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Simple Summary: Oncolytic viruses infect tumor cells and trigger their death and elimination by
the immune system. Several viral strains have been introduced into clinical practice. However, their
therapeutic efficacy remains controversial. Here, we show that Coxsackievirus B5 (CVB5) causes the
death of glioblastoma cells. Interestingly, 2-deoxyglucose, an inhibitor of glycolysis augments the
oncolytic effect induced by CVB5. This synergism occurs in cells with a high respiratory phenotype
and increased glycolytic capacity. Thus, 2-deoxyglucose or its analogs can be evaluated further as
drugs to potentiate the oncolytic effects of enteroviruses against glioblastoma multiforme.

Abstract: Glioblastoma multiforme (GBM) is one of the most common types of brain tumor. Despite
intensive research, patients with GBM have a poor prognosis due to a very high rate of relapse
and significant side effects of the treatment, with a median survival of 14.6 months. Oncolytic
viruses are considered a promising strategy to eliminate GBM and other types of cancer, and several
viruses have already been introduced into clinical practice. However, identification of the factors that
underly the sensitivity of tumor species to oncolytic viruses or that modulate their clinical efficacy
remains an important target. Here, we show that Coxsackievirus B5 (CVB5) demonstrates high
oncolytic potential towards GBM primary cell species and cell lines. Moreover, 2-deoxyglucose
(2DG), an inhibitor of glycolysis, potentiates the cytopathic effects of CVB5 in most of the cancer cell
lines tested. The cells in which the inhibition of glycolysis enhanced oncolysis are characterized by
high mitochondrial respiratory activity and glycolytic capacity, as determined by Seahorse analysis.
Thus, 2-deoxyglucose and other analogs should be considered as adjuvants for oncolytic therapy of
glioblastoma multiforme.

Keywords: oncolytic virus; coxsackievirus; metabolism; 2-deoxyglucose; seahorse

1. Introduction

Glioblastoma multiforme (GBM) represents a majority (48.6%) of malignant tumors of
the central nervous system (CNS) [1] and accounts for more than 60% of all brain tumors
in adults. Although this type of tumor can occur at any age, the peak of its incidence is
between 55 and 60 years. GBM is considered one of the most malignant tumors, with an
average median survival of 14–15 months after diagnosis for treated patients [2,3] and
<4 months for those who do not receive treatment [4]. Current treatment options include
surgical removal of the tumor, radiotherapy-based techniques, and chemotherapeutic
agents [3]. However, their efficacy is very low. Up to 90% of patients who undergo
surgical removal of the primary tumor or radiotherapy in a combination with standard
therapy with temozolomide have relapsed close to the original site [5–7]. Radiotherapy
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has also significant side effects due to neuronal damage and radiation-induced necrosis [3].
Chemotherapy is based on various alkylating agents (temozolomide, lomustine, carmustine,
procarbazine) or inhibitors of tubulin polymerization (i.e., vincristine) [8,9]. However,
they often provide a very limited increase in the life span of a patient at a cost of severe
side effects. Moderate efficacy is exhibited by neutralizing antibodies to growth factors
such as VEGF (Bevacizumab). Therefore, the development of other strategies to combat
glioblastoma is highly warranted.

Oncolytic viruses represent a rediscovered option to suppress the growth of GBM and
other solid tumors [10–14]. Throughout the history of vaccine development and studying
viral infection, spontaneous cancer regression and even remission upon viral infection were
observed [15]. These initial observations paved the way for oncolytic viral therapy. The
ability of oncolytic viruses to selectively destroy cancer cells has been mainly attributed
to direct oncolysis (lysis of infected tumor cells) or to activation and enhancement of
immune responses against tumor cells [10,11]. Notably, oncolytic viruses may restore the
activity of the immune system, often suppressed by the tumor. Furthermore, oncolytic
viruses can sensitize tumor cells to anticancer agents that induce apoptosis [16]. As a result,
several oncolytic viruses have been introduced into clinical practice for the treatment of
melanoma [17,18], head and neck cancer [19], and glioma [20].

The sensitivity of cells to viruses and the efficacy of oncolysis depend on many factors
including the status of signaling pathways such as Ras/ERK, PI3K/Akt, and MAPK/ERK
pathways [21,22], levels of expression of HIF-1α [23], and mutations in certain oncogenes
(i.e., TP53 and PTEN) [24–26]. These factors as well as epigenetic changes ensure a favorable
environment for virus replication exclusively in tumor cells [27]. Other factors determining
the selectivity of a virus to the tumor cells include the altered architecture of the tumor
tissue and increased vascularization [28].

Cytotoxic effects of oncolytic viruses can also be associated with the metabolic landscape
of tumor cells (for example, [29]). Cancer cells have a rewired metabolism characterized
by enhanced glycolysis that is uncoupled from the TCA cycle, thus leading to enhanced
production and secretion of lactate. To fuel the TCA cycle and mitochondrial respiration,
tumor cells exhibit metabolic plasticity [30]: they activate other pathways that produce AcCoA,
i.e., by fatty acid oxidation [31] or from acetate [32] or other Krebs cycle intermediates such
as a-ketoglutarate by glutaminolysis [33]. Such changes are driven by a variety of factors
including mutations in oncogenes and tumor suppressors. For example, Gly12 substitution
in K-Ras (Kirsten-rat sarcoma viral oncogene homolog), which is present in a wide spec-
trum of tumors including pancreatic, colorectal, and lung cancer [34], leads to enhanced
glycolysis [35,36]. Glioblastomas exhibit activated EGF/Ras and PI3K signaling, mutations in
the TERT promoter, or in isocitrate dehydrogenase 1 (IDH1), one of the key enzymes of the
Krebs cycle [37]. PI3K/AKT/mTOR signaling reshapes all major metabolic pathways [38],
TERT mutations were shown to promote the pentose phosphate pathway [39] and accumula-
tion of glycogen [39], and mutated IDH1 produces the oncometabolite 2-hydroxyglutarate [40].
As a result, these characteristic metabolic traits can provide additional targets for the develop-
ment of chemotherapeutic agents against this type of cancer [41].

The cytopathic effects of various viruses depend on the type of cell that is infected. As
an example, SARS-CoV-2 is known to infect various cell lines including Vero E6, Calu3,
Huh7, and Caco2, as well as cells overexpressing the ACE2 receptor (i.e., A549ACE2) (Vero,
Calu, Caco, Huh7)] [42]. However, a cytopathic effect is visible only in the first two cell
types [42]. Oncolytic Coxsackievirus type B3 (CVB3) was previously shown to induce
cytopathic effects only in lung carcinoma with G12C K-Ras mutation and not to affect
the viability of lung epithelial cells with wild-type K-Ras [43]. Therefore, it could be
assumed that the oncolytic properties of viruses may depend on the metabolic status of
their target cells.

The aim of our study was to investigate if pharmacological inhibitors of major
metabolic pathways, i.e., glycolysis and mitochondrial respiration, can potentiate the
cytopathic effect of oncolytic Coxsackievirus type B5 (CVB5) and other enteroviruses.



Cancers 2022, 14, 5611 3 of 19

2. Materials and Methods
2.1. Materials

Metformin, phenformin, 2-deoxy-D-glucose (2DG), N-acetyl-L-cysteine (NAC), and galactose
were from Sigma (Darmstadt, Germany). (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT) was purchased from Dia m (Moscow, Russia). CellTrackerTM Green (CMFDA)
dye and DAPI were from Thermo Fisher (Waltham, MA, USA). Glycolysis Stress Test Kit
(Agilent, Santa Clara, CA, USA) and Mito Stress Test Kit (Agilent, USA) were used.

2.2. Cells

Primary cultures of GBM cells (GBM3821, GBM5522, GBM6067, and GBM6138) from
surgically removed tumor tissues obtained from N.N. Burdenko Institute of Neurosurgery
(Moscow, Russia) were described previously [44]. The HEK293T (CRL-3216), DBTRG-
05MG (CRL-2020), A-172 (CRL-1620), HeLa cells (CCL-2), Vero (CCL-81), RD (CCL-136)
lines were purchased from the ATCC collection. Human embryonic diploid fibroblasts
(HEF) cells were a kind gift from the laboratory of Immunohistochemistry of the Serbsky
National Scientific center. U251-MG cells were obtained from the collection of the labora-
tory of cell proliferation EIMB RAS. All stable cells were subjected to STR analysis using
COrDIS Expert 26 kits on a Genetic analyzer 3500 (Waltham, MA, USA). The cultures were
routinely checked for mycoplasma contamination using the MycoReport test (Evrogen,
Moscow, Russia).

The cells were maintained in DMEM (Gibco, Jenks, OK, USA) supplemented with 10%
FBS (HyClone, Cytiva, Sweden), 50 U/mL penicillin, and 50 µg/mL streptomycin at 37 ◦C
in a humid atmosphere with 5% CO2. The cells were split 2–3 times a week when reaching
sub-confluency by incubation with 0.25% trypsin-EDTA solution (PanEco, Moscow, Russia).

2.3. Viruses

The following virus strains were used: poliovirus vaccine strains (Sabin) of type 1,
2, and 3 (PV1, PV2, PV3, respectively); non-pathogenic oncolytic enteroviruses: Coxsack-
ievirus B5—live enterovirus vaccine 14 (CVB5, GenBank: MG642820.1), Coxsackievirus
A7—live enterovirus vaccine 8 (CVA7, GenBank: JQ041367.1), Coxsackie B6—live en-
terovirus vaccine 15 (CVB6, GenBank: JQ041368.1), Coxsackievirus A2 (CVA2), Coxsack-
ievirus B3 (CVB3), Coxsackievirus A9 (CVA9) strains were obtained from the collection of
the laboratory of cell proliferation. The viruses were propagated in HEK293T, Vero, or RD
cell lines [44].

2.4. Cell Viability Assays

Cells were seeded on 96-well plates (TPP, Trasadingen, Switzerland) at a density of
5000 cells/well. Twenty-four hours later 2DG, metformin, or phenformin were added.
After 24 or 48 h incubation, cell viability was assessed by MTT assay or using CellTracker
reagent. In the MTT test, the medium was removed, and 100 µL of 5 mg/mL MTT solution
in PBS was added to each well for 3 h followed by dissolving formazan crystals after
medium aspiration in DMSO and absorbance measurement at 590 nm using ClarioStarPlus

microplate reader (BMG Labtech, Ortenberg, Germany). Alternatively, CellTracker dye was
added to the media to the final concentration of 50 ng/mL, and after 10 min incubation
at 37 ◦C, the cells were stained with DAPI (10 µg/mL concentration), and fluorescence
was measured ClarioStarPlus microplate reader, detecting CellTracker and DAPI emission
wavelength, 517 and 470 nm, respectively. The ratio of life versus dead cells was calculated
as the proportion of living cells (CellTracker) to totally stained cells (DAPI-stained cells).

Cytopathogenic effects of the viruses were measured using MTT and CellTracker
dyes. The serial dilutions of viruses at the multiplicities of infection (MOI) 1000, 100, 10,
1, 0.1, 0.01, and 0.001 were added immediately after the addition of the compounds. As
a control, the untreated cells were infected with the viruses at the same dilutions. Reed
and Muench’s method was used for the quantification of the TCID50 value [45]. Three
independent biological replicates were analyzed in quadruplicates.
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2.5. Replication Assay

To determine the impact of 2DG on viral replication, cells were treated with 2DG and
infected with viruses at MOI = 0.1, and the supernatants were harvested 48 h post-infection.
Viral titers were assessed by infection of the HEK293T cell line with serial dilutions of the
supernatants according to Reed and Muench [45]. Assessment of titration was performed
72 post-infection by MTT assay. Three independent biological replicates were analyzed
in quadruplicates.

2.6. Metabolic Analysis

Glycolysis and mitochondrial respiration were assessed on an XFe24 Seahorse analyzer
(Agilent Technologies, Santa-Clara, CA, USA) as described previously [46]. Briefly, the
cells were seeded on XF24 Cell Culture Microplate 18 h before the analysis at a density of
(4 × 104 cells/well) in DMEM. For the MitoStress test, 30 min prior to analysis, the medium
was changed to DMEM lacking phenol red and bicarbonate and supplemented with 25 mM
glucose, 2 mM pyruvate, and 2 mM glutamine, and the plate was incubated at 37 ◦C in the
absence of CO2. During the analysis ATP-synthase inhibitor oligomycin (1 µM), uncoupler
FCCP (0.75 µM), and a mixture of complex I and III inhibitors rotenone and antimycin
(1 µM each) were consequently added. Three readings were performed with 3 min intervals
for each condition.

In the case of the GlycoStress test, 45 min before the analysis, the medium was changed
to DMEM lacking phenol red dye, bicarbonate, and glucose and supplemented with 2 mM
pyruvate and 2 mM glutamine. During the experiment, glucose, oligomycin, and 2DG
were added to the final concentrations of 25 mM, 1 µM, and 50 mM, respectively.

The raw data were processed by Seahorse Wave Desktop software (Agilent Technologies).

2.7. Reverse Transcription and Real-Time PCR (RT-qPCR)

Total RNA was purified from cells grown on 6-well plates using a High Pure RNA
Isolation Kit (Roche, Switzerland) according to the manufacturer’s instructions. cDNA
was synthesized from 2 µg RNA using random hexamer primer and RevertAid reverse
transcriptase during incubation at 42 for 1 h, with subsequent enzyme inactivation at 70 ◦C
for 10 min and treatment with the recombinant DNAse I (Roche) during 15 min at 37 ◦C
and similar inactivation.

Real-time PCR analysis was performed using the primers listed in Table S1 as described
previously [47].

2.8. KRAS Mutation

KRAS mutation analysis was performed using KRAS Mutation Analysis Kit for Real-
Time PCR (exons 2, 3, and 4) (EntroGen, Woodland Hills, CA, USA) in accordance with
the manufacturer’s recommendations. Genomic DNA for the analysis was extracted
from 106 cells using the GeneJet Genomic DNA Purification kit (ThermoFisher Scientific,
Waltham, MA, USA). Next RT-PCR was performed using LightCycler® 96 system I (Roche
Molecular Systems, Pleasanton, CA, USA).

2.9. Statistical Analysis

All experiments were performed in triplicates at least three times. All data are pre-
sented as means ± standard deviation (S.D.). Pairwise statistical significance was ana-
lyzed by a two-tailed t-test, whereas multiple comparisons were performed by ANOVA
with the Tukey–Kremer post hoc test. In all cases a p-value ≤ 0.05 was considered
statistically significant.

3. Results
3.1. Selection of Enterovirus with the Highest Oncolytic Activity towards GMB Cells

Our first goal was to select the enterovirus that demonstrates the highest oncolytic
activity towards GBM cells. As such, four types of primary glioblastoma cells, described
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previously were used [44], alongside two standard GBM cell lines (U251 and DBTRG)
and transformed human embryonal kidney cells HEK293T. Notably, all of these cells with
the exception of U251-MG did not carry mutations in the K-RAS oncogene (not shown)
that are associated with changes to metabolism [43]. In the U251-MG line, a Gly12Ser
mutation was found. For negative control, we used human embryonal fibroblasts (HEF).
As oncolytic viruses, polioviruses type I-III, and Coxsackievirus A (CVA) and B (CVB)
were tested. Cells were infected with these viruses, and 48 h later oncolytic activity was
assessed by MTT tests. The results, presented in Figure 1, clearly show that vaccine strains
of polioviruses demonstrated cytotoxic activity towards the non-transformed fibroblasts
(panel g). In contrast, CVB6, CVA2, and CVA9 exhibited rather low oncolytic effects towards
GBM cells (Figure 1a–f). Since CBV5 showed higher activity than CVB3, it was used for
further experiments.
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Figure 1. CVB5 exhibits the highest oncolytic activity towards glioblastoma multiforme (high grade)
cell lines, stable glioblastoma cell lines: DBTRG-05MG (a), U251-MG (e), primary gliomas: GBM3821 (f),
GBM5522 (b), GBM6067 (c), GBM6138 (d), and Hela cell line (h), as cancerous non-glioma cell line, and
HEF (g) as non-cancerous cell line. The cells were seeded 24 h prior to infection and inoculated with
MOIs from 0.001–1000 with polioviruses type 1–3 (PV1–3), Coxsackievirus A (CVA), or B (CVB). Cell
viability was assessed 48 h later by MTT test. The depicted values are means ± S.D.
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3.2. Selection of Drug Concentrations

As the aim of the study was to assess if inhibitors of metabolic pathways could enhance
the potency of oncolytic enteroviruses against GBM, the next step was to choose the doses
of compounds at which they do not affect cell growth or induce death. We used three
compounds: 2DG (an inhibitor of glycolysis), metformin, and phenformin (inhibitors of
mitochondrial respiratory complex I) [48]. Two standard cytotoxicity tests were used that
were based on commonly used MTT or CellTracker reagents. The results for each cell
line are shown in Figures 2 and S1. For 2DG three concentrations were chosen: 2 and
4 mM, at which no significant changes to cell growth were observed, and 10 mM, where the
compound moderately inhibited cell proliferation. Notably, in all these cases no cytotoxicity
was observed, as shown by microscopy (Figures S2–S5). In the case of the GBM3821 line
the drug affected cell proliferation, as in its presence, fewer cells were observed (Figure S3).
The same concentrations were chosen for metformin, while phenformin was subsequently
used at 10, 20, and 50 µM. Again, at the two lowest concentrations, the drugs did not
compromise cell viability.
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Figure 2. Cytotoxicity of metabolic inhibitors towards glioblastoma cell lines assessed using Cell-
Tracker reagent. Cells were seeded 24 h before exposure to increasing concentrations of 2DG (a),
metformin (b), or phenformin (c). Cell viability was assessed 48 h after drug addition using Cell-
Tracker reagent.

We should mention that in the MTT test, which is more widely used than the Cell-
Tracker reagent, significant effects of the drugs were noted (Figure S1). However, they
did not correlate with cell number or viability as monitored by microscopy (Figure S2–S5).
Therefore, this effect was probably associated with the dependency of MTT conversion into
formazan products by oxidoreductases modulated by the metabolic status of a cell [49].
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3.3. 2-Deoxyglucose Potentiates Cytopathic Activity of CBV5 towards Glioblastoma Cells

The next step was to investigate if the inhibitors of metabolic enzymes can potentiate
the oncolytic activity of CVB5. All three compounds were added prior to infection in a
standard titration assay. The results are summarized in Figures 3–5. It can be seen that 2DG
significantly augments the viral cytopathic effect in glioma DBTRG-05MG, GBM5522, and
GBM6067 cell lines as well as in HeLa cells (Figure 3a–c,h). A similar effect, although at higher
2DG concentrations, was revealed in GBM6138 cells (Figure 3d). In contrast, in the GBM3821
cell line 2DG reduced the cytopathic effect of the virus (Figure 3f). Biguanides metformin and
phenformin in general exhibited opposite effects: they inhibited the oncolytic activity of CVB5
in DBTRG-05MG, GBM6067, and HeLa cell lines (Figures 4h and 5a,c,h) and potentiated it in
GBM3821 cells (Figure 5f). Therefore, inhibition of glycolysis represents a promising strategy
for the enhancement of the efficacy of oncolytic viruses.
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Figure 5. Oncolytic activity of CVB5 towards glioblastoma cells in the presence of phenformin
decreased in DBTRG-05MG (a), GBM6067 (c), and HeLa (h), and increased in GBM3821 (f). In
GBM5522 (b), GBM6138 (d), U251-MG (e), and HEF (g) cells it did not affect oncolytic activity of
CVB5. Cells were seeded 24 h before treatment with 10, 20, and 50 µM phenformin and simultaneous
infection with CVB5 at MOIs of 0.001–1000. Viability was determined using CellTracker method 48 h
later, * p ≤ 0.05, ** p ≤ 0.01.

3.4. Notably, 2DG Does Not Affect the Replication of CVB5

One of the possible explanations for the enhanced cytopathic effect of CVB5 in the
presence of 2DG could be an increased rate of viral replication. To test this assumption,
we evaluated the production of infectious CVB5 particles in glioblastoma cell lines in
the presence of the drug by harvesting supernatants and titrating them onto HEK293T
cells according to standard procedures [50]. However, 2DG had no notable effect on the
replication of the virus (Figure 6).
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Figure 6. 2DG does not affect CVB5 replication. HEK293T cells were infected with the conditioned
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toma cells treated with 4 mM 2DG simultaneously with CVB5, harvested 48 h post-infection. Cell
viability was assessed 72 h later using MTT assay. Values are means ± S.D.
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3.5. CBV5 Does Not Affect Cell Metabolism in Glioblastoma Cells

Another possible mechanism of how subtoxic doses of 2DG could enhance oncolytic
activity is via modulation of metabolism. To explore the impact of CVB5 on the metabolism
of glioblastoma cells, the glycolytic status of the DBTRG-05MG cell line was analyzed by
the Seahorse technology, which measures rates of extracellular acidification (ECAR) as a
readout for anaerobic glycolysis [8]. After infection with CVB5 viral protein production
and genome, replication was detected as early as 4 h post-infection (h.p.i.), and mature
virions were released starting from 5–6 h.p.i., and the metabolism analysis was performed
7 h.p.i. to exclude any secondary effects of cell death. A typical ECAR curve is presented in
Figure 7, while its analysis is given in the Supplement (Figure S6). It is clear that CBV5 does
not affect the glycolytic status of glioma cells, at least during the early phase of infection.
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Figure 7. CVB5 does not affect the glycolytic activity of glioblastoma cells. DBTRG-05MG cells
were infected with CBV5 at MOI 1, and the cells were subjected to GlycoStress assay according to
manufacturer’s instructions at 7 h post-infection. In GlycoStress, glucose at final concentrations of
11 and 30 mM was followed by oligomycin (1 µM) and 2DG (50 µM) addition. Depicted values are
means ± S.D.

3.6. Glioblastoma Cell Lines Sensitive to 2DG Exhibit Higher Levels of Glycolysis

To identify the features of glioblastoma cell lines that mediate the increase in the
oncolytic effects by 2DG, the metabolic activity of three 2DG-sensitive and two resistant cell
lines was assessed by Seahorse technology in MitoStress (Figures 8 and S7a) and GlycoStress
(Figures 9 and S7b) tests. In the MitoStress assay, two concentrations of uncoupler (FCCP)
were taken to exclude possible different sensitivity of the cell lines to this agent. Similarly, in
the GlycoStress test glycolysis efficiency was analyzed using two different concentrations of
glucose. The “2DG-sensitive” cell lines DBTRG-05MG, GBM5522, and GBM6067 exhibited
much higher basal and maximum respiratory activity as well as spare respiratory capacity
and proton leak (Figure 8c–e,g), while no correlation with ATP production was noted. We
also did not find any correlation with basal glycolytic activity (Figure 9a) or glycolytic
reserve (Figure 9b). However, the cells, in which 2DG potentiated oncolytic activity, had
higher glycolytic reserves (Figure 9c). To sum up this section, “sensitivity” to 2DG is
associated with increased respiration and maximum glycolytic capacity.
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Figure 8. Enhanced oncolytic activity of CVB5 towards glioblastoma cell lines correlates with
their basal mitochondrial respiration and spare respiratory capacity. Non-mitochondrial oxygen
consumption (a), ATP production (b), basal (c) and maximum (e) respiration and spare respiratory
capacity (d) as well as coupling efficiency (f) and proton leak (g) were assessed by the Seahorse
technology in MitoStress assay. Oligomycin, (1 µM), FCCP (0.75 and 1.5 µM), and a mixture of
antimycin and rotenone (1 µM each) were added. Values are means ± S.D. * p ≤ 0.05, ** p ≤ 0.01,
*** p ≤ 0.001, **** p ≤ 0.0001.
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Figure 9. Enhanced oncolytic activity of CVB5 towards glioblastoma cell lines correlates with their
glycolytic capacity. Basal glycolysis (a), glycolytic reserve (b) and maximum capacity (c) as well
as non-glycolytic acidification (d) were assessed by the Seahorse technology in GlycoStress assay.
Glucose was added to the final concentrations of 11 and 30 mM followed by addition of oligomycin
(Oligo, 1 µM), and 2DG (50 µM). Values are means ± S.D, * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001,
**** p ≤ 0.0001.
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3.7. The Effect of 2DG Is Not Redox-Sensitive

Various cellular metabolic pathways including glycolysis are tightly linked to the
production of reactive oxygen species (ROS). To unveil if ROS play a role in the synergistic
effect of CVB5 2DG, the effect of the antioxidant N-acetylcysteine (NAC) was evaluated. In
the 2DG-sensitive cell lines, DBTRG-05GM and GBM5522 NAC did not affect the oncolytic
activity of the virus. However, in the 2DG-sensitive GBV6067 cells and the two 2DG-
insensitive cell lines, U251-MG and GBM3821 it caused a statistically significant inhibition
of the cytopathic effects (Figure 10).

Cancers 2022, 14, x FOR PEER REVIEW 12 of 20 
 

 

non-glycolytic acidification (d) were assessed by the Seahorse technology in GlycoStress assay. Glu-
cose was added to the final concentrations of 11 and 30 mM followed by addition of oligomycin 
(Oligo, 1 µM), and 2DG (50 µM). Values are means ± S.D, * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 
0.0001. 

3.7. The Effect of 2DG is not Redox-Sensitive 
Various cellular metabolic pathways including glycolysis are tightly linked to the 

production of reactive oxygen species (ROS). To unveil if ROS play a role in the synergistic 
effect of CVB5 2DG, the effect of the antioxidant N-acetylcysteine (NAC) was evaluated. 
In the 2DG-sensitive cell lines, DBTRG-05GM and GBM5522 NAC did not affect the on-
colytic activity of the virus. However, in the 2DG-sensitive GBV6067 cells and the two 
2DG-insensitive cell lines, U251-MG and GBM3821 it caused a statistically significant in-
hibition of the cytopathic effects (Figure 10). 

 
Figure 10. Effect of antioxidant N-acetylcysteine (NAC) on cytopathic effect of CVB5 in the presence 
of 2DG. DBTRG-05MG (a), GBM5522 (b), GBM6067 (c), U251-MG(d) or GBM3821 (e) cells were 
seeded day before treatment with 4 mM 2DG, NAC (1 or 5 mM), and simultaneous infection with 
CVB5 at MOIs of 0.001-1000. Viability was assessed 48 h post-infection. Values are means ± S.D. * p 
< 0.05. 

3.8. Notably, 2DG Increases Cytopathic Effect towards Glioblastoma Cells of a Wide Array of 
Enteroviruses 

To evaluate if 2DG can enhance the oncolytic activity of additional RNA viruses, we 
tested poliovirus types 1-3 as well as Coxsackieviruses A and B. The results are presented 
on Figure 11. We found that in DBTRG-05MG as well as in HeLa cells 2DG enhances the 
activity of CVB5 only, whereas in two other “sensitive” cell lines it augmented cell death 
in the case of CBV3 as well (Figure 11a–c,g). In some cases, 2DG also increased the cyto-
pathic effect of CVB6 or CVA2, but in neither case, the synergism reached the levels ob-
served between 2DG and CBV5. Therefore, 2DG can be regarded as an agent that enhances 
the oncolytic activity of CBV5 and CBV3. 

Figure 10. Effect of antioxidant N-acetylcysteine (NAC) on cytopathic effect of CVB5 in the presence
of 2DG. DBTRG-05MG (a), GBM5522 (b), GBM6067 (c), U251-MG (d) or GBM3821 (e) cells were
seeded day before treatment with 4 mM 2DG, NAC (1 or 5 mM), and simultaneous infection with
CVB5 at MOIs of 0.001-1000. Viability was assessed 48 h post-infection. Values are means ± S.D.
* p < 0.05.

3.8. Notably, 2DG Increases Cytopathic Effect towards Glioblastoma Cells of a Wide Array
of Enteroviruses

To evaluate if 2DG can enhance the oncolytic activity of additional RNA viruses, we
tested poliovirus types 1-3 as well as Coxsackieviruses A and B. The results are presented
on Figure 11. We found that in DBTRG-05MG as well as in HeLa cells 2DG enhances the
activity of CVB5 only, whereas in two other “sensitive” cell lines it augmented cell death in
the case of CBV3 as well (Figure 11a–c,g). In some cases, 2DG also increased the cytopathic
effect of CVB6 or CVA2, but in neither case, the synergism reached the levels observed
between 2DG and CBV5. Therefore, 2DG can be regarded as an agent that enhances the
oncolytic activity of CBV5 and CBV3.
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Figure 11. Influence of 2DG on the cytopathic effects of polioviruses and Coxsackieviruses depends
on the virus as well as the cell line. DBTRG (a), GBM5522 (b), GBM6067 (c), GBM6138 (d), U251-
MG (e), GBM3821 (f) or HeLa (g) cells were seeded day before treatment with 4 mM 2DG and
simultaneous infection with viruses at MOIs of 0.001–1000. Viability was assessed after 48 h using
MTT assay. Values are means ± S.D.
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3.9. RT-qPCR

We finally asked whether cellular sensitivity to the cytopathic effects of oncolytic
viruses and 2DG is associated with differentiation status and features of cancer stem cells
(also referred to as tumor-initiating cells) (CSC). CSCs are known to have the highest capac-
ity to drive tumorigenesis [51]. They also often confer resistance to anticancer agents [52].
Among the markers of glioma CSCs are CD44, CD133, and cMyc [53,54] and increased
levels of VEGF expression [55]. Therefore, the transcript levels of these markers were
quantified on the above-used cell lines. As shown in Figure 12, the sensitivity of the en-
hancement of the cytopathic effect of CBV5 by 2DG did not correlate with the expression of
any of these genes. Therefore, one can assume that 2DG can be used in combination with
CVB5 irrespectively to the differentiation status of glioma.
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Figure 12. Levels of transcription of genes that are the markers of cancer stem cells. The cells were
cultivated in standard condition, and CD44 (a), CD133 (b), cMyc (c) and VEGF (d) mRNA levels
were assessed by RT-qPCR, GUS mRNA levels were used for normalization. The data were analyzed
using ∆∆Ct methods, normalized to HeLa cells line. Values are means ± S.D. * p ≤ 0.05, ** p ≤ 0.01,
*** p ≤ 0.001, **** p ≤ 0.0001.
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4. Discussion

In this study, we showed that the Coxsackievirus type 5 exhibits strong oncolytic
activity towards high-grade glioblastoma multiforme cells, and in most cases, this activity
can be augmented with 2-deoxyglucose, an inhibitor of glycolysis. The stimulation occurs
in cells with elevated glycolytic and respiratory phenotypes.

Oncolytic viruses are regarded as a promising tool for the treatment of a variety of
tumors [10,12–14,56]. Among various types of cancer, GBM represents one of the most
challenging targets, as patients with this type of brain tumors have poor prognosis due
to low efficacies of treatment, very high rates of relapse, and severe side effects of the
treatment [3,4,6,7]. To date, oncolytic activity towards GBM cells has been shown by
wild-type and genetically engineered adenoviruses [57], Newcastle disease virus [58],
Zika [59,60] and Chukingunya viruses [61], poxviruses [62], and HSV-1 [63], with the
latter being introduced to clinical practice [64,65]. Cytopathic effects against GBM are
also exhibited by vesicular stomatitis virus (VSV) carrying Lassa [66] or Ebola [67] virus
proteins. Our group previously expanded this list by showing the oncolytic activity of
coxsackie and polioviruses towards glioma cells [44]. In the current study, we presented a
detailed analysis of the sensitivity of GMB cell lines to various strains of these viruses.

Inhibitors of metabolic enzymes are often considered anticancer agents alone or in
combination with standard therapy, with several of them successfully used in clinical
practice [68]. Although they often do not exhibit sufficient efficacy alone, they can increase
the potency of standard therapy [63,69] and/or help to overcome the resistance of tumor
cells to low molecular weight anticancer drugs and immunotherapy [70,71]. One of the most
pronounced examples is Eflornithine, an inhibitor of polyamine biosynthesis, which shows
the outstanding capacity to both reduce rates of relapse of neuroblastoma and to overcome
the resistance of relapsed tumors to a standard combination of drugs [72–74]. All this
underlines the potential of inhibitors of metabolic enzymes as promising anticancer agents.

Like many other types of cancer, glioblastoma multiforme is characterized by a signifi-
cantly rewired metabolism. GBM exhibits markedly elevated glycolysis (as well as mito-
chondrial respiration) [75] which is at least partially due to enhanced RAS signaling [76]
and amplification of MYC and MYCN genes [77]. In addition, the tumor is highly depen-
dent on de novo fatty acid and lipid biosynthesis [31]. Acetyl-coenzyme A synthetase
(ACSS2) is one of the key enzymes in GBM metabolism, as it converts acetate into AcCoA
that not only serves as a precursor for fatty acid biosynthesis but also feeds TCA cycle
together with glucose [32]. However, at hypoglycemic conditions, the TCA cycle can rely
on the production of fatty acid and ketone catabolism. Nevertheless, inhibition of glycolytic
enzymes is considered a promising strategy for both treatment of brain tumors and their
sensitizing to chemo- and radiotherapy.

Here, we evaluated 2DG, a glycolysis inhibitor, as well as two inhibitors of the mito-
chondrial respiration system (metformin and phenformin), as possible agents to enhance
the oncolytic activity of enteroviruses towards GBM. We show that 2DG increased the
oncolytic activity of CVB5 towards three out of five primary GBM cultures and one out
of two classical glioma cell lines. In the case of the fourth primary cell culture (GBM6138)
similar increase was also observed, albeit at higher concentrations of the drug. In contrast,
metformin and phenformin generally caused opposite effects on the oncolytic activity of
CVB5. Similar results were recently shown by the Al-Shammari group for the Newcastle
disease virus acting as an oncolytic towards breast cancer cells [78,79]. This group triggered
glucose deprivation not only with 2DG [78] but also with acarbose which is an inhibitor
of alpha-glucosidase and amylase [79]. Another example is the use of dichloroacetate
which promotes a shift from anaerobic glycolysis to oxidative phosphorylation for the
enhancement of oncolysis by the measles virus towards GBM [80].

Search for biomarkers for personalized virotherapy remains one of the most chal-
lenging tasks in the field [81]. In our case, since 2DG enhances the oncolytic activity of
Coxsackievirus in a majority but not all GBM species, the key goal is a pre-selection of
patients for such therapy. To find biomarkers, we analyzed the presence of mutations at the
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Gly12 position of K-Ras and evaluated the metabolic phenotype of cells with variable “sen-
sitivity” to 2DG. All the lines except for U251-MG had wild-type K-RAS (data not shown).
At the same time, it was found that an increase in CVB5 potency by the drug occurs for
the GBM cells with high respiratory phenotype as well as with elevated glycolytic capacity.
Therefore, pre-evaluation of the rate of oxidative phosphorylation in tumor samples may
be used in the future to identify patients with gliomas who will respond to a combination
of CVB5 and 2DG.

2-Deoxyglucose can be considered a safe drug. To date, it has been evaluated as an
experimental anti-SARS-COV-2 drug. As reported in a single paper [82], this compound at
a daily dose of 90 mg/kg in a combination with the standard treatment provided clinical
benefits for COVID-19 patients such as shortening time to achieve normal oxygen saturation
levels and as a result time to discharge from hospital. The treatment was rather safe, as only
30% of patients reported side effects, which in most cases were mild. Similarly, in a phase
I/II trial (NCT00633087), 30 mg/kg of 2DG was administered for 2–3 weeks to patients with
advanced prostate cancer. The most common adverse effects were prolonged QTc interval
(33%) and fatigue (42%). 2DG has also been used to increase the tolerance of radiotherapy
against glioma, again, with good clinical effects [83]. Therefore, this drug as well as its
analogs can be regarded as promising agents to increase the efficacy of virotherapy.

One of the challenges in treating cancer and achieving sustained response is the
eradication of tumor-initiating cells, also referred to as cancer stem cells (CSCs) [51]. These
cells generally comprise a small fraction of tumors, but they show lower sensitivity to
anticancer drugs. Thus, initial responses of the tumor to treatment may reflect the sensitivity
of differentiated cells, while the following relapse is due to the initiation of CSC growth
followed by reconstitution/replenishment of the tumor volume [52,84]. Notably, the
metabolic landscape and redox status of CSC differ from those of differentiated tumor cells.
While standard cancer cells are mostly dependent on anaerobic glycolysis, CSC generally
relies on oxidative phosphorylation [84]. Therefore, metformin and other inhibitors of
respiratory complexes are considered tools to shift metabolism to glycolysis and thus
increase the sensitivity to other agents [48]. In our study, we did not assess the activity
of enteroviruses and metabolic inhibitors specifically towards CSCs but assessed if the
effect of 2DG was associated with the expression of several markers of CSCs. We failed to
find any correlation between their expression and the impact of the inhibitor of glycolysis.
Therefore, 2DG is likely to act on both differentiated GBM cells and glioma CSCs.

5. Conclusions

Thus, we showed that the inhibitors of glycolysis may significantly enhance the
cytopathic effects of oncolytic enteroviruses including Coxsackievirus type B5 as well as
B3. This effect occurs in cells with high mitochondrial respiratory activity and glycolytic
capacity. Although this effect yet has to be verified in in vivo models, it may open a
new direction to the treatment of glioblastoma and possibly other types of non-curable
human tumors.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers14225611/s1, Table S1. The list of primers used for gene
expression analysis by quantitative real-time PCR; Figure S1. Cytotoxicity of metabolic inhibitors
towards glioblastoma cell lines assessed using MTT reagent; Figure S2. Morphology of DBTRG-05MG
cells treated with 2-deoxyglucose for 48 h; Figure S3. Morphology of GBM3821 cells treated with
2-deoxyglucose for 48 h; Figure S4. Morphology of GBM5222 cells treated with 2-deoxyglucose for
48 h; Figure S5. Morphology of GBM6067 cells treated with 2-deoxyglucose for 48 h; Figure S6. CVB5
does not affect the glycolytic activity of glioblastoma cells; Figure S7. Enhanced oncolytic activity of
CVB5 towards glioblastoma cell lines correlates with their basal mitochondrial respiration and spare
respiratory capacity and glycolytic reserve.
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