, 2, through 10 methylated CpGs; and an
additional 512 binary patterns (2 to the power of 9). Intriguingly, PC1 already captures 92% of the variance
(X-axis), which is in agreement with chronological age.

Supp. Figure 7: MAE50 and MAE across all trained models. Colors like in the main text: green for elastic-net,
orange for GAM, and blue for neural network models. (A) MAE50 results of training the models for different input
types, for each one of the four selected loci. (B) Same as A, but for the combination of loci, left for the combination
of ELOVL2 and C1orf132, right for a combination of all four. (C) and (D) similar to A and B but the results are
presented as MAE (includes all ages).
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Supp. Figure 8: Amount of input material (in silico): The results of the simulation suggest that 500 cells may
be enough for an accuracy similar to the regular model. Addition of strategies for removing duplicate reads may
allow for accurate measurements even with a much smaller amount of starting material.

Supp. Figure 9: DNA methylation at purified blood cell types. (A) The ELOVL2 locus shows similar
age-related methylation changes across various blood cell types, purified from donors aged 25 through 63. X-axis
depicts individual CpGs. Other age-related markers (e.g. C1orf132) show some cell-type-specific effects, thus
improving the model accuracy by integrating information on age-dependent blood cell composition.
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Supp. Figure 10: Age-related epigenetic changes for different loci and different blood cell types. (A) As for
ELOVL2, all four tested cell-types show age-related methylation changes. (B) C1orf132 is a good example of the
process of age-related demethylation. In this case, the age-related changes hardly affect the T-cell population,
while other cell types lose methylation at different paces. (C) FHL2, an example of blockwise changes in
age-relation methylation. All of the cell types present a slow pace of methylation gain.
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Supp. Figure 11: Bias in epigenetic age prediction is not correlated with biological age prediction or
underlying measures. Epigenetic age prediction errors (top left) are not significantly correlated with biological
age prediction errors, nor with other biological measures (except for triglycerides, r=-0.38).
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Supplementary Tables:
Table S1

chr from to loci orien length
(bp)

#CpG
s

CpGs
taken

Avg
depth type CpG

island chromHMM
H1

H3K27
me3

H3K2
7me3

H3K
27ac

H3K4
me1

chr6 11044843 11044997 ELOVL2 + 154 17 2-10 13,597 promoter + BivFlnk 16.3 10.6 1.2 1.1
chr2 106015715 106015844 FHL2 + 129 14 1-9 10,192 promoter + BivFlnk 16.7 1.9 1.1 2.1
chr1 207996978 207997090 C1orf132 + 112 10 3-10 17,732 TTS TssA 0 0.7 4.1 5.5
chr18 66389329 66389475 CCDC102B + 146 4 1-4 11,733 intron TssAFlnk 0.2 1.2 4.5 8.8
chr5 140419769 140419928 cg23500537 + 159 5 2-4 5,955 intergenic Quies 0 1.1 1.6 0.7
chr10 22623318 22623477 cg10804656 + 159 19 13-19 1,865 intergenic + ReprPC 34.2 3.2 0.6 0.5
chr1 3649448 3649607 TP73 + 159 18 8-15 5,718 exon + ReprPCWk 0.1 1.0 0.7 0.5
chr15 31775864 31776009 OTUD7A + 145 26 - 183 exon + TssBiv 15 1.3 0.7 2.0
chr19 18343752 18343911 PDE4C + 159 18 - 2,923 exon + ReprPC 1.2 3.1 0.3 0.9
chr17 48637135 48637282 CACNA1G + 147 10 - 8,943 promoter + BivFlnk 3.4 4.5 1 6.0
chr20 44658160 44658302 SLC12A5 + 142 11 3-9 17,690 intron + ReprPC 8.9 3.0 0 0.3
chr4 16575325 16575483 LDB2 + 158 2 - 13,291 intron Quies 0 0.3 0.7 0
chr4 8582187 8582346 GPR78 + 159 10 - 6,577 promoter + ReprPCWk 0 3.9 0.2 0
chr3 9594227 9594349 LHFPL4 + 122 8 1-2 20,598 exon + ReprPC 2.3 3.1 1.3 2.6
chr1 169555978 169556123 F5 - 145 3 1-3 11,064 promoter TssAFlnk 2.6 1.7 1 2.9
chr7 130419082 130419197 KLF14 - 115 6 - 16,181 promoter + TssBiv 10 1.9 0.3 3.5
chr19 15342936 15343076 EPHX3 + 140 18 1-5 31,458 exon + BivFlnk 3.6 4.5 0.8 3.5
chr19 4769618 4769765 cg02479575 + 147 10 6,427 exon ReprPCWk 2.9 0.9 1.1 1.5
chr3 51741079 51741198 GRM2 + 119 17 3-11 11,001 promoter + TxWk 1.1 0.5 0.2 0.8
chr6 110736675 110736805 DDO + 130 1 - 20,112 promoter Quies 1.8 2.1 0.7 1.8
chr5 172110417 172110559 NEURL1B + 142 16 - 7,378 exon + Quies 10.6 0.9 0.9 1
chr20 62611804 62611973 SAMD10 - 169 6 1-6 13,654 intergenic TssAFlnk 4.7 0 0.9 2.2
chr17 40177358 40177510 NKIRAS2 - 152 3 - 8,731 intergenic TxWk 1.6 0 0 1.4
chr18 74820424 74820516 MBP + 92 4 1-4 19,628 intron Enh 0 0 5 4.8
chr6 33043927 33044013 HLA-DPB1 + 86 3 - 7,653 intron TssAFlnk 0.1 0.8 10.1 8.3
chr12 80084645 80084790 cg09418283 + 145 16 - 746 promoter + TssBiv 1.2 4.4 0.5 2.7
chr12 54448245 54448354 HOXC4 - 109 3 - 23,922 intron ReprPC 41.2 2.6 0.2 2
chr17 7832596 7832755 KCNAB3 + 159 15 - 4,968 exon + Tx 12.2 0.1 0.4 0.3
chr2 145278412 145278545 ZEB2 + 133 3 1-3 11,738 promoter ReprPCWk 17.1 2.7 2.9 0.6
chr13 95952837 95952984 ABCC4 + 147 6 1-3 16,490 intron TssAFlnk 5.1 0.1 1.9 3.8
chr3 47555044 47555160 cg20524216 + 116 6 - 5,812 intron + TssAFlnk 0.7 1.7 6.1 7.8
chr1 208042831 208042980 cg16290275 + 149 5 - 9,776 promoter TssAFlnk 9.5 0.8 2.5 2.9
chr12 80085247 80085392 cg00864867 + 145 4 - 10,797 intron ReprPC 0.2 4.1 0.6 2.3
chr19 10405015 10405104 ICAM5 + 89 3 - 26,265 intron - ReprPC 26.3 5.5 1.0 2.3
chr3 47555374 47555533 cg18984151 + 159 8 - 1,449 promoter + TssA 1 0.2 2.4 3.7
chr22 46449917 46450096 cg13269407 + 179 16 - 3,105 promoter + TssAFlnk 0 0.4 10.5 11.1
chr19 52391313 52391390 ZNF577 + 77 4 - 25,773 promoter + ZNF/Rpts 1.5 0.5 0.3 0.9
chr2 200820126 200820224 cg03947362 + 98 6 - 1,086 promoter + TssAFlnk 0 0 4.6 9.5
chr7 122488288 122488446 CADPS2 + 160 9 - 4,648 intron Quies 0.5 0 1.9 0.7
chr22 46450263 46450355 cg03682823 + 93 4 - 9,760 promoter + TssA 0 0.5 4.5 5
chr3 52008422 52008563 cg04474832 + 142 5 - 21,328 promoter + TssAFlnk 10.2 0.3 0.7 4.6
chr3 52008505 52008598 cg18328933 + 94 5 - 30,962 promoter TssAFlnk 12.2 0.5 1.4 5.2
chr1 28241542 28241657 cg25410668 + 116 3 - 13,780 promoter ZNF/Rpts 7 0 5.0 2.6
chr1 28241500 28241625 RPA2 - 126 5 - 14,351 promoter + ZNF/Rpts 5.7 0 5.8 2.8
chr2 66654593 66654716 UK280 + 123 1 - 50,727 intron ReprPCWk 5.6 2.7 0 0.4

Supp. Table 1: List of 45 genomic regions measured using targeted-PCR bisulfite sequencing (hg19). The top
four age-predictive loci are highlighted in green. Information about the CpGs taken for the evaluation of the 16
loci is included. The targeted strand is always the top strand. chromHMM annotations are from the 15-state
segmentation at PBMCs (E062). Chromatin ChIP-seq data is based on ENCODE data for H1 hESC and PBMCs
(ENCFF832TSN, ENCFF150RIG, ENCFF759GIZ, ENCFF100NYH).

Table S2 - Cohort demographics

Table S3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

TP73 0.04 0.75 0.73 0.72 0.76 0.78 0.73 0.79 0.81 0.82 0.82 0.78 0.81 0.36 0.83 0.77 0.74 0.79
F5 -0.90 -0.91 -0.91
C1orf132 0.19 -0.81 -0.85 -0.91 -0.90 -0.95 -0.93 -0.91 -0.95 -0.92
FHL2 0.95 0.95 0.95 0.94 0.96 0.94 0.85 0.85 0.84 0.65 0.21 0.62 0.17 0.25
ZEB2 -0.85 -0.86 -0.86
LHFPL4 0.90 0.90 0.61 0.73 0.54 0.65 0.65 0.73
GRM2 0.04 0.10 0.89 0.88 0.88 0.89 0.88 0.87 0.87 0.87 0.87 0.88 0.87 0.88 0.89 0.88 -0.12
cg23500537 0.57 0.90 0.93 0.86 0.77
ELOVL2 0.24 0.94 0.95 0.95 0.95 0.96 0.96 0.97 0.95 0.95 0.78 0.77 0.66 0.73 0.79 0.74 0.51
cg10804656 0.73 0.70 0.74 0.79 0.82 0.83 0.85 0.78 0.73 0.62 0.72 0.73 0.76 0.74 0.78 0.83 0.89 0.78 0.79
ABCC4 -0.88 -0.87 -0.88 -0.79 -0.81 -0.85
CCDC102B -0.88 -0.91 -0.97 -0.97
MBP -0.86 -0.89 -0.91 -0.88
EPHX3 0.89 0.91 0.90 0.87 0.87 0.87 0.77 0.82 0.86 0.69 0.80 0.54 0.74 0.74 0.75 0.59 0.59 0.52
SLC12A5 0.56 0.55 0.82 0.90 0.88 0.89 0.88 0.83 0.84 0.63 0.62
SAMD10 -0.77 -0.74 -0.72 -0.85 -0.84 -0.82

Supp. Table 3: 16 age-associated genomic regions showing absolute Spearman’ based on core CpGs with
correlation ≥ 0.8, with absolute change in methylation (ages 20-80) ≥ 20%.
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Table S4
marker best MAE best RMSE
ABCC4 7.02 11.41
C1orf132 2.36 4.54
CCDC102B 2.98 6.75
ELOVL2 1.65 4.46
EPHX3 5.61 9.41
F5 3.76 8.45

FHL2 3.21 5.96
GRM2 3.91 9.24
LHFPL4 4.75 7.49
MBP 5.43 9.98

SAMD10 6.1 11.23
SLC12A5 4.01 7.74
TP73 5.6 9.83
ZEB2 7.66 12.31

cg10804656 4.01 8.73
cg23500537 4.65 8.17

Supp. Table 4: Age-related markers and their best MAE and RMSE values. Green marks MAE≤4 and RMSE<7.

Table S5
ElasticNet
CpGs

ElasticNet
frags

ElasticNet
CpGs+frags

GAM
CpGs

GAM
frags

GAM
CpGs+frags

MAgeNet
CpGs

MAgeNet
frags

MAgeNet
patterns

MAgeNet
full

ELOVL2 2.67 2.52 2.75 2.07 1.80 1.96 2.65 1.54 1.72 1.55
C1orf132 2.57 3.47 2.62 2.91 3.58 3.06 3.82 2.56 2.11 2.40
FHL2 3.98 5.07 3.19 5.08 5.81 4.67 3.31 3.94 3.87 3.91
CCDC102B 3.49 3.80 3.54 3.70 4.42 3.85 9.09 2.92 2.76 3.02
All 4 2.63 2.55 1.97 7.32 3.61 3.03 1.80 1.94 1.83 2.09
1+2+3 2.40 2.23 1.57 7.70 3.15 2.81 1.90 1.59 1.43 1.88
1+2 2.48 2.17 2.04 4.07 2.29 2.36 1.59 1.54 1.75 1.36
1+2+4 2.71 2.74 2.16 5.75 3.34 2.49 1.54 1.93 1.83 1.75
Supp. Table 5: MAE50 of the three types of model for the different types of information.

Table S6
ElasticNet
CpGs

ElasticNet
frags

ElasticNet
CpGs+frags

GAM
CpGs

GAM
frags

GAM
CpGs+frags

MAgeNet
CpGs

MAgeNet
frags

MAgeNet
patterns

MAgeNet
full

ELOVL2 3.28 2.98 2.98 2.68 2.64 2.67 2.96 1.98 2.07 1.84
C1orf132 3.18 3.55 2.96 3.23 4.01 3.18 4.93 2.82 2.60 2.82
FHL2 4.58 5.34 3.85 5.38 6.43 6.04 3.95 4.90 4.56 4.53
CCDC102B 3.92 4.71 3.82 3.90 4.52 4.06 11.84 3.49 3.27 3.66
All 4 3.01 2.75 2.30 8.80 3.81 3.43 2.06 2.25 2.04 2.15
1+2+3 2.71 2.38 1.82 8.54 4.06 3.72 2.48 1.94 1.87 2.11
1+2 2.58 2.22 2.23 5.45 2.50 2.52 1.85 1.92 2.02 1.70
1+2+4 2.83 3.01 2.30 6.47 3.81 3.05 1.98 2.42 1.90 1.83
Supp. Table 6: MAE of the three types of model for the different types of information.

Table S7
ELOVL2 C1orf132 FHL2 CCDC102B 1+2 1+2+3 1+2+4 All loci

BMI (18.5-24.9) vs. < 18.5 or > 24.9 0.89 1 0.87 0.45 0.83 0.74 0.89 1
Female vs. Male 1 0.33 0.79 0.79 0.91 0.68 0.81 0.91
Never vs. current smoker 0.25 0.79 0.87 0.79 0.96 0.79 0.79 0.4
Former vs. Current smoker 0.63 0.4 0.85 0.25 0.79 0.4 0.4 0.4
Former vs. Never-smoked 0.79 1 0.68 1 0.81 0.79 0.85 0.89
Smoking years <5 vs >10 0.96 0.68 0.79 0.96 0.79 0.79 0.66 0.79
Supp. Table 7: Adjusted p-values (FDR-corrected) for sex, BMI, and smoking effects. Age is shown as a
positive control.

Table S8
Spearman rho p-value FDR Spearman rho p-value FDR

Biological age -0.09 0.36412 0.39538 BUN -0.05 0.63496 0.53036
Glucose 0.17 0.09165 0.16586 lnCreatinine -0.04 0.72074 0.55901
BMI -0.23 0.01981 0.10755 uric acid 0.08 0.41798 0.37822
dbp -0.09 0.38674 0.38176 lnCRP -0.22 0.02617 0.094722
sbp -0.1 0.29686 0.35816 lnALP 0.18 0.06057 0.13154

totchol 0.02 0.8357 0.60496 albumin 0.13 0.19359 0.3003
trig -0.31 0.0016 0.017374 crp -0.22 0.02707 0.073485
waist -0.11 0.2533 0.34381

Supp. Table 8: Spearman rho and adjusted p-values (FDR-corrected) for biological age features effects
on MAgeNet predicted age deviations from chronological age.
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