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Abstract 

Single-cell transcriptomics profiling has increasingly been used to e v aluate cross-group (or condition) differences in cell population and cell-type 
gene e xpression. T his often leads to large datasets with comple x e xperimental designs that need advanced comparative analysis. Concurrently, 
bioinf ormatics softw are and analytic approaches also become more diverse and constantly undergo impro v ement. T hus, there is an increased 
need for automated and st andardized dat a processing and analysis pipelines, which should be efficient and flexible too. To address these, we 
de v elop the s ingle- c ell D ifferential A nalysis and P rocessing P ipeline (scDAPP), a R-based workflow for comparative analysis of single cell (or 
nucleus) transcriptomic data between two or more groups and at the levels of single cells or ‘pseudobulking’ samples. The pipeline automates 
many steps of pre-processing using data-learnt parameters, uses pre viously benchmark ed softw are, and generates comprehensiv e intermediate 
data and final results that are valuable for both beginners and experts of scRNA-seq analysis. Moreover, the analytic reports, augmented by 
e xtensiv e data visualization, increase the transparency of computational analysis and parameter choices, while facilitate users to go seamlessly 
from raw data to biological interpretation. scDAPP is freely a v ailable under the MIT license, with source code, documentation and sample data 
at the GitHub ( https:// github.com/ bioinfoDZ/ scDAPP ). 
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dvancements in single-cell transcriptomics technologies and
eductions in cost have greatly increased the scale and com-
lexity of experiments using single-cell and single-nucleus
NA-seq (scRNA-seq and snRNA-seq) ( 1 ). In 2023, nearly
000 papers were published using scRNA-seq, illustrating an
xponential increase over the past 5 years (PubMed). Not
nly have these methods been used for routine categoriza-
ion of cell population in tissues or biological samples, but
lso increasingly as read-outs of population and gene pro-
ram changes across experimental conditions, such as genetic
nockouts or drug treatments. As the technologies for data
cquisition become more sophisticated, the bottleneck of in-
ovation has shifted to efficient and rigorous bioinformatic
nalysis, to guide investigators to assess data quality rapidly
nd use benchmarked software for uncovering biological sig-
als efficiently and robustly. Standard, scalable and modular
orkflows would greatly facilitate this process. 
Bioinformatic algorithms and software for single cell data

nalysis have also evolved rapidly and become challenging for
rdinary researchers to follow. Various benchmark compar-

sons of software, however, have provided excellent recom-
endations for selecting methods for most data analysis steps,
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such as statistically rigorous strategies for cross-experimental-
condition comparisons, including differential expression anal-
ysis and differential cell composition analysis ( 2–5 ). Such stud-
ies have shown that the most important criterion for ro-
bust methodological performance is the capacity to explic-
itly model biological replicate variability via ‘pseudobulking’,
which is to aggregate information (e.g. counts) for cells of the
same type in each replicate. The alternative of treating data
of individual cells as independent measurements could easily
lead to inflated and inappropriate statistics, due to inherent
correlation among cells in the same sample and large cell num-
bers, resulting in small effect-size discovery that is less biolog-
ically relevant and prone to noises. Related to this, advance-
ments in sample multiplexing, such as Cell Hashing, Multi-
Seq or 10X Cell Multiplexing, have significantly increased the
number of replicates (at reduced cost) and complexity of data
analysis ( 6 ,7 ). Additionally, we demonstrated previously that
the Reference Principal Component Integration (‘RPCI’) algo-
rithm, released in the Robust Integration of scRNA-seq data
(‘RISC’) software package, could integrate multiple-sample
data with high accuracy, while avoiding over-correction ( 8 ). 

We present here an R-based pipeline called single-cell
Differential Analysis and Processing Pipeline (scDAPP) for
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cross-group comparative analysis of scRNA-seq and snRNA-
seq data from 10X Genomics platform. Our design empha-
sizes scalability, ease of use, user-friendly graphic visualiza-
tion, transparency, and reproducibility. Compared to similar
pipelines, including Cellsnake, Cellenics, scDrake, SingleCAn-
alyzer, and the Single-Cell Omics workbench ( 9–13 ), scDAPP
focuses more on comparative analysis across groups or con-
ditions, with implementations specifically for using replicates.
Furthermore, it supports complex multi-group comparisons
(such as Drug A versus Drug B versus Control) and compre-
hensive downstream bioinformatics analysis, such as Gene Set
Enrichment Analysis (GSEA) and transcription factor target
analysis. Additionally, flexible input formats allow for direct
data importing from raw CellRanger outputs or pre-processed
scRNA-seq data objects. Importantly, using enriched visual-
ization, scDAPP is designed to guide users to examine and
understand the selection of parameters in each step of the
data analysis, so that they can have a good grasp of the op-
tions and make appropriate and rational adjustments. The
enriched visualization is especially valuable because it shows
the underlying data distributions and moreover how parame-
ter choices affect the analytic results. Overall, scDAPP facili-
tates and systematizes data processing steps and allows users
to quickly delve into biological interpretation, thus advanc-
ing the rigor and scalability of single-cell transcriptomic data
analysis. 

Materials and methods 

Overview of scDAPP core functions 

The scDAPP wraps previously published software packages
into R markdown codes, with critical pipeline-specific imple-
mentation (Figure 1 A). It starts with several cell filtering func-
tions using parameters learnt from input data’s distribution,
including doublet removal, followed by individual sample
analysis, integration of samples, clustering of the integrated
data, and cross-group comparisons of cell cluster abundance
and gene expression using either cell-level or pseudobulk-level
data (when replicates are used). The core packages include
Seurat (v5 and up), RISC / RPCI, Speckle, EdgeR, DESeq2,
FGSEA and ClusterProfiler for various analyses ( 8 ,14–17 ),
with critical function extensions or modifications specific for
scDAPP. Label transfer from existing cell-type annotation is
an optional feature to facilitate cell cluster identification. 

scDAPP run configuration and input data 

Key input options and formats for the pipeline are shown
in Figure 1 B and C. The input for scDAPP is the raw (non-
normalized) Unique Molecular Identifier (UMI) counts ma-
trix for each sample. This can be either the filtered ma-
trices from CellRanger (‘filtered_feature_bc_matrix.h5’ files)
or Seurat objects. The latter allows for flexibility, for ex-
ample, to use data that have been filtered or processed by
other means. In addition, pipeline run configuration files are
needed, which specify sample-wise metadata including per-
sample information and optional sample nickname codes
(‘sample_metadata’), and a list of the relevant cross-group
comparisons (‘comps’) (Figure 1 B). 

One critical input parameter is ‘Pseudobulk_mode’
(TRUE / FALSE) that will specify whether to make cross-group
comparisons using samples in the same group / condition as
replicates (Figure 1 A). Setting it to ‘TRUE’ is highly recom-
mended when biological replicates are available. This has 
two effects: (i) Differential gene expression analysis will be 
run in a pseudobulk manner, invoking the EdgeR-Likelihood 

Ratio Test (or DESeq2) on the aggregated reads from all 
cells in each cluster in each replicate (2). (ii) Differential cell 
composition analysis will also be run in a replicate-aware 
manner via the ‘Propeller’ test from the ‘speckle’ package,
which was demonstrated to perform more accurately (3).
Conversely, setting the ‘Pseudobulk_mode’ parameter to 

‘FALSE’ will evoke scDAPP to perform differential gene 
expression analysis by the Wilcoxon or other tests in Seurat 
at the single cell level (i.e. treating each cell as an independent 
data point), and differential cell abundance analysis by the 
two-proportion Z test. This non-replicate option is only 
recommended for comparative analysis without replicates 
but can be run on inputs with replicates. It is more prone to 

false positive, but this is sometimes unavoidable, such as in 

the context of pilot studies. 
Two other key options are provided (Figure 1 A). The first 

is ‘use_labeltransfer’ for invoking the use of the Seurat label 
transfer workflow. If set to ‘TRUE’, two additional parameters 
need to be provided: one refers to a Seurat object containing 
normalized data from the Seurat’s SingleCellTransform work- 
flow and a metadata column called ‘Celltype’ to be used for la- 
bel transfer, and the other (‘m_reference’) points to a table file 
listing marker genes for the reference cell types in the output 
format of the Seurat ‘FindAllMarkers’ function. The second is 
the ‘risc_reference’ parameter, specifically related to the RISC 

software. The RPCI algorithm uses one of the input samples 
to learn the principal component space to project cells in all 
samples. Users can specify which sample to be the RPCI ref- 
erence, after they examine the clustering results from all sam- 
ples. Alternatively, and by default, scDAPP provides an auto- 
mated RISC reference selection algorithm (described below). 

The pipeline input has additional fields related to quality 
control metric thresholds, tuning of data-driven cell filtering,
and hyperparameter selection in clustering analysis, with rea- 
sonable defaults, as described below. One more required input 
is ‘species’, which is used to search the MSIGDB database for 
the correct gene symbols during pathway enrichment analysis,
via the msigdbr package ( 18 ). 

Description of step-by-step components 

QC and cell filtering 
As shown in Figure 1 A, the first step in scDAPP is quality 
control (QC) and filtering of poor-quality cells. On top of 
pre-set relaxed thresholds, scDAPP tries to learn better cut- 
offs from the input data directly. Currently scDAPP considers 
the following information for cell filtering: number of UMIs 
per cell, number of unique genes (i.e. features) per cell, per- 
cent of UMIs from the mitochondrial genes per cell, and the 
prediction of doublets and multiplets. Additionally, though 

not commonly implemented in other software, scDAPP evalu- 
ates the percent of reads from hemoglobin-related genes, as 
red blood cell lysis buffer may miss its target population; 
these cells have the very distinct feature of extremely high 

hemoglobin gene expression. For each of these QC metrics,
users may select initial relaxed thresholds, such as minimum 

UMIs (500 by default), minimum number of unique genes 
(200), maximum percent of mitochondrial reads (25%), and 

maximum percent of hemoglobin read (25%). On top of these 
user’s settings, scDAPP will further optimize the thresholds by 



NAR Genomics and Bioinformatics , 2024, Vol. 6, No. 4 3 

A

B

C

D

Figure 1. Ov ervie w of steps, inputs and outputs of scDAPP. ( A ) Ov ervie w of scD APP steps and critical options. ( B ) Inputs of scD APP. ( C ) Example 
illustrating configuration of inputs, matching gene expression data with metadata. ( D ) Tree str uct ure of scDAPP output files. 
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nalyzing the distribution of the underlying data. The distri-
utions and the corresponding data-driven cutoffs are pre-
ented to the users graphically so that they may select thresh-
lds deemed more appropriate. Essentially, the algorithms for
eriving these data-driven cutoffs try to emulate the common
anual QC, such as visual inspection of violin plots of these

ariables. First, a ‘complexity’ filter is applied, removing cells
ith a lower-than-expected number of unique genes given the
umber of observed UMIs. This is determined by two regres-
ion models, linear regression and LOESS regression with the
og(nGenes) as the dependent variable and log(nUMI) as the
redictor. Cells are considered low-complexity outliers if their
linear regression Cook’s distance is greater than 4 / number of
cells, and their LOESS regression scaled residual value is less
than −5, by default. The residual threshold is passed as a user
parameter with higher values increasing the strictness of the
filter. Next, scDAPP will learn data-driven cutoffs for the num-
ber of UMIs and the percent of mitochondrial reads (%mt).
For these, robust statistics methods are applied, where cells
with median absolute deviations above +2.5 (by default, tun-
able) for %mt and below −2.5 (default) for number of UMIs
are considered low-quality outliers and removed. Again, users
have the option to ignore and overwrite these data-driven cut-
offs entirely. 
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After poor quality cells are removed, scDAPP optionally
uses DoubletFinder to predict doublets for removal from fur-
ther analysis ( 19 ). DoubletFinder hyperparameters such as the
homotypic doublet rate are automatically estimated for each
sample using the number of cells and the empirical multiplet
rate provided by 10X Genomics ( 20 ). 

Individual sample clustering analysis 
After cell filtering, individual sample analysis is performed
with Seurat using the modified SingleCellTransform (SCT)
workflow ( 14 ,21 ). For each sample, scDAPP applies SCT, prin-
cipal component analysis (PCA), graph construction, Louvain
clustering, and Uniform Manifold Approximation and Projec-
tion (UMAP) for visualization. The hyperparameters includ-
ing number of PCs (30 by default) and Louvain resolution (de-
fault 0.5) can be specified by the user, and iterated if needed,
after examining the result from default settings. 

Automated reference-based cell annotation via label transfer 
While cluster markers are always computed, cluster annota-
tion by label transfer using Seurat is an option, as described
above. Two extensions are made in scDAPP to help users. (i)
We apply a hard cutoff of label transfer score of 0.3, below
which cells are considered non-classified, and a soft threshold
of 0.5, below which cells are considered only putatively clas-
sified. (ii) Seurat label transfer gives a score and label for each
cell, but we extend this to the cluster level by setting the trans-
ferred annotation to the most common predicted cell type for
each cluster. To show the quality of label transfer, scDAPP gen-
erates cluster-level violin plots for the label transfer scores and
provides heatmap visualization of the expression of the ref-
erence marker genes. Automated cell calling tools like label
transfer are useful for providing a suggested cell annotation,
but the results should be carefully examined and thus scDAPP
makes all the relevant plots and scores available to the users. 

Sample integration and batch correction 

Next, scDAPP uses the RISC workflow for integration and
batch correction, starting from the raw data matrices be-
fore Seurat analysis. RISC is also used for Louvain clustering
and UMAP visualization of the integration data. There are
scDAPP-specific extensions of the RISC package. By default,
RISC uses the intersect of genes from the single cell objects as
integration features, but this can leave out genes detected in
only one sample. This can be problematic if one cell type (or
corresponding marker genes) is absent in one sample or one of
the comparison groups, potentially leading to missing marker
genes for that cell type after integration. To overcome this, sc-
DAPP reads the raw count data directly to RISC, selects cells
filtered in the individual sample analysis, concatenates the cell-
filtered matrices, and then performs gene filtering, such that
more genes are retained. Several other key parameters are al-
lowed for RISC integration analysis, including the number of
PCs, the number of neighbors during graph construction, and
clustering resolution. The default for these in scDAPP are rea-
sonable: PCs = 30, resolution = 0.5, neighbors = 10, but they
may be modified by users. 

Another important extension of the RISC package in
scDAPP is automated selection of a reference sample for
multiple-sample integration. Currently, this is done manually.
RISC users examine a panel of plots generated by the ‘InPlot’
function of RISC, which describe the number of clusters, vari-
ance per PC, and a measure of distributional divergence for
each sample ( 8 ), and then select a sample for integration ref- 
erence. We decided to automate this process in scDAPP by 
calculating a heuristic reference score for each sample. This 
score is based on the number of clusters, the cluster diversity,
and the number of cells in each sample, and generally the sam- 
ple with the greatest number of clusters, greatest diversity of 
clusters and highest number of cells gets the highest score and 

is chosen as the best reference. 
For each sample i , let n i denote the number of clusters, and 

c i denote a weighted cell number value, defined as: 

c i = 

number of cel l s in sampl e i 
number of cel l s in the sampl e wit h t he most cel l s 

. 

Next, let v i j denote the variance of cluster j in sample i .
We compute a cluster-average variance score s i for sample i 
by calculating the mean value of the variances of each cluster: 

s i = 

1 

n i 

n i ∑ 

j=1 

v i j 

Then, a reference score S i for sample i is computed as: 

S i = n i × c i × s i 

Finally, the sample i ∗ with the maximum S score is chosen 

as the reference: i ∗ = arg ma x i S i . 
This is meant to automate the RISC recommendation that 

the sample with the most cell types is the preferred integra- 
tion reference. As with the setting of all other parameters in 

scDAPP, the pipeline shows all the RISC InPlot graphs so that 
users can examine the underlying data and manually specify 
the reference sample via the ‘risc_reference’ parameter in the 
run configuration file. Very importantly, scDAPP generates al- 
luvial plots to illustrate cluster relationships between individ- 
ual samples and integrated data, thus helping users to spot 
over- or under-integration. 

Comparison of cell composition across groups 
After RISC integration, scDAPP performs cross-group com- 
parison. First, differential cell composition analysis is applied 

to study cell population changes between groups by compar- 
ing the proportions of cells in each cluster across samples. As 
mentioned above, this can be done in a replicate-aware man- 
ner using the ‘Propeller’ test from the ‘Speckle’ package, which 

is a t -test of the proportions for each cluster with samples in 

each group as replicates. Notably, scDAPP applies the square- 
root arcsine transformation that is provided as an option by 
Propeller, as this transformation was shown to perform best in 

a benchmarking analysis ( 3 ). If replicates are not available or 
not considered, scDAPP will utilize the two proportion Z-test 
as implemented in the R prop.test function. 

Differential expression analysis across groups 
As stated above, this can be done via a replicate-aware 
pseudobulk based method by setting ‘Pseudobulk_mode’ = 

‘TRUE’. With this option, by default, the EdgeR likelihood 

ratio test (EdgeR-LRT) method is used, as this slightly outper- 
formed default EdgeR and other pseudobulk methods like DE- 
Seq2 in a recent benchmark ( 2 ). Optionally, users may use the 
‘DE_test’ parameter to select either the EdgeR, EdgeR-LRT,
DESeq2 or DESeq2-LRT test. The data used for these tests 
are raw counts (i.e. UMIs) aggregated over cells in each cluster 
per replicate for individual genes. The statistical outputs are 
combined with other important single-cell level information 
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ncluding the percent of cells expressing a gene in each condi-
ion, allowing downstream prioritization or further filtering of
he differentially expressed genes (DEGs). If replicates are not
vailable or not considered, differential expression can be run
ith ‘Pseudobulk_mode’ = ‘FALSE’ and performed using the
ilcoxon Rank-Sum test as implemented in the Seurat ‘Find-
arkers’ function by default, but importantly using the RISC

atch-corrected gene expression values. Here too, users may
ptionally change to other Seurat statistical test (e.g. ‘MAST’)
y passing arguments to the ‘DE_test’ parameter. 

athway enrichment analysis 
inally, scDAPP performs multiple types of function enrich-
ent analysis using the differential gene expression results.
his includes GSEA as implemented in the ‘fgsea’ R pack-
ge ( 22 ) and overrepresentation analysis (ORA). Notably,
SEA allows pre-ranking of all genes based on differential

xpression summary statistics. This obviates the need for ar-
itrary differential expression thresholds and works well with
seudobulk-based methods. Currently, scDAPP uses the gene
ets from the MSIGDB pathway database, including the Hall-
arks pathways, Gene Ontology (GO), KEGG, Reactome,

nd two transcription factor target databases, the Gene Tran-
cription Regulation Database (GTRD) and Xie et al. Nature
005 database ( 23–27 ). We draw on these databases using
he ‘msigdbr’ R package, which also allows flexibility across
 range of select species with careful multi-source homology
upport for gene orthologs ( 18 ). For the ORA option that is
nvoked by the ‘run_ORA’, scDAPP tests for significant over-
aps between the DEGs in each cluster and pathway databases
ia the hypergeometric test as implemented in the ClusterPro-
ler package ( 28 ). 

utputs of the scDAPP pipeline 

nce completed, scDAPP will save a variety of critical outputs
rom each stage of the pipeline, including a detailed HTML
le (derived from R Markdown; containing extensive visu-
lizations and tables for QC, intermediate results, and final
esults), text-format results, intermediate data files, and R ob-
ects (Figure 1 D). The HTML report file ( Supplementary File 1
or an example) summarizes all steps of the pipeline and all
rocessing and results, including quality control information,
ata behind threshold selections, UMAPs for clustering re-
ults, plots for marker genes, and cross-group analysis. Rel-
vant codes are embedded and can be viewed in this report
le. We use UMAP for visualization but do not recommend
t for direct inference of the degree of similarity between
lusters. 

Key result data tables are saved as .csv files, including results
or marker genes, differential expression, differential abun-
ance, and pathway analysis. High-resolution plots are also
tored as .pdf files for each step. All these are included to
ake it transparent for users to track and understand the nu-

nce and decisions in each step of the scRNA-seq analysis. The
ata is also valuable for users to adjust the parameters to re-
un scDAPP until they are satisfied. In this sense, scDAPP is an
xcellent education tool for learning scRNA-seq analysis. Ad-
itionally, critical data objects are exported and saved, includ-

ng clustered Seurat objects for each individual sample, a RISC
bject for the integrated data, and a Seurat object converted
rom the integrated data in the RISC format, and pseudobulk-
ng data. Users with advanced bioinformatics expertise can use
them to seamlessly conduct further analyses with their own es-
tablished workflows. Related to this, scDAPP has some utility
R scripts for downstream analysis, such as a wrapper func-
tion for the recently described aPEAR algorithm for cluster-
ing enriched functions from GSEA ( 29 ). Another downstream
application includes preparation of interactive web applica-
tions. For this purpose, we provide a short vignette linking
the output of scDAPP with the ShinyCell package, which is
a user-friendly tool to easily export scRNA-seq objects to a
web-based Shiny app ( 30 ). 

Results 

We have applied scDAPP successfully to many scRNA-seq and
snRNA-seq data in our own studies. To demonstrate its per-
formance, we included two instances below. 

Reanalysis of COVID-19 Blood Atlas dataset with 

scDAPP revealed high concordance with published 

findings 

We applied scDAPP to an atlas dataset of human blood cells
from COVID-19 patients and healthy controls ( 31 ). We se-
lected three patient samples each from mild COVID, critical
COVID, and controls and ran scDAPP in pseudobulk mode
to account for replicates. The input contained nine samples
(3 × 3) and a total of 83,356 cells. We ran scDAPP on a
SLURM-based high performance cluster (HPC) with an allo-
cation of 100GB memory and 9 CPUs, and completed in ∼14
h (9 × 14 = 126 CPU hours). The main and full HTML report
is in a supplemental file ( Supplementary File 1 ), with some
key results included in Figure 2 to illustrate scDAPP func-
tions, specifically UMAP of the clustering result, expression
heatmap of the top cluster markers, cell population change,
and altered pathways from GSEA. The run also used the label
transfer option, taking an independent healthy control sample
as the reference for cell annotation (provided by the original
authors). Overall, our results are in strong concordance with
the original publication, for example, increased abundance of
plasmablast (PB) and B cells and upregulation of interferon re-
sponses in many cell types in critical COVID samples (Figure
2 B). 

Reanalysis of mouse heart developmental 
scRNA-seq data with scDAPP recapitulated 

published results 

We next applied scDAPP to a scRNA-seq dataset from mouse
neural crest cells (NCCs), collected for studying the congen-
ital heart defects in 22q11.2 deletion syndrome ( 32 ). The
data were from heart tissues at embryonic day (E)10.5 of
control embryos or embryos with Tbx1 knockout (Wnt1-
Cre;Tbx1 

- / - ), a gene in the 22q11.2 region and required for
cardiac development ( 33–35 ). The input contained four E10.5
samples (2 Tbx1 wild-type and 2 Tbx1 knockout) and a to-
tal of 39,401 cells (Figure 3 ). We ran scDAPP with stan-
dard parameters except for the integrated clustering resolution
(‘res_int’; set to 1) in order to obtain clusters closely match-
ing the previous publication ( 32 ), on a SLURM-based HPC
with 50 GB memory allocation and 4 CPUs for ∼12 h. The
RPCI reference sample automatically chosen by scDAPP was
‘Control2’, the same one selected manually in the previous pa-
per (Figure 3 ). Taken the authors’ cell type annotation and
markers from an E9.5 sample in the same study for label trans-

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae134#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae134#supplementary-data
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Figure 2. R eanaly sis of blood scRNA-seq data from CO VID-19 patients and controls with scD APP. ( A ) Integrated UMAPs colored by clusters and 
separated by patient groups. ( B ) Table showing the label transfer result using a healthy non-COVID-19 sample from the same study (not included in the 
clustering and other re-analysis). MNP = ‘Mononuclear phagocytes’ (monocytes / macrophages), PB = ‘plasmablast’, ‘nan’ indicates un-annotated cell 
types from the original published annotations. ( C ) Heatmap showing the expression of top markers computed for the clusters in (A). ( D ) Heatmap table 
showing the cell composition change between critical COVID-19 patient and healthy control samples. * P < 0.05. ( E ) Differential pathway analysis 
showing gene sets upregulated in critical COVID-19 patients versus healthy samples. All these figures were taken from the scDAPP output directly 
( Supplementary File 1 ). 

 

 

 

 

 

 

 

 

fer, scDAPP was able to accurately assign cell types (Figure
3 B, C). A close examination of the cluster relationship re-
vealed differences, but most cells were clustered similarly by
types in scDAPP and previous report (Figure 3 D), suggesting
that computational choice and software version could make
subtle difference. The cell composition change between the
controls and Tbx1 null embryos was also reproduced (dif-
ference in the craniofacial and outflow tract NCCs, corre- 
sponding to the scDAPP clusters 2 and 6) (Figure 3 E). Finally,
we compared the DEGs in the cardiac progenitor NCCs and 

found a large agreement between scDAPP and previous re- 
sults, e.g. upregulation of Msx2 , Bambi , Gata3 , and Tbx2 

in the Tbx1 

- / - embryos (Figure 3 F), all of which are critical 
downstream targets of Tbx1 ( 32 ). 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae134#supplementary-data
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Figure 3. R eanaly sis of E10.5 Neural Crest Cell scRNA-seq data with scDAPP. ( A ) Table sho wing the scDAPP -computed RISC ref erence scores for the 
four samples, indicating that the sample ‘Control2’ had the highest score and was selected as the reference for RISC integration, consistent with what 
was selected manually in the original analysis. ( B ) Table showing the cluster annotation from label transfer using an independent E9.5 NCC dataset, 
yielding the same cluster annotation as in the original publication. ( C ) UMAP plot of the integrated samples colored by clusters. ( D ) Table showing the 
relationship between clusters in published versus scDAPP re-analysis. Note that clusters 6 and 17 were not included in the original study, indicating 
different thresholds for cell filtering. ( E ). Table for cell compositional analysis showing significant decreases in cell number with Tbx1 KO in the clusters 2 
and 6, consistent with the original report. * P < 0.05. ( F ) Violin plots showing the differential expression of four key genes highlighted in the paper for 
cardiac progenitor neural crest cells (cluster 3 in scDAPP). Panels A, B, C and E were taken directly from the scDAPP output. 
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Discussion 

Whether scDAPP is used for a quick end-to-end bioinformat-
ics analysis of the data or recurrent processing of the same
data with different options, a main goal of its development is
to help users visualize the granularity of sc / nRNA-seq anal-
ysis and achieve a quick transition from raw data to bio-
logical interpretation, while learning and exploring analytic
parameters and options along the way. Based on our expe-
rience, we believe that the visualizations in the HTML out-
put are extremely valuable for users, to examine data dis-
tribution, cluster marker specificity, cluster relationship, cell
population shifts, biological relevant pathways and so on
( Supplementary File 1 ). 

Importantly, scDAPP emphasizes on full utilization of repli-
cates for both differential gene expression analysis and differ-
ential cell composition analysis. The usage of replicates has
repeatedly been demonstrated as a critical factor for speci-
ficity in single-cell transcriptomic comparative analysis. To
our knowledge, scDAPP is the first such end-to-end pipeline
to explicitly feature this replicate-aware approach, but we
should note that there are other computational methods that
use replicates but not pseudobulking. 

As scDAPP is a pipeline, we have not systematically bench-
marked all the software by ourselves and rather have taken
the recommendations from the community. The modular de-
sign, however, provides sufficient flexibility for including ad-
ditional software in the future. For example, modified Dirich-
let models were also shown to perform very well for differ-
ential cluster abundance analysis ( 3 ), and thus may be in-
cluded to complement Propeller. Additionally, new methods
based on combinatorial indexing are now capable of produc-
ing datasets with hundreds of thousands to millions of cells
per sample ( 36 ). Such technological advancements represent
a paradigm shift for the single-cell field in general and may
require implementation of specialized tools relying on highly
optimized memory storage or combining cells together into
metacells, important functions to consider for future scDAPP
releases. 

Data availability 

No new experimental data were collected in this study. Source
codes, documentation and sample data of scDAPP are at the
GitHub ( https:// github.com/ bioinfoDZ/ scDAPP ), while a sta-
ble release was deposited at the Figshare ( https:// doi.org/ 10.
6084/m9.figshare.27048388.v1 ). 

Supplementary data 

Supplementary Data are available at NARGAB Online. 
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