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Abstract

Fifty-five years after the concept of dopamine replacement therapy was introduced, Parkinson disease (PD) remains an incurable neu-
rological disorder. To date, no disease-modifying therapeutic has been approved. The inability to predict PD incidence risk in healthy
adults is seen as a limitation in drug development, because by the time of clinical diagnosis ≥ 60% of dopamine neurons have been
lost. We have designed an incidence prediction model founded on the concept that the pathogenesis of PD is similar to that of many
disorders observed in ageing humans, i.e. a complex, multifactorial disease. Our model considers five factors to determine cumulative
incidence rates for PD in healthy adults: (i) DNA variants that alter susceptibility (D), e.g. carrying a LRRK2 or GBA risk allele; (ii)
Exposure history to select environmental factors including xenobiotics (E); (iii) Gene–environment interactions that initiate pathological
tissue responses (I), e.g. a rise in ROS levels, misprocessing of amyloidogenic proteins (foremost, a-synuclein) and dysregulated
inflammation; (iv) sex (or gender; G); and importantly, (v) time (T) encompassing ageing-related changes, latency of illness and propa-
gation of disease. We propose that cumulative incidence rates for PD (PR) can be calculated in healthy adults, using the formula: PR

(%) = (E + D + I) 9 G 9 T. Here, we demonstrate six case scenarios leading to young-onset parkinsonism (n = 3) and late-onset PD
(n = 3). Further development and validation of this prediction model and its scoring system promise to improve subject recruitment in
future intervention trials. Such efforts will be aimed at disease prevention through targeted selection of healthy individuals with a higher
prediction score for developing PD in the future and at disease modification in subjects that already manifest prodromal signs.

Introduction

Many neurodegenerative disorders that affect ageing adults, such as
Parkinson disease (PD) and Alzheimer disease, remain unpre-
dictable, non-preventable and incurable. The burden of such brain
diseases in our ageing societies is steadily increasing. The ability to
estimate their future incidence rates in healthy adults, as is com-
monly done for other conditions, would help to increase the likeli-
hood of therapeutic success for interventions by enabling subject
stratification and to focus on individuals at higher risk for disease.
One limitation in our ability to quantify individual PD incidence risk
lies in its incompletely understood (‘idiopathic’) pathogenesis. By
considering known risk categories as essential contributors to the

cumulative incidence rate and by assigning relative values to each
chosen factor, we have created a novel tool, i.e. the ‘PREDIGT
score’.

PD as an environmentally induced disease

For decades, typical, late-onset PD was considered to be caused by
one or more environmental contributor(s), foremost neurotoxic
chemicals, such as pesticides, with relative specificity for dopamine
cells in the Substantia nigra pars compacta (S. nigra), but with no
significant contribution from heritable factors (Tanner et al., 1999).
For over 20 years, epidemiologists have identified increasing num-
bers of potential environmental candidates reported to be in positive
or negative association with PD incidence [reviewed in: (Elbaz
et al., 2016; Polito et al., 2016)].Correspondence: Dr Michael Schlossmacher, 1Neuroscience Program, as above.
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Despite the abundance of reported putative environmental modi-
fiers of PD risk, an umbrella review of 75 meta-analyses, carried out
with the goal of determining the actual effect size of candidate risk
modulators (Bellou et al., 2016), identified only four risk factors
that met class I (convincing)-type or class II (highly suggestive)-
level evidence in controlled cohort studies. Both chronic constipa-
tion and late-onset anxiety/depression were associated with elevated
risk, whereas smoking and physical activity lowered the risk for PD
incidence [reviewed by: (Bellou et al., 2016)]. Constipation and
depression have frequently been interpreted by clinicians as prodro-
mal signs of idiopathic PD (Abbott et al., 2001, 2003; Berg et al.,
2015); however, their potential roles in a latency stage (i.e. in a
non-clinical phase that could evolve into PD) vs. in the clinically
detectable, prodromal stage (i.e. prior to the onset of motoric signs;
Fig. 1) have yet to be precisely determined.
Bellou et al. argued that a substantial number of previous studies

(and meta-analyses thereof) contained residual confounders, possibly
reflecting reverse causation and/or biases in observed associations
(Bellou et al., 2016). Therefore, it seems that in the majority of sub-
jects with typical PD, the ‘missing environmental contributors’ in
subjects’ exposure history, collectively referred to as ‘exposome’,
have remained unaccounted for (Ritz & Rhodes, 2010; Palacios
et al., 2012; Grondin et al., 2016).
There is growing interest in the potential role of the gastrointesti-

nal (GI) tract in disease initiation, in particular in the context of
environmental risk factors. This interest largely stems from an
autopsy-based staging system first published by Braak et al. These
authors have postulated that the initiation of pathology leading to
late-onset PD starts well over a decade before the occurrence of any
motoric deficits, namely in the enteric nervous system and, in paral-
lel, in the olfactory bulb (Braak & Del Tredici, 2008). The missing
environmental contributors to PD could thus reside, or have once
resided, within the environment-derived constituents of the GI tract
(i.e. from the oropharynx to the rectum) and/or the upper respiratory
tract (URT; i.e. beginning in the nasal cavity with its olfactory
epithelium) (Duda et al., 1999; Doty, 2008; Del Tredici et al.,
2010; Savica et al., 2010; Derkinderen et al., 2014; Gray et al.,
2014, 2015; Svensson et al., 2015).
Interestingly, although the independently protective effect of

smoking (and less strongly, of coffee consumption) for the incidence
risk of PD (Gorell et al., 2004; Driver et al., 2009; Palacios et al.,
2012) is thought by many researchers to be mediated pharmacologi-
cally in the central nervous system by nicotine (and caffeine),
Scheperjans et al., among other investigators, pointed out the multi-
tude of effects by which both compounds can affect GI function
including in changing constituents of the gut microbiome (Scheper-
jans et al., 2015). There is increasing interest in the microbiome
itself in PD research with the interrogation of patients’ specimens
collected from the GI tract and URT to identify surrogates of an
individual’s exposure history and candidates for disease-related
markers (Mollenhauer et al., 2013a; Antunes et al., 2016; Felice
et al., 2016; Scheperjans, 2016).
In parallel, in exposure science research the standardized collec-

tion, cataloguing and integrated analysis of exposome elements (e.g.
nutrients, toxicants and xenobiotics) for each individual have
become more comprehensive with the aim to better delineate the
pathogenesis of late-onset disorders in humans (Stanberry et al.,
2013; Dacks et al., 2014; Patel, 2016; Rappaport, 2016; Siroux
et al., 2016). Such investigations encompass large-scale analyses
with exposome measurements in defined populations such as
through ‘Environment-Wide Association Studies’ (Patel & Ioannidis,
2014; Grondin et al., 2016).

PD as a (complex) genetic disease

Since 1997, the pendulum investigating the principal cause of typi-
cal PD has swung towards genetic factors owing to the publication
by Nussbaum et al. of the first bona fide, heritable form of parkin-
sonism in the ‘Contursi kindred’ (Polymeropoulos et al., 1997).
There, the phenotype of young-onset PD was found to segregate in
affected members with a heterozygous mutation in the a-synuclein-
encoding gene at the PARK-SNCA locus (Polymeropoulos et al.,
1997) with a penetrance rate of > 80% (Marras et al., 2016). The
initial study of this trans-national and trans-continental pedigree
(Duvoisin & Golbe, 1995) as well as the subsequent identification
of a heterozygous p.A53T substitution in a-synuclein as its cause
(Polymeropoulos et al., 1997; Papadimitriou et al., 2016) heralded
the beginning of the ‘genetic revolution in PD’ (Klein & Schloss-
macher, 2007); it also made possible a more sensitive neuropatho-
logical diagnosis of typical, sporadic PD (Spillantini et al., 1997)
and the identification of several other, misfolded a-synuclein-related
disorders (referred to as ‘synucleinopathies’) (Galvin et al., 2001;
Irwin et al., 2013) [reviewed in: (Farrer, 2006)].
Together with the advent of high throughput sequencing plat-

forms, the discovery by Nussbaum et al. (Polymeropoulos et al.,
1997) also accelerated the pursuit of linkage and genome-wide asso-
ciation studies to identify additional DNA variants that are associ-
ated with an elevated or a reduced incidence rate of PD (e.g. Soto-
Ortolaza et al., 2013; Nalls et al., 2014). Today, genetic markers
have been identified at > 26 independent loci in apparent association
with altered risk to develop typical PD (Edwards et al., 2010; Inter-
national Parkinson Disease Genomics Consortium et al., 2011; Nalls
et al., 2016). Increasingly large genetic association studies have
enabled researchers to estimate that the population attributable frac-
tion in ‘complex genetic disease’ models of PD lies between 11 and
60% (International Parkinson Disease Genomics Consortium et al.,
2011; Nalls et al., 2015), which suggests that a sizeable portion of
‘the hidden heritability’ has not yet been accounted for in aetiologi-
cal models where causality is restricted to genetics (Singleton &
Hardy, 2016). Nevertheless, Nalls et al., in attempting to better clas-
sify PD patients, developed an ’integrated model of PD’ that combi-
nes a cumulative genetic risk score with four variables (i.e. age; sex;
sense of smell; and a self-reported family history of PD). The latter
model effectively classified persons as ‘typical PD’ (Nalls et al.,
2015); it was validated using five cohorts demonstrating high sensi-
tivity and specificity for the separation of PD (including those with
proven loss of dopamine innervation in the striatum) vs. controls,
where it achieved a classification accuracy with an area-under-the-
curve value of greater than 0.89. Although valuable as a classifica-
tion tool, their integrative model – by nature of its design – did not
yet assess the individual risk of neurologically healthy persons
regarding their PD incidence rate later in life. We posit that for this
reason, and based on a model that sees ‘idiopathic PD’ as a com-
plex, multifactorial disease rather than a ‘complex genetics-only’
disease, the integration of environmental exposure – together with
genetic risk elements – is essential.

PD as a complex, multifactorial disease: gene–environment
interactions

With the rapid progress in genome interrogation platforms and
growing list of possible environmental clues for the development of
complex, late-onset disorders (Darabos et al., 2016), several groups
have recently begun to conduct putative gene–candidate environ-
ment interaction studies. Given the very large number of patients
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required to carry out non-candidate-driven association studies to
probe for exposure history in the context of entire genomes to deter-
mine true effect size (Grondin et al., 2016; Rappaport, 2016), alter-
native study designs are being employed, for example through
Bayesian classifier models (Li et al., 2012; Elbaz et al., 2016; Patel,
2016).
Our concept of PD as a multifactorial disease that results from

interactions between an individual’s genetic susceptibility and his/
her exposome has been informed by several insights from other late-
onset disorders (e.g. Rappaport, 2016); it has been reinforced by our
own studies regarding the in vivo effects of the Leucine-rich repeat
kinase-2-encoding gene at the PARK-LRRK2 locus. LRRK2 variants
have been associated with late-onset, familial PD (Paisan-Ruiz
et al., 2004; Zimprich et al., 2004), late-onset sporadic PD (Lesage
et al., 2006; Ozelius et al., 2006), and two other complex diseases
in humans, i.e. Crohn’s disease (Barrett et al., 2008) and an inflam-
mation-rich endophenotype of leprosy (Fava et al., 2016). In our
consortium based work, we found that wild-type LRRK2 plays an
important role in the innate immune system co-regulating the
response to virulent, microbial pathogens, and that in this context
mutants alter inflammation, thereby affecting neural health following
infections in mice and humans (Hakimi et al., 2011; Fava et al.,
2016) (B. Shutinoski, J. J. Tomlinson, E. G Brown, M. G. Schloss-
macher, unpublished data). From these studies, we concluded that
this example of a gene–environment–interaction paradigm (i.e.
LRRK2-xenobiotic-inflammation) might have direct relevance to
idiopathic PD. As a result, we postulated that exposome elements
and a subject’s tissue responses are essential in contributing to the
cumulative incidence rate of PD, and that therefore, both should be
included in prediction models.

Classifying stages of PD and predicting prodromal illness

In accordance with the definition of the stages of PD by a task force
assembled by the International Parkinson and Movement Disorder
Society, we too consider it to evolve in three stages (Fig. 1): during
the pre-clinical stage pathophysiological processes have commenced,
but there are no evident symptoms or signs; the prodromal stage
reflects a phase when symptoms and signs are present, but are yet
insufficient to define parkinsonism; and clinical PD, which equates
the diagnosis of parkinsonism, as further supported by bona fide
progression, and responsiveness to dopaminergic therapy (Postuma
et al., 2015) (Fig.1).
Recently, Berg et al. provided a ‘na€ıve, Bayesian classifier

model-based prediction formula to identify prodromal PD’ (Berg
et al., 2015). Prodromal PD is estimated to span a period of
> 10 years in human subjects preceding the expression of the classi-
cal parkinsonian phenotype (Braak & Del Tredici, 2008; Hawkes
et al., 2010; Berg et al., 2015). In their approach, an individual
patient’s non-motoric symptoms and signs were considered to be
indicative of neurological dysfunction, and sequentially combined
with select items (i.e. epidemiological risk factors; age; sex; and
genetic risk markers) to generate probability values (in %) and like-
lihood ratios (< 1, 1, > 1) for the diagnosis of ‘prodromal PD’ (Berg
et al., 2015). This model’s strengths include: (i) The description of
a first tool attempting to quantify the probability of a prodromal PD
diagnosis; (ii) Its multivariate, step-by-step assembly of factors pre-
viously associated with the incidence of PD; and (iii) Its testability
in longitudinal studies. This tool (upon its validation) will likely
enable better screening and stratification of those subjects in clinical
trials where the disease process has already entered the prodromal
stage.

Calculating cumulative incidence risk for PD in healthy adults?

What the field lacks is a tool to quantify the incidence risk for PD
in neurologically healthy subjects, and moreover, to predict in each
individual the actual time to disease onset. For this, we need to con-
sider the complement of risk factors that functionally interact to ini-
tiate a disease process (Rappaport, 2016), i.e. a comprehensive
systems-based focus that Li et al. referred to as ‘Gene-Environment
Wide-Interaction Studies’ (Li et al., 2012; Go & Jones, 2014; Gron-
din et al., 2016; Patel, 2016).
In building the PREDIGT score as a platform to calculate future

incidence rates of PD, we considered the following properties to be
important: (i) To view the development of typical PD and its inci-
dence rate in a hypothesis-driven manner (rather than a Bayesian
classifier approach), i.e. within the framework of a complex disease
that has more than one essential contributor; (ii) The ability to
prospectively calculate the probability for incident PD in healthy
adult subjects; and (iii) To employ an easy-to-use formula, as
inspired by simple prediction tools developed in other disciplines of
medicine, for example: the ‘Wells criteria’ that predict the probabil-
ity of pulmonary emboli; blood value-based criteria to help modify
the risk of vascular disease and complications; and the ‘CHADS2
score’ to predict the annual likelihood of stroke from atrial fibrilla-
tion (Hendriksen et al., 2015; Preiss & Kristensen, 2015; Hsu et al.,
2016; Wang et al., 2016).
Our hypothesis that a subject’s risk for PD incidence can be cal-

culated rests on three components: (i) Typical PD is not ‘idiopathic’,
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Fig. 1. PREDIGT formula calculates incidence rates for Parkinson disease in
healthy adults as a function of five variables. The PREDIGT score quantifies
Parkinson disease (PD) incidence rates as a function of five variables. Dis-
ease projection curves over time are plotted for a representative case of typi-
cal, idiopathic PD (iPD; solid black line), young-onset PD (YO-PD; solid red
line) and for a healthy subject (solid blue line). Two horizontal arrows repre-
sent the effects of risk factors that either elevate (orange) or reduce (blue)
cumulative PD incidence risk, and therefore, are hypothesized to shift the
curve in either direction (dotted lines). Additive risk categories include ‘ex-
posome’ (E), ‘genetics’ (DNA; D), and ‘gene–environment interactions that
initiate host responses’ (I), of which the sum is multiplied by risk factors
‘sex/gender’ (G) and ‘time’ (T). Each variable is defined in detail in the text
and assigned a value from a score sheet (see Table 1). This is to calculate
the total PREDGIT risk score for PD incidence rate at a given time (PR score,
%; vertical arrow in red). A PREDIGT score of 100% represents the onset of
clinically defined parkinsonism/PD (Postuma et al., 2015) corresponding to a
≥ 60% loss in dopamine (DA) innervation of the striatum; the prodromal
stage correlates with ~ 41–59% DA neuron loss; and the preclinical phase
corresponds to < 40% of DA neuron loss (Chahine et al., 2016). The curve
of a healthy subject is extrapolated from published calculations (Berg et al.,
2015) that report the rise in ‘age-adjusted, prior probability of PD’ to 4% at
the age of 80 years. The shape of the curve after age 80 is speculative but
informed by the known, age-dependent loss of DA cells in older individuals
(Fearnley & Lees, 1991; Gibb & Lees, 1991; Ma et al., 1999).
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but should be seen as the outcome of five critical factors; (ii)
Genetic susceptibility, exposome, pathological tissue responses, sex,
and time interact to promote the progressive degeneration of dopa-
mine neurons in the human S. nigra (Fig. 1); and finally, (iii) An
estimate for the cumulative incidence rate of idiopathic PD can be
made in healthy subjects by assigning concrete values to each of the
five factors, using an easy-to-use formula.

Materials and methods

Parkinson disease incidence rate expressed as PR (in %)

In our predictive model, the cumulative incidence rate for PD (PR)
is calculated by five variables [(E + D + I) 9 G 9 T] and
expressed in % values. ‘E’ stands for exposome, ‘D’ for DNA, ‘I’
for the initiation of tissue responses following gene–environment
interactions, ‘G’ for sex/gender, and ‘T’ for time. A PR score of
100% (or above) refers to the presence of clinically recognizable
parkinsonism, i.e. the diagnosis of the phenotype under considera-
tion (Postuma et al., 2015), which is thought to correlate with the
loss of ≥ 60% of striatal innervation (Fig. 1). For model building,
we equated a PR score of 0% to the normal complement of dopa-
mine producing cells in the S. nigra, which innervate target cells in
the neostriatum, present at birth; of note, we have not yet correlated
any PR scores (between 1 and 99%) (Fig. 2) with the actual fraction
of dopaminergic cell loss in human autopsy studies.

Variable ‘E’: exposome

In our model, variable ‘E’ represents the exposure history by an
individual to environmental pathogens from the prenatal period
onward. These include, but not limited to, nutrients, chemicals,
xenobiotics as well as recreational and occupational hazards (Wild,
2009). ‘E’ captures the subject’s exposure history to one or more
environmental modifier (exposed once, recurrently, or chronically)
that has been convincingly associated with elevation (i.e. a risk

factor) or reduction (a protective factor) in the incidence rate for
typical PD. To date, few factors, apart from constipation, anxiety,
depression, smoking and physical activity (Bellou et al., 2016), have
been unequivocally linked to the modification of incidence rate for
idiopathic PD. Candidate factors that have not met class I or II type
evidence in meta-analyses, but that have been identified in strong
association with the development of parkinsonism in smaller cohort
studies, include recurrent (sub)concussive head traumas, cumulative
exposure to neurotoxic agents (e.g. pesticides, manganese), reduced
levels of serum uric acid (related in part to diet), and a history of
select microbial illnesses (see below).
For building our model and calculating PR scores, a value for

variable ‘E’ is entered. In lieu of the often unavailable details to
capture an individual’s entire exposure history, we also allowed sur-
rogates to stand in for where an environmental pathogen may play
(or could have played) a role, for example: 0.0–0.005, for the pau-
city of any identifiable, significant environmental exposure history
that would modulate PD risk (before age 50 years; Table 1); 0.25–1
reflecting the duration of constipation in the subject’s past as an
independent risk factor or as surrogate for a previous illness of the
GI tract; 0.25–1, one or multiple (sub)concussive head traumas; 0.5–
1, a reduction in the sense of smell as an independent risk factor or
as surrogate for previous URT infections that led to hyposmia and
anosmia, respectively; and on the protective side, for example, val-
ues from �0.25 to �1 to account for a subject’s smoking history. A
list of select examples for environmental risk modifiers and their
assigned values under factor ‘E’ (for model building purposes; max-
imum value, 3) is shown in Table 1.

Variable ‘D’: an individual’s genetic susceptibility (DNA)

Parkinsonism is in part characterized as the shared clinical appear-
ance of genetic heterogeneity (‘phenocopies’). Variants at individual
PD-associated loci can lead to pleiotropic outcomes of parkinsonism
itself, as is the case, for example, with mutant LRRK2 alleles (Zim-
prich et al., 2004; Kalia et al., 2015); perplexingly, genotypic vari-
ants at one specific locus can also lead to other disease phenotypes,
such as Gaucher disease and dementia with Lewy bodies in the case
of GBA mutations (Alcalay et al., 2014). Here, the variable ‘D’ (for
DNA) represents the overall contribution of a person’s genetic risk.
When choosing the related values for model building purposes, we
included select genomic variants that confer distinct susceptibility to
the incidence rate of PD, for example, based on their known pene-
trance rate and/or the age-of-disease onset. Although from an evolu-
tionary perspective, these genetic variants were likely not selected
for, or against, the development of a brain disease that occurs later
in adulthood, rare allelic variants at individual loci can confer a
large effect size in generating young-onset parkinsonism. In contrast,
commonly found allelic variants at one locus (or multiple loci) may
confer relatively small contributions, either individually or collec-
tively, in generating the more common, late-onset PD phenotype
(Kitada et al., 1998, 2012; Nalls et al., 2015; Marras et al., 2016).
Under factor D, the value of 0.01 represents the relative paucity

of genetic susceptibility to develop PD; 0.125 and 0.25, for exam-
ple, the presence of one or more allelic variant, respectively, with a
relatively low contribution to the overall development of PD (such
as of a non-coding, small nucleotide polymorphism [SNP] at the
SNCA or MAPT locus); or, values from 0.125–0.5 to incorporate a
confirmed diagnosis of PD in relatives, as a surrogate for not-yet-
identified genetic risk (Sveinbjornsdottir et al., 2000; Elbaz et al.,
2003). [Of note, we are cognizant of a possible family information
bias (i.e. the over- or under-reporting of parkinsonism in relatives of
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Fig. 2. The PREDIGT score quantifies the probability for the risk (PR) of
Parkinson disease (PD) as a function of five factors: E (Exposome); D
(Genetics); I (Initiation); G (Sex/Gender); and T (Time). The disease projec-
tion curve for a case of idiopathic PD is shown (solid line), where a PR of
100% is reached at 66 years of age. The curve shifts based on values for the
five factors, thus changing the incidence risk at a given age, for example, to
a PR = 80% at 52 years, 70% at 72 years and 60% at 88 years.
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Table 1. Select Values for five factors entered into the PREDIGT score formula

Factor E: Exposome
Type of modifier (or surrogate) Nature of risk modifier (if known) Assigned value Select ref(s) used to create value

Association with elevated risk
Neurotoxin i.v. MPTP exposure (each event) 1 Langston et al., Science 1983

i.v. Mn2+ exposure (each event) 0.5 Stepens et al., NEJM 2008
Pesticide exposure (cumulative) 0.25 Bellou et al., Parkins Rel Dis 2016
Farm life before age 20 years 0.25 Bellou et al., Parkins Rel Dis 2016

Head trauma Concussive events (cumulative) 1 Mez et al., Alz Res Therap 2015
(Sub)concussive events (cumulative) 0.5 Mez et al., Alz Res Therap 2015

Xenobiotic exposure Encephalitis (select pathogens) 2 Jang et al., Biochim Biophys Acta 2008
Chronic infection (e.g. H. pylori) 1 Bu et al., Park Rel Dis 2015

Chronic constipation Lasting for ≥ 20 years 1 Ross et al., Park Rel Dis 2012
Lasting for 10–19 years 0.5 Ross et al., Park Rel Dis 2012
Lasting for 5–9 years 0.25 Ross et al., Park Rel Dis 2012

Reduced olfaction Anosmia (UPSIT score ≤ 28/40) 1 Muirhead et al., The Otolaryngol 2013
Hyposmia (UPSIT score 29–33/40) 0.5 Muirhead et al., The Otolaryngol 2013

No known association with risk modulator Little cumulative pathogen exposure
Age of proband
≤ 50 years 0
51–59 years 0.005
60–69 years 0.0075
70–79 years 0.02
≥ 80 years 0.03

Association with lower risk
Smoking history Current smoker for ≥ 20 years �0.75 Ritz et al., Arch Neurol 2007

Current smoker for 11–19 years �0.5 Ritz et al., Arch Neurol 2007
Past smoker for ≥ 20 years �0.25 Ritz et al., Arch Neurol 2007
Past smoker for 11–19 years �0.125 Ritz et al., Arch Neurol 2007
Any smoking history ≤ 10 years �0.0625 Ritz et al., Arch Neurol 2007

Caffeine intake ≥ 2 cups/day (recent) �0.25 Palacios et al., Mov Dis 2012
≥ 1 cup/day (recent) �0.125 Palacios et al., Mov Dis 2012

Physical exercise Regular for ≥ 20 years �0.25 Bellou et al., Parkins Rel Dis 2016
Irregular for ≥ 20 years �0.125 Bellou et al., Parkins Rel Dis 2016
Regular for ≤ 19 years �0.125 Bellou et al., Parkins Rel Dis 2016

Factor D: DNA (Genetics)
Gene (locus)/Family history Type of genetic variant Assigned value Select ref(s) used to create value

Association with elevated risk
SNCA Gene triplication (n = 4 alleles) 1 Trinh et al., JAMA Neurol 2014

Gene duplication (n = 3 alleles) 0.75 Trinh et al., JAMA Neurol 2014
Mutation (e.g. p.A53T; p.A30P) 0.75 Trinh et al., JAMA Neurol 2014
Rep1 repeat expansion (50) 0.5 Markopoulou et al., Parkins Rel Dis 2014
Other risk variants as per GWAS 0.25 Nalls et al., Lancet Neurol 2014

PARKIN or DJ-1 or PINK1 Point mutation (het) 1 Kitada et al., Nature 1998
Copy number variant (het) 1 Pankratz et al., PLOS One 2011
Exon deletion (het) 1 Kitada et al., Nature 1998

GBA Point mutation (het; homo) 0.5 Alcalay et al., JAMA Neurol 2014
LRRK2 Point mutation (het; homo) 0.5 Trinh et al., JAMA Neurol 2014
Other risk loci identified by GWAS Single-nucleotide polym. (SNPs) 0.1–0.25 Nalls et al., Lancet Neurol 2015

Family history of disease
No known family history Overall low genetic risk 0.01 Elbaz et al., Neurology 2003
Positive family history 1st degree relative with bona fide PD 0.5 Sveinbjoernsdottir et al., NEJM 2000
Positive family history 2nd degree relative with bona fidePD 0.25 Sveinbjoernsdottir et al., NEJM 2000
Positive family history 3rd degree relative with bona fide PD 0.125 Sveinbjoernsdottir et al., NEJM 2000

Association with lower risk
LRRK2 Bona fide protective SNPs �0.5 Ross et al., Lancet Neurol 2011

Factor I: Initiation of tissue response
Type of pathophysiological effect Outcome(s) of effect in cells/tissue Assigned value Select ref(s) used to create value

Pathophysiological response
a-synuclein dysregulation Accumulation (n = 4 SNCA alleles) 1 Kuo et al., Hum Mol Gen 2010

Accumulation (e.g. p.A53T; p.A30P) 0.5 Kuo et al., Hum Mol Gen 2010
Accumulation (n = 3 SNCA alleles) 0.5 Kuo et al., Hum Mol Gen 2010
Accumulation (Rep1 repeat expansion) 0.25 Cronin et al., Hum Mol Gen 2009
Accumulation (GBA1 mutation) 0.25 Cullen et al., Ann Neurol 2011

(continued)

© 2016 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd
European Journal of Neuroscience, 45, 175–191

PREDIGT score: calculating incidence rate for PD 179



subjects being interviewed) (Elbaz et al., 2003)]; 0.5, an established
susceptibility allele of moderate effect size (e.g. a disease-associated
mutation in LRRK2; duplication of wild-type SNCA); 1, the triplica-
tion of wild-type SNCA, or alternatively, the presence of a disease-
causing mutation in an allele encoding a recessive gene linked to
early-onset parkinsonism (e.g. at PARK-Parkin; PARK-DJ-1; or
PARK-PINK1) (Marras et al., 2016). A list of examples for genetic
risk candidates used to build the model and their assigned values
under factor ‘D’ (maximum value, 3) are shown in Table 1.

Variable ‘I’: gene–environment interactions initiating a tissue
response

In our model of disease development, interactions between genes
expressed by the host and elements in his/her exposome are postu-
lated to be transient, recurrent or chronic. There, each interaction
between an individual gene and a concrete environmental factor is
considered to have the potential for initiating long-lasting tissue
effects. However, few individual interactions will be followed by
sustained, pathological tissue responses due to modulation by a net-
work of changes generated by the genome and exposome (Darabos
et al., 2016). For example, a dominantly inherited risk allele of high
penetrance could be epigenetically silenced in a carrier (or a toxicant
not effectively absorbed despite recurrent exposure) owing to a net-
work of interactions; if so, the mutant allele (or the noxious chemi-
cal) would fail to promote relevant tissue changes in the host. Based

on our hypothesis, factor ‘I’ reflects the initiation of a sustained bio-
logical response in vivo stemming from gene–environment interac-
tions that are essential in the development of PD. We postulated
that quantifying it will inform incidence risk.
For a disease phenotype to be expressed in vivo, metabolic func-

tions, signalling mechanisms, cellular integrity and/or extracellular
matrices have to be compromised. While the reasons for the pro-
gressive nature of variants for young-onset and late-onset PD in
humans are diverse and many remain unknown, several pathways
have been delineated in human tissue and animal experimentation
that help explain neural injury and cell death during disease initia-
tion and/or its progression. The output of gene–environment interac-
tions can initiate a spectrum of pathological responses, for example,
a rise in ROS production, dysregulation of inflammation, and/or the
start of amyloidosis (Hirsch et al., 2012; Crunkhorn, 2016). For
building our prediction model and to calculate PR scores, factor ‘I’
was included in our formula.
Today, there is limited availability of easily accessible markers to

signal in real-time the ‘state, rate and fate’ of tissue changes that
occur in the development of PD (Schlossmacher & Mollenhauer,
2010; Mollenhauer et al., 2013b; Kang et al., 2016); hence, values
for ‘I’ were assigned based on published insights regarding the
in vivo effects of variables E and D. In addition, we used clinically
detectable surrogate markers for inferred tissue responses. For exam-
ple: 0.001, paucity of evidence for any initiation of a lasting host
response; 0.25–1, elevated ROS production resulting from

Table 1 (continued)

Factor I: Initiation of tissue response
Type of pathophysiological effect Outcome(s) of effect in cells/tissue Assigned value Select ref(s) used to create value

Accumulation (select LRRK2 mutant) 0.25 Zimprich et al., Neuron 2004
Tau dysregulation Accumulation (MAPT mutation) 1 Kumar et al., J Biol Chem 2014

Accumulation (encephalitis) 0.5 Jang et al., Biochim Biophys 2008
Accumulation (select LRRK2mutation) 0.25 Zimprich et al., Neuron 2004
Accumulation (concussive traumas) 0.5 Mez et al., Alz Res Therap 2015
Accumulation (subconcuss. traumas) 0.25 Mez et al., Alz Res Therap 2015

Parkin deficiency Redox change; mitoch. dysfunction 1 Palacino et al., J Biol Chem 2004
DJ-1 deficiency Redox change; mitoch. dysfunction 1 Rousseaux et al., PNAS 2012
Pink1 deficiency Redox change; mitoch. dysfunction 1 Glasl et al., Exp Neurol 2012
Neurotoxicant (e.g. MPTP) Mitochondria degeneration; ROS rise 1 Fornai et al, PNAS 2005
Chronic inflammation Cytokine/immune cell dysregulation 0.25 Dzamko et al., Mov Dis 2016
Presence of anxiety/depression Surrogate of disease process in CNS 0.25 Bellou et al., Parkins Rel Dis 2016
Presence of REM sleep disorder Surrogate of disease process in CNS 0.25 Postuma et al., Sleep Med 2016

Paucity of pathophysiological response Adjusting for age:
≤ 50 years 0
51–59 years 0.001
60–69 years 0.002
70–79 years 0.003
≥ 80 years 0.004

Factor G: Sex (Gender) Sex Assigned value Select ref(s) used to create value

General population
LRRK2 wild-type Male 1.2 Berg et al., Mov Dis 2015

Female 0.8 Berg et al., Mov Dis 2015
Genotyped subjects
Bona fide LRRK2 mutation carrier Male 0.8 Marder et al., Neurology 2015

Female 1.2 Marder et al., Neurology 2015

Factor T: Time
Measurement of time Years lived Assigned value Select ref(s) used to create value

Capturing ageing, latency, progression Subject’s actual age 1–100 Driver et al., Neurology 2009
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mitochondrial dysfunction (i.e. as informed by results from parkin
and pink1 deficiency models); 0.25–1, enhanced pro-amyloidogenic
protein production (or its dysregulation), foremost of a-synuclein,
leading to the onset of neural proteinopathy; 0.25–1, sustained dys-
regulation of inflammation; and 0.25–1, activation of cell death
pathways. A list of examples for tissue responses and their assigned
‘I’ values for model building purposes is shown in Table 1.
Note, the development of new-onset REM sleep behaviour, anxi-

ety or depression in heretofore healthy probands was interpreted as
evidence of a disease process that has involved structures within the
central nervous system. For modelling purposes the presence of such
prodromal changes were also scored to reflect a more advanced,
pathological tissue response; therefore, we added them to the score
sheet under factor ‘I’ (maximum value, 3; Table 1).

Variable ‘G’: sex (gender)

Variable G is informed by incidence rates for PD in both sexes. Age-
adjusted prevalence and incidence rates for typical PD were recently
reviewed by Berg et al. on behalf of an International Parkinson and
Movement Disorder Society-appointed task force. Table 1 contains
modifications of their ‘prior probability of PD estimates’ according to
sex, thereby reflecting the overall male preponderance in idiopathic
PD cases in cohort studies (e.g. Locascio et al., 2015) and a likely
reversed sex bias in LRRK2-associated illnesses. The latter was
recently identified in human PD cohort studies (Cilia et al., 2014;
Trinh et al., 2014; Marder et al., 2015). In our formula, the variable
‘sex’ is entered as the independent factor ‘G’; it is expected to reflect
the contribution of genetic elements (biological sex) and their interac-
tion with environmental elements that may differ between the sexes
(gender). For model building purposes, the value entered under ‘G’ is
either 0.8 or 1.2; these numbers reflect prevalence ratios among the
sexes in the general population (e.g. Driver et al., 2009; Berg et al.,
2015; Locascio et al., 2015), which – based on recent findings in the
literature – were corrected for in the context of mutant LRRK2 carrier
status (Table 1).

Variable ‘T’: age(ing) of the subject and clinical latency

Ageing is considered to be the most important risk factor for the
incidence of PD (e.g. Driver et al., 2009). We view ageing predomi-
nantly as the ‘passage of time’ and expressed it as factor ‘T’ (stand-
ing for Time) in years. Although in our model, factor ‘T’ is defined
by the subject’s age (values 1–100), it accommodates three key ele-
ments in the development of PD: (i) Physiological, ageing-associated
changes, such as in gene expression rates, immune function, mito-
chondrial integrity, and metabolic efficiency; (ii) A clinical latency
phase, i.e. the period between critical gene–environment interactions
that have initiated the disease process and the actual onset of pro-
dromal (pre-motoric) changes; and (iii) The progression of the dis-
ease process in an individual that transitions from the prodromal
stage to the clinically diagnosed phase of PD (Fig. 1).

Calculating PR: a six-step process

The generation of a PREDIGT score to calculate the incidence rate
for the development of PD in an individual is determined based on
a six-step process. The first five steps correspond to entering values
for each factor from a pre-populated list into a score sheet and the
subject’s age (E, D, I, G, T; Table 1); step six corresponds to the
calculation of the actual score (in %) following the formula:
PR = (E + D + I) 9 G 9 T.

For developing and refining the model, we examined cohorts of
genetic vs. sporadic cases of parkinsonism published in the literature
(between January 1986 and July 2016) and from our own studies.
Presented herein are six paradigmatic clinical scenarios for demon-
stration of the PREDIGT score model. These reflect three rare cases
leading to young-onset parkinsonism and highlight three scenarios
with elevated incidence risk for the development of late-onset, typi-
cal PD.

Patient cohorts

Patient characteristics that informed our case scenarios were gleaned
from the published literature and available data bases for subjects
previously enrolled in case–controlled biomarker studies, e.g. single
centre cohorts, such as the Kassel Cohort (Mollenhauer et al.,
2011), Ottawa Biomarker Protocol (Bidinosti et al., 2012), DeNoPa
Cohort (Mollenhauer et al., 2013a) and Harvard Biomarker Study
(Ding et al., 2013; Locascio et al., 2015) as well as the multi-site
PROBE and PPMI cohort (Locascio et al., 2015; Kang et al.,
2016). Studies were approved by the respective institutional review
boards at all participating hospitals and clinics.

Results

Prototypes of early-onset parkinsonism

Case 1: SNCA gene mutation-linked, young-onset parkinsonism

We first examined the scenario of a 39-year-old, male carrier of a
wild-type SNCA triplication from the ‘Iowa kindred’ (Singleton et al.,
2003; Farrer et al., 2004; Gwinn et al., 2011; Trinh et al., 2014).

Step 1 (factor E). In this heritable case of parkinsonism with high
penetrance, we assumed that for carriers of such a rare genotype,
which leads to dominantly inherited disease beginning in early
adulthood [e.g. with age-of-disease onset (AOO) frequently before
40 years], the role of exposome may be rather low regarding its
overall contribution to incidence risk (Kitada et al., 2012). Under
this particular circumstance and the proband’s age, factor E was
assigned the value 0.00 (Table 1).

Step 2 (factor D). We assigned the value of 1 for factor D, because
the subject carries the rare but significant genetic predisposition to
develop dominantly inherited, young-onset parkinsonism accompa-
nied by dysautonomia and dementia (Singleton et al., 2003; Gwinn
et al., 2011).

Step 3 (factor I). As shown in numerous vertebrate studies of trans-
genic over-expression of SNCA cDNA in neurons [reviewed by
(Chesselet & Richter, 2011)], we anticipated that this man will
develop insoluble a-synuclein aggregation-associated disease
throughout his nervous system, widely viewed as of 2016 to lead to
a progressive proteinopathy [‘synucleinopathy’ (Irwin et al., 2013)];
therefore, the value of 1 was entered for factor I.

Step 4 (factor G). In the few published kindreds with inheritance of
a SNCA triplication (n = 4 SNCA alleles) mutation, no noticeable
sex contribution has been reported in affected family members for
the incidence of parkinsonism; therefore, we entered the value of
1.2, which was informed by the ‘prior probability of PD in the gen-
eral population’, under factor G for this male subject (Berg et al.,
2015; Locascio et al., 2015) (see Table 1).
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Step 5 (factor T). His current age, 39, was entered as the value for
factor T.

Step 6 (score calculation). The PR score [(0.00(E) + 1(D) + 1
(I)) 9 (1.2)G 9 39(T)] was calculated to be 93.6% at his current
age. Accounting for changes in age (T), we can thus predict the time
of clinically diagnosed parkinsonism in this proband at age
41.7 years (as defined by PR = 100%; Fig. 1), which would be con-
sistent with insights from a recently published meta-analysis for the
AOO in pathogenic SNCA genotypes (Trinh et al., 2014).

Comments. In this man, variant genotypes present at other loci
could change the value for factor D in both directions; for example,
a cumulative value of 1.25 for D (resulting from carrier status of an
additional risk allele of overall smaller effect size) would mean that
the PR score of 100% could be reached at an earlier age, whereas a
total value of 0.75 for D (i.e. co-inheritance of a protective allele)
would lower the PR score to 81.9% at age 39 years.
Similarly, a 70-year-old Japanese man carrying a duplication of

the wild-type SNCA allele on one sister chromatid (n = 3 SNCA
alleles; D = 0.75; I = 0.5) (Nishioka et al., 2006) with no known
significant exposure to an environmental risk factor associated with
PD (E = 0.02 adjusted for age; Table 1) will have a PR score of
(0.02(E) + 0.75(D) + 0.5(I)) 9 1.2(G) 9 70(T) = 106.68%. Accord-
ing to the formula, this man is expected to have expressed his typical
PD phenotype by the age of 65.62 years (PR = 100%) (Trinh et al.,
2014). Entering a higher value for E (if he had also been exposed to
identifiable, PD-associated risk factors during adulthood) would
increase his PR score, and thus, measurably lower this man’s AOO,
and by inference, the time of diagnosis. In contrast, epigenetic silenc-
ing of SNCA alleles in this man (which could be deduced from bio-
marker studies in vivo) would lower the value entered for ‘I’, reduce
the final score, and would thus increase the predicted AOO. Examples
for select genotypes that underlie dominantly inherited PD/parkinson-
ism (Marras et al., 2016) and their assigned values under factor D
(and I) can be found in Table 1.

Case 2: bi-allelic PARKIN mutation-linked, young-onset
parkinsonism

To further build our model, we next examined the scenario of a
34 year-old female, compound heterozygote mutation carrier at the
PARK-Parkin locus from the ‘South Tyrolean kindred LA’ in
Northern Italy, which is known for the occurrence of young-onset
parkinsonism (Pramstaller et al., 2005; Marras et al., 2016).

Step 1 (factor E). As with case #1, we first assumed that no major
environmental risk factor played a role in the expression of her
parkinsonian phenotype at a young age (E = 0.00; Table 1).

Step 2 (factor D). Given that both of her PARKIN mutations result
in the truncation (and thus inactivation) of encoded Parkin proteins,
we assigned the total value of 2 (2 9 1) for D (Table 1).

Step 3 (factor I). As suggested by evidence collected at autopsy
from human patients and generated in animal models of parkin defi-
ciency (e.g. Itier et al., 2003; Palacino et al., 2004; Periquet et al.,
2005; Kitada et al., 2009), loss of the protein’s function promotes
the progressive degeneration of dopamine neurons due to rather cell-
selective mitochondrial dysfunction, a steady rise in ROS levels and
the reduction in axonal maintenance; hence, we assigned a value of
1 for factor I in this genotypic scenario (Table 1).

Step 4 (factor G). The value for factor G was entered as 0.8 for
this woman (Table 1).

Step 5 (factor T). Her age, 34, was entered as the value for variable
T.

Step 6 (score calculation). The PR score was calculated as (0.00
(E) + 2(D) + 1(I)) 9 0.8(G) 9 34(T) = 81.6%, which indicates that
she is expected to meet criteria for the clinical diagnosis of parkin-
sonism at the age of 41.7 years (PR score = 100%) (Lucking et al.,
2000; Pramstaller et al., 2005; Klein et al., 2007) (Fig. 1).

Comments. As with case #1, carrying additional variant genotypes
at other loci would change the cumulative values for factor D and I
(up- or downward), which is predicted to move the AOO and the
subsequent time of diagnosis for her parkinsonism into the 20s, or
as high as above 60 years, as suggested by the published literature
of PARK-Parkin mutation carriers (Lucking et al., 2000; Pramstaller
et al., 2005; Klein et al., 2007). Similar scenarios could be drawn
for carriers of pathological mutations in both alleles of genes encod-
ing for DJ-1 and PINK1, which are known to lead to an indistin-
guishable phenotype of recessive, young-onset parkinsonism
(Lucking et al., 2000; Bonifati et al., 2003; Valente et al., 2004).
Over the years, researchers have vigorously debated whether car-

rier status of only one mutant allele linked to recessive parkinsonism
(e.g. PARK-Parkin; PARK-PINK1) represents a rare ‘single hit’
leading to PD, such as via a possible dominant-negative gain-of-
function effect under exceptional circumstances, or alternatively,
whether it could serve as a substantial risk factor for late-onset PD
[reviewed in: (Klein et al., 2007)]. Upon validation, our PR score
model could serve as a platform to quantitatively assess the contri-
bution of other genetic factors in the expression of a parkinsonian
phenotype in the latter scenario. Examples for select genotypes
underlying recessively inherited parkinsonism and their assigned val-
ues for factor D (and I) can be found in Table 1.

Case 3: neurotoxin-associated parkinsonism in a young adult

Strictly for modeling purposes, we next examined bona fide, envi-
ronmental pathogen-linked cases of secondary parkinsonism with
‘high penetrance’. There, we assumed, for example, that victims of
a neurotoxicant exposure carry a relatively small (but not necessar-
ily, negligible), genetic burden to their overall disease risk (Kitada
et al., 2012). Although an exclusively environmental contribution to
generate parkinsonism in humans is exceedingly rare (Langston
et al., 1983), such variants have been described as the result of acci-
dental intravenous (i.v.) administration of toxicant-laced, illicit drugs
prepared in home laboratories [e.g. meperidine contaminated by 1-
methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), or methcathi-
none contaminated by high manganese levels] (Langston et al.,
1983; Stepens et al., 2008). Based on their chemical nature, route of
exposure and cumulative dose, select compounds may have excep-
tional tropism to confer toxicity towards neurons of the basal gan-
glia circuitry in vertebrates, thereby leading to rapid-onset
parkinsonism (Langston et al., 1983; Stepens et al., 2008).
We therefore considered the scenario of a 28-year-old man, who

self-administered MPTP-containing meperidine by i.v. injection
twice.

Step 1 (factor E). We scored his value for factor E as 2 reflecting
his total neurotoxin exposure burden (Speciale, 2002; McCormack
et al., 2008) (Table 1).
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Step 2 (factor D). Variable D was assigned the value of 0.01
reflecting the smaller (but not insignificant) contribution by genetics
to his overall susceptibility to MPTP (Dauer et al., 2002; Fornai
et al., 2005; Pattarini et al., 2007) (Table 1).

Step 3 (factor I). From many toxicological studies of MPTP expo-
sure in rodents and primates (e.g. Dauer et al., 2002; Fornai et al.,
2005; McCormack et al., 2008; Fox & Brotchie, 2010), we con-
cluded that this man will have developed mitochondrial impairment
with a marked rise in ROS levels, which underlies the degeneration
of dopamine cells in the S. nigra of MPTP-treated mammals. We
therefore entered the value of 1.0 under factor I (Table 1).

Step 4 (factor G). The value for his sex was entered as 1.2
(Table 1).

Step 5 (factor T). His age, 28, was entered as the value for factor T.

Step 6 (score calculation). Calculation of his PR score (2(E) + 0.01
(D) + 1.0(I)) 9 1.2(G) 9 28(T) amounted to 101.1%, which reflects
the fact that he has met criteria for parkinsonism. In the absence of
any neurotoxicant exposure, his PR score would have been 0.3%,
which is consistent with the published literature regarding the pro-
band’s a priori probability to develop PD at that age (Berg et al.,
2015) (Fig. 1). Note, a lower total value for variable E, for example,
due to a lesser cumulative dose of neurotoxin exposure, would have
reduced his PR score, and thus, markedly delayed the predicted
AOO and time of diagnosis.

Comments. Experiments in mice have shown that the targeted dele-
tion of both dj-1 alleles worsens the rise of ROS in MPTP-treated
animals (and thus, further lowers neuronal survival) (Kim et al.,
2005), thereby highlighting the fact that variants in genes encoding
modifiers for neurotoxicant uptake, its import into mitochondria, and
cellular ROS responses could further alter the cumulative values for
D and I, and thus change the outcome of an acute (or chronic) neu-
rotoxin exposure in humans.
In addition to the cases listed above and for building the model,

we also examined other environmental factors that have previously
been linked to the development of secondary parkinsonism in
humans to inform our prediction paradigm; for example, we consid-
ered cases of recurrent, (sub)concussive head traumas, such as those
sustained by athletes during years of practicing contact sports (Mez
et al., 2013), or illnesses following host invasion by select xenobi-
otics, such as a viral infection leading to an encephalitis (Litvan
et al., 1998; Reid et al., 2001; Jang et al., 2009; Tappe & Alque-
zar-Planas, 2014) (Table 1). Of note, autopsies of patients with
parkinsonism as a result of systemic viral illness or due to recurrent
(sub)concussive events have shown, among other neuropathological
findings, a dysregulation of MAPT-encoded tau protein (i.e. hyper-
phosphorylation and insolubility of aggregates) (Jellinger, 2009;
Mez et al., 2013). In accordance, and for further consideration, we
have entered value estimates for the related factors E and I in
Table 1.

Scenarios for typical, late-onset Parkinson disease

Case 4: GBA mutation-linked risk to develop late-onset Parkinson
disease

As of 2016, heterozygous variants encoding point mutations at the
PARK-GBA locus (Marras et al., 2016) represent the commonest,

known genetic risk factor for typical, late-onset PD in non-Ashkenazi
subjects (frequency rate, > 8%) and Ashkenazi Jews (frequency of
carrier status, > 20%) vs. control groups without PD (~ 1 and > 3%,
respectively) (Sidransky et al., 2009; Gan-Or et al., 2015). Accord-
ing to a report regarding risk-to-phenotype conversion rates, the pene-
trance rate of heterozygous GBA mutations (and even of homozygous
mutation carriers that have developed Gaucher disease, type-I) is
< 10% by the age of 80 years (Alcalay et al., 2014). These results
strongly suggested to us that additional, ‘hidden factors’ are essential
to express the PD phenotype in GBA risk allele carriers.
We present the case of a 40 year-old, Caucasian, non-Ashkenazi

man without any neurological symptoms (or signs), who carries a
heterozygous p.L444P mutation at the PARK-GBA locus. We
entered the following parameters into the PREDIGT formula.

Step 1 (factor E). During the interview, he informs the examiner that
he has no history of constipation and no known, previous exposure to
other, PD-associated environmental risk modifiers. In accordance with
his age, the value 0.00 is entered under factor E (Table 1).

Step 2 (factor D). Because of his sequencing-confirmed GBA muta-
tion carrier status (and in the absence of any other known, risk mod-
ifying allele), the value 0.5 is entered under factor D (Table 1).

Step 3 (factor I). Multiple laboratories including ours have demon-
strated that the expression of mutant GBA1 protein leads to an ele-
vated total concentration for a-synuclein of up to 25% in select
compartments of neural cells in vivo (e.g. Cullen et al., 2011; Sardi
et al., 2011). The effect of GBA1 protein mutations in promoting a-
synuclein pathology has also been confirmed in human autopsy
studies (e.g. Eblan et al., 2005). For this reason, under factor I, we
assigned the value of 0.25 (Table 1).

Step 4 (factor G). The proband’s sex is male; thus, we entered 1.2
for factor G.

Step 5 (factor T). The value 40 for the age of the subject was
entered under variable T.

Step 6 (score calculation). The PR score was calculated as 36.0%.
In other words, at the current age of 40 years, the cumulative PD
incidence rate in this individual amounts to 36%; according to the
formula, at age 60 years, the rate would be 46.35%.

Comments. If the same man reported a > 20 year history of consti-
pation (as a surrogate marker for past encounters in the GI tract of
one or more environmental pathogen with relevance to PD), the
value of 1 would be entered for factor E (Table 1), and his PR score
would increase substantially. Of note, an interaction between consti-
pation and the dysregulation of human a-synuclein has been
reported in animal models of PD (Kuo et al., 2010) and may occur
throughout the human colon including the appendix (Gray et al.,
2014). At age 40 years, this man’s PR score would then be calcu-
lated as 84.0%. For demonstration purposes, at the age of 60 years
his cumulative PD incidence rate would amount to a PR of 126%,
which – according to our formula – would correspond to the clinical
diagnosis of typical PD at the age of 47.61 years. In contrast, in the
absence of any GBA mutation (even with constipation as a substan-
tial risk factor present), this man’s PR score would have decreased
to 81.72% [(1(E) + 0.01(D) + 0.125(I)) 9 1.2(G) 9 60(T)] at the
age of 60 years. Of note, the effects of a mutant GBA allele in sig-
nificantly lowering the AOO (and thus, the related time of formal
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diagnosis) for typical PD in affected carriers have now been pub-
lished in multiple ethnicities (e.g. Alcalay et al., 2014).
In the latter scenario, the bona fide PD risk factor of constipation

could have been substituted with, for example, anosmia, as con-
firmed by a validated smell test (and which would have been
entered as value 1 for E), or hyposmia (entered as value 0.5 for E).
In our model, the gradual loss of a subject’s sense of smell serves
as a surrogate for past encounters in the nasal cavity of one or more
significant environmental pathogen with relevance to PD (as consti-
pation did for the GI tract), leading to the initiation of a disease pro-
cess (factor I) beginning in the olfactory epithelium (Duda et al.,
1999; Saito et al., 2016) (Table 1). The bi-directional effects of
individual risk modifiers in the exposome (factor E) and genome
(factor D) of a person as well as the corresponding tissue effects,
[which the network of interactions (captured by factor I) has on the
PR score] underlie the predicted time of PD diagnosis (PR

score = 100%); the dynamic nature of these changes is graphically
displayed in Fig. 1 and Fig. 2.

Case 5: LRRK2 mutation-linked, late-onset Parkinson disease with
reversed sex bias

Carrier status of a heterozygous mutation at the PARK-LRRK2 locus at
few select codons (Marras et al., 2016) is currently considered the sec-
ond most frequent, genetic risk factor for late-onset, sporadic PD (after
GBA variants) with an estimated, mean prevalence rate of 1–2% in
North America (Lesage et al., 2006; Ozelius et al., 2006; Heckman
et al., 2013; Bozi et al., 2014; Trinh et al., 2014; Kang & Marto,
2016). Mutations in the LRRK2 gene had been initially identified as the
cause of rare, dominantly inherited, familial PD in multiple pedigrees
(Paisan-Ruiz et al., 2004; Zimprich et al., 2004), but many questions
surrounding the causative mechanisms by which bona fide LRRK2
mutants promote brain pathology (either directly, or indirectly) at an
overall lower than the expected penetrance rate have remained unan-
swered.
We therefore examined the scenario of a 51-year-old woman with

a 10-year history of reduced sense of smell (i.e. hyposmia), but no
other neurological findings. She carries a heterozygous p.G2019S
mutation in the LRRK2 gene (Gaig et al., 2014). Therefore, we
entered the following parameters into our formula to calculate the
cumulative PD incidence rate.

Step 1 (factor E). We entered the value 0.5 under factor E because
of her hyposmia (she had no other known PD-associated environ-
mental risk modifier in her history). Her reduced olfaction, as con-
firmed by standardized testing, had been attributed to recurrent
congestions and the presence of nasal polyps, and was interpreted by
us as surrogate marker for past encounters of one or more environ-
mental pathogen with relevance to PD within her URT (Table 1),

Step 2 (factor D). For her sequencing-confirmed LRRK2 mutation
carrier status, the value 0.5 was entered under factor D (Table 1).

Step 3 (factor I). Given the fact that select point mutants of LRRK2
have recently been shown to dysregulate inflammation in humans and
mice downstream of infections (e.g. Halliday et al., 2011; Daher
et al., 2015; Dzamko & Halliday, 2012; Fava et al., 2016) (B. Shuti-
noski et al., manuscript in preparation), we entered the value of 0.5
under factor I; it comprises 0.25 for dysregulation of inflammation,
and 0.25 for the suspected upregulation of a-synuclein (Beatman
et al., 2016), or tau (Table 1). Note, accumulation of intracellular,
insoluble a-synuclein or tau is seen at autopsy in the majority of

patients with mutant LRRK2-associated parkinsonism (Zimprich
et al., 2004; Rajput et al., 2006; Kalia et al., 2015).

Step 4 (factor G). Intriguingly, in recent studies on the conversion
rate of risk-to-phenotype in mutant LRRK2 carriers between sexes in
select ethnicities (and geographies), researchers have documented a
female rather than male sex bias (e.g. Cilia et al., 2014; Marder
et al., 2015). Therefore, we entered the sex/gender-adjusted value of
1.2 under factor G (Table 1).

Step 5 (factor T). The value 51 was imputed under variable T.

Step 6 (score calculation). The PR score for this woman was calcu-
lated as 91.8%. According to our formula, she is predicted to con-
vert her elevated disease risk into the diagnosis of typical PD by the
age of 55.56 years (PR score, 100%). If this carrier were a man, the
model predicts that the time of his PD diagnosis would occur at age
76.5 years (PR score, 100%) because his value for G would be
imputed as 0.8 instead (based on the observed reversal of sex bias)
(Table 1). The effects by a mutant LRRK2 allele on significantly
lowering the AOO (and thus, the related time of diagnosis) for typi-
cal PD in affected women have been published in at least two
cohorts (e.g. Cilia et al., 2014; Marder et al., 2015).

Comments. Intriguingly, in a study of monozygotic twins carrying a
heterozygous p.G2019S mutation in LRRK2 with confirmed identity
of their genome (Xiromerisiou et al., 2012), the authors described dis-
cordance for the expression of the PD phenotype by over 10 years.
Let us therefore examine the theoretical case of our proband’s iden-

tical twin sister, who has no history of recurrent nasal infections and
no hyposmia on formal testing (confirmed by an UPSIT score of
> 34/40). The twin’s score card for cumulative incidence risk includes
the following assigned values: 0.005 for factor E (given her age and
without a known, PD-relevant exposure history to xenobiotics in the
URT or GI tract); 0.5 for factor D; 0.001 for factor I given the
inferred paucity of tissue response(s) in the absence of a known
pathogen at her age (Table 1); 1.2 for G; and 51 for variable T. The
twin’s PR score would be 30.97% at 51 years and 36.50% at age
60 years. According to our model, the normosmic twin (provided she
continues to lack identifiable, PD-relevant factors in her exposome
that would initiate a disease process later; Table 1) would still not
have developed an LRRK2-associated brain disorder at the age of
80 years (PR = 51.26%). Therefore, the network of interactions
between the identical genome of the twin sisters (identical value for
D) with variable elements in their exposome (variable values for E)
likely results in distinct tissue responses. We currently score these
with different values for factor I; if true, this concept could explain
the marked discordance for PD in the monozygotic twins reported by
Xeromerisiou et al. The dynamic, bi-directional effects of interacting
risk modifiers on the PR score, and thus on the predicted AOO and
diagnosis of PD, are graphically shown in Fig. 1 and Fig. 2.
The single publication to date of discordant twins with the same

p.G2019S point mutant-carrying allele –when taken together with
our recent experimental findings regarding LRRK2’s role in com-
plex diseases- places the emphasis on necessary environmental trig-
gers and related host response(s) to express a disease phenotype
(Hakimi et al., 2011; Hawkes, 2013). Our model therefore may shed
light on the three vexing issues in LRRK2 biology mentioned
above: First, the interdependence of gene–environment interactions
triggering tissue responses also accommodates the fact that brains
from patients with mutant LRRK2 genotypes have been associated
with pleomorphic neuropathology, such as with evidence of
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dysregulated tau but no accumulation of misfolded a-synuclein, or
vice versa (Zimprich et al., 2004; Rajput et al., 2006; Kalia et al.,
2015). We speculate that distinct environmental triggers, such as
recurrent (sub)concussive head traumas or systemic infections (vari-
able factor E) that trigger encephalitis-type changes, could be
responsible for promoting tau dysregulation in some carriers of a
LRRK2 mutation, even within the same pedigree (shared risk factor
D). There, other affected members might develop a-synuclein-posi-
tive pathology (variable factor I) (Zimprich et al., 2004; Rajput
et al., 2006; Hakimi et al., 2011). We have therefore entered head
traumas (Taylor et al., 2016) and infections (Masliah et al., 1994;
Bu et al., 2015) as PD risk-associated environmental triggers into
our first draft for a score sheet (Table 1).
As demonstrated, our PREDIGT model also helps explain the

intriguingly variable penetrance rates that have been recorded for the
same LRRK2 mutation across ethnicities, possibly due to an even
higher exposome burden in some regions, or the presence of genetic
modifiers of LRRK2 in select geographies (Trinh et al., 2014, 2016).
Third, this interdependence between gene–environment interactions
and tissue-specific response(s) (factor I) could possibly explain the
association of certain LRRK2 genotypes with the risk of developing
Crohn’s disease and leprosy. Why? Because without chronic exposure
to a dysregulated gut microbiome and without infection by M. leprae,
respectively, these two complex diseases would not be expressed
(Hakimi et al., 2011; Rocha et al., 2015; Fava et al., 2016).
Furthermore, the interdependence of several essential factors may

also explain why mutant Lrrk2-expressing animals show no dis-
cernible PD-like phenotype in the absence of exposure to a microbial
trigger (e.g. Herzig et al., 2011; Moehle et al., 2012; Ness et al.,
2013; Daher et al., 2015). Last but not least, our model also serves

as a platform to examine conjugal cases of PD, i.e. the concordance
of parkinsonism between partners that live together over decades
(shared factor E), but are biologically unrelated (variable, but positive,
values for factor D) (Willis et al., 2010; Rajput et al., 2016).

Case 6: probability of PD in a 50-year-old smoker with a positive
family history

We posed the following question relevant to discussions in doctors’
offices and the planning of future clinical trials aimed at preventing
PD: In a healthy adult, would the limited availability of concrete
information regarding genetic risk and exposure history still permit
the calculation of overall incidence rate for developing PD later in
life? Let us therefore consider the scenario of a 50-year-old smoker,
who was medically and neurologically healthy at that age. The pro-
band has a first-degree relative (i.e. his father) with late-onset PD
(Fig. 3).

Step 1 (factor E). During the interview, he denied any consumption
of caffeinated beverages. A value of �0.5 was imputed under factor
E given his less than 20-year history of cigarette smoking. As an
environmental modifier, ‘current smoking’ status has been consis-
tently shown to be associated with reduced PD risk (e.g. Driver
et al., 2009) [reviewed in: (Bellou et al., 2016)] (Table 1).

Step 2 (factor D). For his not yet determined genetic status but ele-
vated theoretical risk given his positive, independently confirmed
family history (Sveinbjornsdottir et al., 2000; Elbaz et al., 2003;
Nalls et al., 2015), the value of 0.5 was entered under factor D
(Table 1).

Step 3 (factor I). Given the lesser likelihood for the initiation of a
tissue response that promotes PD resulting from altered interactions
between the subject’s genome and exposome (which we postulate
may be due to the protective effects of smoking), we entered the
total value of 0.25 under factor I (i.e. we equated his possible tissue
response(s) to that of a proband carrying a mutant GBA allele or an
expanded, Rep1-positive SNCA allele (Chung et al., 2014);
Table 1).

Step 4 (factor G). We entered the value of 1.2 for his sex as per
the a priori probability of PD in the general population (Berg et al.,
2015) under factor G (Table 1).

Step 5 (factor T). The value 50 corresponding to his age was
imputed under factor T.

Step 6 (score calculation). The computed PR score at age 50 years
was 15% (Fig. 3). When asked about his probability to develop
parkinsonism at age 70 years, which was the age of diagnosis for
his father’s typical PD, the theoretical incidence rate would be cal-
culated as 21.0%; this, provided the subject indeed carried the same
risk allele that played a role in his father’s illness and that he contin-
ued to smoke (see Fig. 3, where blue dots indicate calculated PR

scores).

Comments. When the subject was seen again in the clinic at age
60 years, he reported the cessation of smoking at age 50 years and the
presence of chronic constipation for now nearly a decade. A revised
incidence risk assessment would incorporate an updated value for E as
0.0 (i.e. �0.25 for the former smoking status; +0.25 for constipation
of < 10 years; Table 1), thereby leading to a PR score of 54.0% at the
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Fig. 3. Graphic representation of cumulative incidence rate for PD in a 50-
year-old man. The prediction of Parkinson disease (PD) in a 50-year-old
smoker is depicted (see scenario #6 in the text). Blue dots: Incidence rates
are calculated based on the individual’s current smoking status, a confirmed,
positive family history of PD, the inferred tissue response(s), sex/gender, and
age: PREDIGT scores of 15% at age 50; 21% at age 70; and 24% at age
80 years are shown. Yellow dots: The calculated cumulative incidence rate
for PD has changed after cessation of smoking at age 50 years and the onset
of constipation shortly thereafter (open yellow circle): PREDIGT scores, 54%
at age 60, and 84% at age 70 years. Red dots: The diagnosis of new-onset
depression (or a REM sleep behaviour disorder; RBD) at age 60 years
changes the cumulative incidence rate for PD, as represented by a PREDIGT
score of 72% at age 60, of 97.5% at age 65, and the projected diagnosis of
typical PD by 66.67 years (score, 100%). The course of disease development
(solid black line) was inferred based on PREDIGT scores generated at multi-
ple time points. Clinical stages are as described in the text and in Fig. 1.
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age of 60 years. Based on the formula, we calculated a projected score
of PR = 84.0% at age 70 years [�0.25 + 0.5 (the latter value reflect-
ing constipation for > 10 years) (E) + 0.5(D) + 0.25(I)) 9 1.2
(G) 9 70(T) (Fig. 3, where yellow dots indicate revised PR scores).
With inclusion of this proband in sequencing studies of his family

to identify the genetic nature (and the presence or absence) of any
risk allele, and his participation in future biomarker studies that
could accurately assess his degree of an initiated host response (such
as through the quantification of analytes in CSF or blood, or based
on markers from radiographic/nuclear medicine studies) (Mollen-
hauer et al., 2011; Berg et al., 2015; Chahine et al., 2016), his PR

score could be updated to impute better informed values for factors
D and I. By inference, a practitioner’s ability to forecast this man’s
likelihood of PD would be more accurate.
However, let us assume that even without further knowledge of

his genetic variation risk and fluid analysis-based biomarker status,
this man was being followed regularly by his doctors. At age
60 years, he now also developed new-onset anxiety and depression
(or, alternatively, he was diagnosed with REM sleep behaviour dis-
order). We interpreted this change as reflection of a disease process
that has reached the central nervous system (i.e. the prodromal
stage). Therefore, we updated the score sheet under factor I to the
total value of 0.5 (Table 1). This would lead to a revised PR score
of 72.0% at age 60 years [�0.25 (remote smoking status) + 0.25
(constipation of < 10 years)(E) + 0.5(D) + 0.5(I) 9 1.2(G) 9 60
(T)] (Fig. 3). The cumulative PR score predicted during a follow up
visit at age 65 years would be 97.5%, and would climb to 105% at
age 70 years [�0.25 + 0.5 (accounting for constipation for 10+
years)(E) + 0.5(D) + 0.5(I) 9 1.2(G) 9 70(T)]. Thus, according to
our formula, we would predict the diagnosis of PD in this man at
the age of 66.67 years (PR score = 100%) (Fig. 3; where red dots
indicate scores based on updated information at the time of follow
up visits).
Case #6 therefore highlights a scenario by which a multi-compo-

nent formula, which is based on clinically available information and
pre-determined surrogate markers, was employed in the context of a
hypothesis driven model; it was then applied to the theoretical
encounters between a subject without a neurological disorder and
his/her health care workers. The PREDIGT score model could thus
inform investigators as to the relative incidence rate of PD in a
specific individual several years prior to the diagnosis of parkinson-
ism (Fig. 3). Case #6 also highlights the three crucial opportunities
for possible interventions in the future to change the trajectory of
such disease development: (i) For neuroprevention at age 50 years
with the recognition of a possible genetic risk; as well as (ii) At
around age 55 following the onset of chronic constipation; and (iii)
For neuroprotection after age 60 years with the development of pre-
viously absent anxiety and depression (or a recently diagnosed REM
sleep behaviour disorder).

Discussion

Risk stratification for decision-making has evolved into important
tools for medical practitioners in both clinical and research settings,
where they are applied to the prevention of illness, avoidance of
complications, and slowing of disease progression. This has led to
the development of validated and well-established scoring systems,
such as those employed in the risk assessment for annual embolic
stroke from atrial fibrillation (Hsu et al., 2016), of coronary events
associated with dyslipidaemia (Preiss & Kristensen, 2015), and of
deep vein thrombosis and its complications, such as pulmonary
emboli (Modi et al., 2016).

Here, we created the PREDIGT score model to calculate the
cumulative PD incidence rates in healthy adults where a PR score of
100% (or greater) corresponds to the presence of clinically diag-
nosed, typical PD (Postuma et al., 2015) (Figs. 1, 3). While the for-
mula-based scoring system was principally designed to
accommodate our view for the pathogenesis of PD/parkinsonism, it
could also be employed in future research settings, such as in obser-
vational and interventional studies. For this purpose, the PREDIGT
score model needs to be transformed into a formula that turns cumu-
lative incidence rates into a probability based risk algorithm. There,
final calculations are restricted to approximate predictive values that
range between 0 and 1 (with 0 indicating the complete absence of
neurological signs, and with 1 equating the clinical diagnosis of PD)
and that assign relative measures, such as through proportional haz-
ards, for prediction outcomes. Recently, such transformations were
successfully completed in concrete applications, e.g. in the predic-
tion of outcomes related to cognitive function in PD (Locascio
et al., 2015) and to mortality in a large North American population
(Manuel et al., 2016). Most importantly, the PREDIGT score model
has to be validated, and likely be further refined, in real-life settings,
both retrospectively, using cross-sectional, case–controlled cohorts,
as well as prospectively, by testing it in longitudinal population
cohorts (Mollenhauer et al., 2011, 2013a; Locascio et al., 2015;
Chahine et al., 2016; Kang et al., 2016).
While some disease progression models exist (Locascio et al.,

2015; Nalls et al., 2015; Chahine et al., 2016; Venuto et al., 2016)
and a risk assessment tool for prodromal PD has recently been pub-
lished (Berg et al., 2015), the PREDIGT score is unique in that it
represents the first platform to quantify cumulative incidence rates
for PD in neurologically healthy adults. We consider the strengths
of this tool to include the following 6 aspects: (i) It was founded on
conservative interpretations of concrete epidemiological evidence,
established genetic insights, well-documented sex differences as well
as accepted pathophysiological mechanisms from in vivo studies; (ii)
The PREDIGT model, while hypothesis-driven, functions within the
recently revised criteria for the diagnosis of prodromal illness as
well as for typical PD (Berg et al., 2015; Postuma et al., 2015); (iii)
Identifying relevant risk categories can be done by history-taking
from probands, careful review of their family history (Elbaz et al.,
2003) and clinical examination. Once identified, these factors are
assigned values in a ready-to-use score card system (Table 1).
Therefore, the PREDICT formula itself is easy to use; (iv) The
model does not favour one variant of parkinsonism (e.g. cases #1–3)
vs. another type of PD (e.g. cases of #4–6); rather, because of the
integration of multiple risk modalities, it accommodates each one,
thereby complementing future efforts to personalize diagnosis and
facilitate specific interventions; (v) If validated, it will fill a void,
because currently there is no inexpensive, non-invasive and practical
research tool to measure cumulative incidence rates for PD in neuro-
logically healthy individuals; and (vi) Our PREDIGT score model
may signal a demystification process for ‘idiopathic PD’ by delineat-
ing its pathogenesis in accordance with other late-onset, complex ill-
nesses. Several, multifactorial ailments in adults evolve from an
innocuous start in the periphery earlier in life, only to fully manifest
as disorders of the central nervous system many years later (e.g.
multiple sclerosis; stroke due to chronic hypertension; viral
encephalitis).
Our tool is still hypothetical in nature. The PREDIGT score model

is based on our current understanding of risk factors associated with
PD incidence, but it could be argued that we presented all six case
scenarios in an overly simplified manner because each of the five
factors may encompass more nuances. Among them, factor ‘I’ may
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represent the most controversial risk category to justify and quantify.
Until future biomarkers better inform us as to tissue changes in real-
time, the variable is largely inferred from experimental findings in
animal studies and autopsy results regarding the effects of both D
and E. However, the incomplete penetrance of highly pathogenic
mutations at the SNCA locus (e.g. p.A53T substitution) in bona fide
carriers [together with the discordance for PD in the (albeit single)
case of LRRK2 G2019S-positive, identical twins] suggested to us
that the network of genome–exposome interactions accounts for the
initiation of PD in an affected individual vs. an unaffected carrier.
Therefore, factor ‘I’ was included in the formula to serve as a surro-
gate best suited to reflect the outcome of all network interactions
that initiate and propagate pathology. Hence, we considered its
inclusion as an independent risk category superior to the option of
simply increasing the values for E or D.
Our first version of a score card system (Table 1) was designed

for easy updates in the future in order to reflect more individualized
risk components and to be properly transformed. The PREDIGT
score model will be able to incorporate newly discovered elements
in accordance with our growing understanding of disease develop-
ment and the emergence of objective, validated disease markers
[see: (Mollenhauer & Trenkwalder, 2009; Schlossmacher & Mollen-
hauer, 2010; Calabresi et al., 2016) and references therein] by con-
verting solid evidence into revised values.
Another potential criticism of our approach is that it is based on

the idea that the course to typical PD is truly interdependent upon 5
factors (E, D, I, G, T). This concept was informed by our under-
standing of several well-known examples of complex diseases in
humans (e.g. diabetes, multiple sclerosis, lung cancer and stroke)
and is strengthened by recent insights into the range of LRRK2-asso-
ciated illnesses; however, this rationale has not yet been widely
accepted as an explanation for ‘idiopathic PD’. This issue could be
addressed in longitudinal cohort studies of healthy adults and at risk
persons [such as in the PARS cohort (Chahine et al., 2016)] and in
better designed animal experiments of disease development.
As pointed out in the introduction section, there is currently no

widespread consensus regarding the relative importance of the expo-
some in PD pathogenesis. In our model, it is essential and con-
tributes to the values entered under factors E and I. It encompasses
–among others – microbiological agents within a person’s exposure
history, of which interactions with genes expressed by the host have
shown to underlie many late-onset disorders in humans (Pittman
et al., 2016). There, we have also been informed by expression pat-
terns and emerging insights into the role of PD-linked genes outside
the nervous system, such as for LRRK2 (Ness et al., 2013; Daher
et al., 2015) and SNCA (Beatman et al., 2016) and Alzheimer dis-
ease-linked APP, which play roles in host defences against virulent,
microbial pathogens (Ness et al., 2013; Kumar et al., 2016). More-
over, SNPs at several other loci in the human genome (Nalls et al.,
2014) have been linked to immunity in genome-wide association
studies of multiple PD cohorts, and dysregulated inflammation has
been associated with PD risk including in LRRK2 mutation carriers
(e.g. Dzamko et al., 2016). Although a Koch’s principles-based
cause and effect relation between xenobotics and PD has not been
demonstrated, we and others consider the infectious exposure history
of an individual to be a critical factor when assessing a subject’s
overall risk to develop PD (Bu et al., 2015); we have thus included
such events (and surrogates thereof) as a quantifiable risk modulator
into our score sheet.
Moreover, given the suggested progression routes of PD from the

gut and nasal cavity to the brain (Braak et al., 2004; Braak & Del
Tredici, 2008), exposure history by an individual to infectious

organisms and other environmental modifiers within mucosal mem-
branes of the URT and GI tract (Doty, 2009; Bu et al., 2015) may
be the most important modulator of PD risk; therefore, we grouped
chronic constipation and hyposmia/anosmia under the risk category
E. Indeed, differences in the microbiome of PD patients relative to
normal controls have recently been reported (Scheperjans et al.,
2015; Felice et al., 2016; Ghaisas et al., 2016). Although the molec-
ular mechanisms for and consequences of these differences have not
yet been delineated, the inclusion of chronic constipation and
impaired olfaction into risk models has been pursued by other inves-
tigators (Berg et al., 2015; Nalls et al., 2015).
Furthermore, whether xenobiotic-, nutrient-, or toxicant-based in

nature, our model has not yet made a more nuanced distinction
between monophasic vs. intermittent (recurrent) vs. chronic exposure
to environmental pathogens considered under factor E. The more
detailed assessment and quantification of each subject’s exposome
from before birth to infancy and on to young, middle-aged as well
as late adulthood (e.g. Chen et al., 2012) will allow the more accu-
rate differentiation and quantification of this variable. Of note, the
same criticism (i.e. of the need for a more nuanced quantification)
could be made regarding factor D. Fortuitously, through the employ-
ment of standardized procedures clinicians and epidemiologists can
now increase our sensitivity and specificity (and their related predic-
tive values) when obtaining family histories of PD; this, to exclude
both false positives and false negatives (Elbaz et al., 2003). In par-
allel, geneticists and bioinformatics experts are actively mining large
data sets to delineate individual risk scores into new algorithms to
build better DNA-based prediction models (e.g. Nalls et al., 2015).
In conclusion, the PREDIGT score model evolved from our con-

cept of typical PD as a complex, multifactorial disease. This assess-
ment stems from our interpretation of the published literature
regarding insights into other late-onset disorders, clues for ‘PD as an
environmental disease’, clues for ‘PD as a genetic disease’ as well as
from our own experimental evidence. By carefully weighing individ-
ual risk factors with previously established associations to PD in the
context of our disease model, and by fitting them into a simple-to-
use, mathematical formula, we have created a new prediction tool.
The PREDIGT score system represents – to our knowledge – the
first, non-invasive method to possibly predict the cumulative inci-
dence rate for PD in the future. As stated above, the next critical
steps are to transform the formula and validate the model in multiple
cohorts. Thereafter, our goal would be to test the PREDIGT predic-
tion model in clinical research settings for stratification and popula-
tion enrichment in intervention trials. In the future, health care
practitioners could employ the PREDIGT score system (or an
improved derivative thereof) to better counsel and care for healthy
adults in order to delay the onset of PD and to prevent its full clinical
manifestation during the prodromal stage.
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