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Background: Glycolytic effects and immune microenvironments play important roles in
the development of melanoma. However, reliable biomarkers for prognostic prediction of
melanoma as based on glycolysis and immune status remain to be identified.

Methods: Glycolysis-related genes (GRGs) were obtained from the Molecular Signatures
database and immune-related genes (IRGs) were downloaded from the ImmPort dataset.
Prognostic GRGs and IRGs in the TCGA (The Cancer Genome Atlas) and GSE65904
datasets were identified. Least absolute shrinkage and selection operator (LASSO) Cox
regression and multivariate Cox regression were used for model construction. Glycolysis
expression profiles and the infiltration of immune cells were analyzed and compared.
Finally, in vitro experiments were performed to assess the expression and function of
these CIGI genes.

Results: Four prognostic glycolysis- and immune-related signatures (SEMA4D, IFITM1,
KIF20A and GPR87) were identified for use in constructing a comprehensive glycolysis
and immune (CIGI) model. CIGI proved to be a stable, predictive method as determined
from different datasets and subgroups of patients and served as an independent
prognostic factor for melanoma patients. In addition, patients in the high-CIGI group
showed increased levels of glycolytic gene expressions and exhibited immune-
suppressive features. Finally, SEMA4D and IFITM1 may function as tumor suppressor
genes, while KIF20A and GPR87 may function as oncogenes in melanoma as revealed
from results of in vitro experiments.

Conclusion: In this report we present our findings on the development and validation of a
novel prognostic classifier for use in patients with melanoma as based on glycolysis and
immune expression profiles.
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INTRODUCTION

Skin cutaneous melanoma (SKCM) is a cancer resulting from
malignant transformations of melanocytes in the basal layer of the
skin. This condition represents one of the most aggressive types of
skin cancerworldwide, with factors such as ultraviolet light (UV) and
malignant transformations of moles being high-risk factors for
SKCM (1). At present, most treatments for SKCM involve surgical
resection removal, radiotherapy and chemotherapy (2). Although
significant progress has been achieved with these treatments, more
than 95% of metastatic melanoma patients die within one year (3).
Therefore, there is an urgent need to identify prognostic biomarkers,
whichwouldprovide clinicians the ability topromptly and accurately
predict the clinical outcomeofmelanomaaswell as initiate a protocol
for a personalized treatment regimen.

Abnormal immune microenvironments and tumor metabolic
reprogramming represent two significant characteristics of tumors
(4). Tumor metabolic reprogramming is one of the critical
mechanisms involved with regulat ing the immune
microenvironment (5, 6). Tumor metabolic reprogramming
includes enhanced aerobic glycolysis (Warburg effect), increased
glucose uptake and consumption, enhanced lipid and protein
synthesis and enhanced glutamine uptake and catabolism, with
glycolysis as the main feature (7–9). Even with sufficient oxygen
availability, tumor cells continue to metabolize glucose mainly
through glycolysis to produce lactic acid (10, 11). The capacity for
this glycolysis within tumor cells along with its production of lactic
acid to participate in the regulation of immune microenvironments
have become notable areas of research interest in recent years. It has
been reported that lactic acid, as secreted fromtumorcells, can inhibit
the cytolytic ability ofCD8+effectorTcells, but itmay also beusedby
Tregcells to support cellmetabolism(12).The lactic acidproducedby
melanoma cells can reduce the immune surveillance ability of T and
NK cells by inhibiting the nuclear factor produced by the activated T
cell (NFAT) dependent IFN-g (13). In addition, the findings that
glycolysis is the main metabolic pathway required after T cell
activation, and enhances the eradicating effects of T cells (14, 15),
indicates that glycolytic effects play different roles in immune versus
tumor cells. Although a clear connection exists between glycolytic
effects and immune microenvironments, scant attention has been
directed toward examining this relationship in any detail.

In this study, we constructed and validated a comprehensive
index of glycolysis and immune (CIGI) model as based on
glycolysis- (GRGs) and immune- (IRGs) related genes. This
CIGI model shows stable, prognostic prediction performance
in different data sets and in different subgroups of melanoma
patients. In additional, we demonstrate that CIGI was correlated
with glycolysis and immune status. Finally, the expression and
function of CIGI genes in melanoma were evaluated in
in vitro experiments.
MATERIALS AND METHOD

Data Collection
Gene expression profile and clinical follow-up information of
RNA sequencing samples from patients with SKCM were
Frontiers in Immunology | www.frontiersin.org 2
downloaded from the TCGA database, and the GSE65904
cohort was downloaded from the Gene Expression Omnibus
(GEO) database. The RNA sequencing data from TCGA-SKCM
were preprocessed as follows: 1) the samples without follow-up
information were removed; 2) ENSEMBL ID were converted
to gene symbols; 3) Remove the samples with OS <30 days;
4) Genes with expression level is lower than 1 and the proportion
is higher than 50% in all samples were eliminated. The GEO
cohort was processed via the following steps: 1) the samples
without clinical follow-up information were removed;
2) ENSEMBL IDs were converted to gene symbols; 3) the
probes corresponding to multiple genes were removed; 4) the
median of multiple gene expression values was used. TCGA
database and GSE65904 dataset were selected as they contained
the largest sample set in the same platform with detailed follow-
up information on melanoma. Glycolysis-related genes were
identified in the Molecular Signatures database, while immune-
related genes were downloaded from the ImmPort dataset.

Construction and Validation of the CIGI
The independent prognostic predictors among glycolysis- and
immune-related genes were selected via univariate analysis based
on the “survival” package. LASSO analysis and the stepwise Cox
proportional hazards regression model were used to construct
CIGI. High- and low-CIGI groups were differentiated as based
on the optimized risk value. Kaplan-Meier survival analyses were
used to analyze differences in overall survival between the high-
and low-CIGI groups. Time‐dependent ROC curve analysis was
used to evaluate the predictive value of the CIGI. Univariate and
multivariate Cox regression analyses were performed to explore
the independent prognostic value of the CIGI.

Potential Regulatory Pathways Analysis
Single-sample gene set enrichment analysis (ssGSEA) based on
the “GSVA” package was used to quantify the scores of pathways
in each sample. And, the ssGSEA score from each sample was
used to analyze the relationship between CIGI and potentially
regulatory pathways.

Immune Infiltration Analysis
The infiltration levels of 28 immune cell types in the TCGA
dataset were assessed using ssGSEA analysis. The gene markers
of 28 immune cells were obtained from a previous study (16).

Univariate and Multivariate Cox Analysis
Univariate and multivariate COX regressions were used to
analyze the relationship between CIGI and other variables and
the clinical prognosis of patients.

IHC (Immunohistochemistry) Analysis
Melanoma samples and matched nontumorous tissue were
obtained from the First Hospital of China Medical University.
Tissues were fixed in 10% formalin, embedded in paraffin, and
processed as 4-µm continuous sections. IHC staining was
performed according to the manufacturers’ instructions
(UltraSensitiveTM SP; MXB, China). The antibodies used
included: SEMA4D (1:200; ab134128; Abcam), IFITM1
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(1:2000; ab233545; Abcam), KIF20A (1:100; ab70791; Abcam)
and GPR87 (1:100; ab188901; Abcam). Each sample was
independently assessed by two pathologists and scored using a
semiquantitative scoring system with histoscores ranging from 0
(minimum) to 300 (maximum).

This, as well as any other portions of this study involving
human tissue samples, were approved by the Ethics Committee
of the First Hospital of China Medical University.

Cell Culture
The human melanocytes PIG1 cell line, melanoma cell line,
A375, A875, and MeWo were obtained from the China
Infrastructure of Cell Line Resource and was cultured in
DMEM (10% FBS) at 37°C in a humidified 5% CO2 incubator.

Cell Transfection
Small interfering RNA (siRNA) transfection was performed
using Lipofectamine 3000 (Invitrogen, Shanghai, China). The
sequences were as fo l lows : 5 ’ -GGCCTGAGGACC
TTGCAGAAGA-3’ for SEMA4D-specific siRNA, 5’- CCTAG
ATACAGCAGTTTATAC-3’ for IFITM1-specific siRNA, 5’-
GGCCAGGUUUCUGCCAAAATT-3’ for KIF20A-specific
siRNA and 5’- UCUUAAUCGCGUAUAAGAGTT-3’ for
Frontiers in Immunology | www.frontiersin.org 3
GPR87-specific siRNA. The sequence for the negative control
(NC) was 5′- UUCUCCGAACGUGUCACGUTT-3′.

CCK8 Assay
A375 cells (1500/well) were cultured in 96-well plates and
transfected with NC-siRNA or siRNAs (SEMA4D-specific
siRNA, IFITM1-specific siRNA, KIF20A-specific siRNA,
GPR87-specific siRNA). After culture for 0, 24, 48, or 72 h,
cells were cultured with the CCK8 solution (C0038, Beyotime,
Shanghai, China) for an additional 2 h. Cell viability was
expressed as an optical density (OD) value at 450 nm.

Colony-Forming Experiments
In order to examine the effects of SEMA4D, IFITM1, KIF20A and
GPR87 expression on human melanoma cell proliferation, A375
cells (500/well) transfected with NC-siRNA or siRNAs were
added to the 12-well plates. After two weeks, the number of
colonies were counted.

Detection of Lactate, ATP and Glucose
Uptake Levels
A375 cells (5×105/well) were cultured in 96-well plates and
transfected with NC-siRNA or siRNAs (KIF20A-specific
A B

C D E

FIGURE 1 | Identification of prognostic GRGs and IRGs in melanoma. Forest plots showing hazard ratios of the top 10 genes(sorted by p value) from the (A) TCGA
and (B) GSE65904 datasets. (C) Venn diagram indicating that 182 prognostic GRGs and IRGs were identified in the GSE14520 and TCGA cohorts. (D) Cross-
validation (100-fold) for tuning parameter selection in the LASSO model (upper panel) and LASSO coefficient profiles of the most relevant prognostic genes
(lower panel). (E) Results of the cox proportional hazards regression model based on 17 genes.
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siRNA, GPR87-specific siRNA). The culture medium and cells
were collected after 48 h. Lactate levels in the medium were
determined with use of the lactate assay kit (ab65331, Abcam),
ATP levels with the ATP assay kit (ab83355, Abcam) and glucose
uptake levels with the glucose uptake assay kit (ab136955,
Abcam). All determinations were normalized with cell numbers.

Extracellular Acidification Rate (ECAR)
Measurement of ECAR was performed using the Seahorse XF96
Flux Analyser (Seahorse Bioscience) following instructions
provided by the manufacturer. In short, after transfection with
NC-siRNA or siRNAs (KIF20A-specific siRNA, GPR87-specific
Frontiers in Immunology | www.frontiersin.org 4
siRNA), A375 cells (1.5 × 104/well) were cultured in 96-well plates.
The culture medium was replaced with the test buffer prior to the
ECAR test. Cells were then incubated with buffered medium
containing 10mM glucose, 1mM oligomycin and 50mM 2-DG.
Statistical Analysis
The Kaplan-Meier analysis was used to compare differences in
OS between the high- and low-CIGI groups. Statistical
comparisons between two groups were performed using the
Student’s two-tailed t-test. A p-value of < 0.05 was required for
results to be considered as statistically significant.
A B

C

ED

FIGURE 2 | Prognostic analysis of CIGI in the TCGA dataset. (A) Risk scores, survival times, survival status and expressions of the four genes in CIGI. (B) Kaplan–Meier
analysis of the OS in the high- versus low-CIGI groups. (C) Time-dependent ROC analysis of CIGI for OS and survival status. (D) Kaplan–Meier analysis of the DSS in the high-
versus low-CIGI group. (E) Kaplan–Meier analysis of the PFI in the high- versus low-CIGI group.
October 2021 | Volume 12 | Article 711145

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Yang et al. Glycolysis Model for Melanoma
RESULTS

Development of CIGI in Melanoma
TCGA and GSE65904 datasets were included in this study.
Univariate Cox regression analysis was conducted to select genes
significantly related with prognosis based on these TCGA and
GSE65904 datasets. A total of 6155 genes were significantly
related to the overall survival of melanoma patients in the TCGA
dataset, with hazard ratios of the top 10 genes(sorted by p value)
presented in Figure 1A. A total of 2835 genes were significantly
related to the overall survival of melanoma patients in the
GSE65904 dataset, with hazard ratios of the top 10 genes(sorted
byp value) presented inFigure 1B. AVenndiagram indicating that
182 prognostic GRGs and IRGs were identified in the GSE14520
and TCGA cohorts as shown in Figure 1C. As an excessively large
number of genes is not conducive to clinical detection, we further
narrowed the range of genes. We employed the Lasso regression
analysis and the resulting change trajectory of each independent
variable is shown in Figure 1D. With the gradual increase of
lambda, the number of independent variable coefficients
gradually increased to zero. Five-fold cross-validation was used to
build the model, and the confidence interval under each lambda.
Thus, we selected 17 genes at lambda= 0.0748 as the candidate
genes. 17 genes were as follow: SEMA4D, PDGFRB, C5, PSMC6,
CCL8, CNTFR, IL27RA, PIK3R2, IFITM1, KIF20A, GPR87, LEP,
MAP2K1, COL5A1, SSTR2, SEMA6A andKLRD1. To optimize this
Frontiers in Immunology | www.frontiersin.org 5
model and identify only the most predictive genes, a stepwise Cox
proportional hazards regression model was used, which resulted in
a final set of 4 genes (Figure 1E). As a result of these final analyses
theCIGIwas constructed: CIGI= (-0.164× SEMA4Dexpression)+
(-0.15 × IFITM1 expression) + (0.278 × KIF20A expression) +
(0.137 × GPR87 expression).

Prognostic Analysis of CIGI in the
TCGA Dataset
The risk score was calculated and distribution of the TCGA
cohort is shown in Figure 2A. As based on the optimized risk
value, patients were assigned to either a high- or low-risk CIGI
group. Results from the Kaplan-Meier survival analyses indicated
that the overall survival of patients in the high-CIGI group was
significantly lower than that of patients in the low-risk group
(Figure 2B; p < 0.0001). The ROC curve analyses showed that the
AUC values for the 1-, 3-, and 5-year survival rates were 0.738,
0.655 and 0.702, respectively (Figure 2C). Additionally, patients
with low-risk scores experienced a significantly longer disease-
free survival (DSS, p <0.001; Figure 2D) and progression-free
interval (PFI, p = 0.0015; Figure 2E).

Verification of CIGI Based on the
GSE65904 Dataset
Next, the stability and reliability of CIGI in the GSE65904 dataset
were assessed. The CIGI distribution in the GSE65904 cohort is
A B

C

FIGURE 3 | Validation of CIGI in the GSE65904 dataset. (A) Risk scores, survival times, survival status and expressions of the six genes. (B) Kaplan–Meier analysis
of the OS in the high- versus low-CIGI group of the TCGA cohort. (C) Time-dependent ROC analysis of CIGI for OS and survival status.
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shown in Figure 3A. Results from further prognostic analysis
using Kaplan-Meier revealed that the overall survival of melanoma
patients in the high-CIGI group was significantly lower than that
in the low-CIGI group (p=0.00054; Figure 3B). ROC curve
analyses showed that AUC values for the 1-, 3- and 5-year
survival rates were 0.622, 0.631 and 0.58, respectively (Figure 3C).

Prognostic Value of CIGI in Different
Subgroups of Patients With Melanoma
To further evaluate the clinical application value of CIGI, the
prognostic value of CIGI in melanoma patients with different
clinical characteristics was analyzed. As summarized in Figure 4,
among melanoma patients with different clinical characteristics
the OS of the high-CIGI group was significantly lower than that
of the low-CIGI group (Figures 4A–L). Overall, CIGI effectively
distinguished the prognosis of patients within different
subgroups, further demonstrating the accuracy of CIGI.

Univariate and Multivariate Cox Analysis
of CIGI
Univariate and multivariate COX regressions were used to
analyze the relationships among CIGI, clinical features and
prognosis of melanoma patients. Results from the Univariate
Frontiers in Immunology | www.frontiersin.org 6
COX analysis demonstrated that CIGI (HR=3.675, p<0.001), age
(HR=1.025, p<0.001), M stage (HR=1.893, p=0.041), N stage
(HR=1.749, p<0.001), T stage (HR=1.461, p<0.001), and tumor
stage (HR=1.422, p<0.001) were all significantly correlated with
the prognosis of melanoma patients (Figure 5A). Multivariate
COX analysis showed that CIGI (HR=3.454, p<0.001), age
(HR=1.014, p=0.014), M stage (HR=3.821, p=0.007), N stage
(HR=3.019, p=0.001), and T stage (HR=1.499, p<0.001) were all
significantly correlated with the prognosis of melanoma patients
(Figure 5B). Taken together, these results suggest that a high
CIGI value served as an independent factor for prognosis in
melanoma patients.

Nomogram Construction
A nomogram was generated to provide a quantitative method for
predicting the probability of 1-, 3-, and 5-year OS in patients
with melanoma, which could then be used in clinical practice.
The nomogram integrated clinicopathological features and CIGI
as based on results of the multivariate Cox regression analysis
(Figure 6A). The c-index value of the nomogram was 0.74,
indicating a satisfactory overlap with actual observations.
Calibration curves showing calibration points in 5-years
demonstrate a high degree of coincidence with the standard
A B C D

E F G H

I J K L

FIGURE 4 | Prognostic significance of CIGI in melanoma patients with different clinical features. (A) Age < 60, (B) Age > 60, (C) Male (D) Female (E) T1+T2 (F) T3+T4
(G) N0 (H) N1 (I) M0 (J) M1 (K) Stage 1+ Stage 2 (L) Stage 3+ Stage 4.
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curves, indicating that the model provides an effective level of
prediction performance (Figure 6B). In additional, results from
the decision curve analysis indicate that the nomogram can
better predict OS than that obtained using single
clinicopathological features (Figure 6C). Therefore, this
nomogram, as based on CIGI, could be used to predict the
prognosis of melanoma patients in clinical practice.

Glycolysis Profile in the CIGI
Next, the correlation between CIGI and glycolysis was assessed.
As reported previously (17), multiple genes are involved in
encoding glucose transporters and critical kinases (glycolytic
genes) that directly regulate cell glycolysis (Figure 7A). Here,
we analyzed the changes in mRNA of these genes between the
low- versus high-CIGI group in the TCGA and GSE65904
databases. With the exception of HK2, PFKL and SLC2A1, the
high-CIGI group showed higher expressions of other glycolytic
genes than that of the low-CIGI group as based on the TCGA
dataset (Figure 7B). Similarly, within the GSE65904 dataset, the
expression of glycolytic genes were again higher in the high-CIGI
group, with the exception of PFKL, PGAM1 and SLC2A1
(Figure 7C). In additional, ssGSEA scores of the “HALLMARK
GLYCOLYSIS” pathway viaGSVAanalysis, as based on the TCGA
and GSE65904 datasets were also generated (Figures 7D, E). From
this analysis, we found that activity of the glycolysis pathway
Frontiers in Immunology | www.frontiersin.org 7
increased as a function of increases in CIGI. Overall, these results
suggest a glycolysis-overexpression status is present in the high-
CIGI group.

Immune Profile in the CIGI
In this experiment, the relationship between CIGI and the immune
status of melanoma was evaluated. To accomplish this goal a
correlation analysis was first performed between CIGI and
immune infiltrate cells, with the result that infiltration levels of 28
immune cell typeswere obtained using ssGSEA.With the exclusion
of CD56bright natural killer and Type 2 T helper cells, the
remaining immune cells were all significantly down-regulated in
the high-CIGI group (Figure 8A). Next, the relationship between
CIGI and tumor immune microenvironments were assessed.
Stromal and immune scores were used to estimate tumor
immune microenvironments. As shown in Figures 8B, C, CIGI
was negatively correlated with immune (R=−0.46, p<0.001) and
stromal (R=−0.36, p<0.001) scores. Finally, the relationship
between CIGI and immune-related pathways were determined.
With this analysis, we found that the activity of the Interferon-a
response, Interferon-g response, TNF-a viaNF-KB, Inflammatory
response and the IL2-STAT5 signaling pathway were all increased
with increases in CIGI (Figure 8D). Overall, the results of these
analyses indicate that the high-CIGI group exhibited immune-
suppressive features.
A

B

FIGURE 5 | Univariate and multivariate cox analysis of CIGI. (A) Univariate Cox analyses of OS in the TCGA dataset. (B) Multivariate Cox analyses of OS in the
TCGA dataset.
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Protein Level Validation and Functional
Analysis of CIGI Genes
In Figures 9A, B the mRNA and protein level of SEMA4D and
IFITM1 were decreased in A375, A875, and MeWo cells
compared with melanocytes PIG1 cells. And, the mRNA and
protein level of KIF20A and GPR87 were upregulated in A375,
A875, and MeWo cells compared with melanocytes PIG1 cells.
To verify the protein expressions of SEMA4D, IFITM1, KIF20A
and GPR87 in melanoma tissue, 20 melanoma and paired
normal tissue samples were compared. Results from the
immunohistochemistry assay revealed that SEMA4D and
IFITM1 were down-regulated, while KIF20A and GPR87 were
over-expressed in melanoma tissue (Figure 9C). When analyzing
the potential biological functions of these proteins in melanoma,
we found that silencing SEMA4D or IFITM1 promoted, while
silencing KIF20A or GPR87 inhibited the proliferation of
melanoma cells in vitro (Figures 9D, E). These results suggest
that SEMA4D and IFITM1 may function as tumor suppressor
genes while KIF20A and GPR87 may function as oncogenes
in melanoma.

KIF20A and GPR87 Regulate the
Glycolysis Ability of Melanoma Cells
As KIF20A and GPR87 are glycolysis-related genes with poor
prognostic potential for patients with melanoma, we next
examined the effects of KIF20A and GPR87 on glycolytic ability
within melanoma cells. After transfection with KIF20A-siRNA or
GPR87-siRNA, levels of lactate, ATP and glucose uptake as well as
Frontiers in Immunology | www.frontiersin.org 8
extracellular acidification rates were all significantly reduced in these
melanoma cells (Figures 10A–D). Based on these results, it seems
likely KIF20A and GPR87may function as oncogenes through their
capacity to regulate glycolysis within melanoma cells. A large
number of studies have shown that the AKT/LDHA pathway
plays a vital role in the process of cellular glycolysis (18–20). We
tried to explore the regulatory effects of KIF20A and GPR87 on the
AKT/LDHA pathway. The results showed that after knocking out
KIF20A and GPR87, the AKT/LDHA pathway activity of A375 cells
was significantly inhibited (Figure 10E). These results suggest that:
KIF20A and GPR87may regulate the glycolytic ability of melanoma
cells by regulating the AKT/LDHA pathway.
DISCUSSION

Melanoma is a highly aggressive cancer, with a poor prognosis
largelydue to limited treatments currently available (21).Therefore,
prognosis signatures formelanomapatients are sorelyneeded.With
the development of bioinformatics and sequencing technology,
several potential prognostic evaluation programs for melanoma
patients have been generated (22–24). However, most of the
parameters analyzed in these programs originate from the
genome or transcriptome, with no consideration of biological
processes. Therefore, these models do not adequately reflect the
disease characteristics of melanoma. Glycolysis and immune
microenvironments represent two significant biological hallmarks
of tumors that have been demonstrated to be of value in evaluating
A B

C D

A B

C

FIGURE 6 | Construction and validation of the nomogram model. (A) Nomogram model combining CIGI and traditional clinical features. (B) Five-year calibration
curves of the nomogram model. (C) DCA of the nomogram model.
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the prognosis of patients with melanoma (25, 26). In this study, we
included GRGs and IRGs to construct a CIGI as based on gene
expression data in public databases. As demonstrated within
different data sets and subgroups of patients, CIGI exhibits an
effective degree of predictive performance, and can serve as an
independent prognostic factor for melanoma patients. In this way,
the accuracy displayed by CIGI for the prognosis of melanoma
indicates a great potential for clinical application.

Several studies have constructed prognosticmodels of melanoma
based on gene expression profiles from public databases.Wang et al.
identified an 8-genes risk signature in melanoma patients based on
entire genome (24). Song et al. constructed a 12-gene signature for
survival prediction in malignant melanoma patients (27). However,
these studies were derived from the entire genome or transcriptome
with no consideration of biological processes. Consequently, they
were simply mathematic models that did not reflect the intrinsic
Frontiers in Immunology | www.frontiersin.org 9
character of the cancer itself. Recently, researchers try to build a
prognostic risk model based on tumor cell characteristics such as
immune, metabolism, hypoxia, etc. Xue et al. identified an immune-
related signature for predicting prognosis in melanoma, which
contained 23 immune-related gene pairs (28). Shou et al.
determined of hypoxia signature (20 hypoxia-related genes) to
predict prognosis in melanoma (29). Our research is the first to
construct a prognosticmodel for the twomajor tumor characteristics
of glycolysis and immunity, which can simultaneously reflect the
tumor’s immune status and glycolysis changes. In addition, our
model contains less genes, which is convenient for clinical
application. Importantly, the function of genes in our model has
been confirmed based on experiments.

Results from increasing numbers of studies have indicated
that metabolic changes in tumor microenvironments can inhibit
immune cell infiltrations and other anti-tumor immunity
A B

C

D E

FIGURE 7 | Glycolysis Profile in CIGI. (A) Summary of the glycolytic genes. (B) Expressions of glycolytic genes between the high- versus low-CIGI group in the TCGA
dataset. (C) Expressions of glycolytic genes between the high- versus low-CIGI group in the GSE65904 dataset. (D, E) Correlations of ssGSEA scores of “HALLMARK
GLYCOLYSIS” pathway with CIGI in the TCGA (R = 0.31, p < 0.001) and GSE65904 (R=0.51, p < 0.001) datasets. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
ns, no significance.
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processes through the production of immunosuppressive
metabolites (30, 31). Glycolysis represents the main feature of
tumor metabolism. Glycolysis forms an acidic tumor
microenvironment by increasing lactic acid efflux, inhibiting
anti-tumor responses mediated by T cells and inhibiting the
activity of tumor infiltrating myeloid cells (12, 13). Our current
findings reveal that melanoma patients in the CIGI-high group
show higher expressions of glycolytic genes and exhibit immune-
suppressive features.

The CIGI we constructed contains four genes, SEMA4D,
IFITM1, KIF20A and GPR87. Among these, SEMA4D and
IFITM1 are immune-related genes, while KIF20A and GPR87 are
glycolysis-related genes. SEMA4D functions as a cell surface
receptor for PLXNB1 and PLXNB2 and plays an important role
in cell-cell signaling (32). SEMA4D has the capacity of inducing B-
cells to aggregate and improves their viability (33),and high
expression levels of SEMA4D are significantly correlated with
poor prognosis for a number of cancers including colon (34),
ovarian epithelial (35) and cervical (36) as well as soft tissue
sarcoma (37). With regard to IFITM1, the protein encoded by
this gene is an interferon-induced antiviral protein, whichmediates
the innate immunity of cells to influenza A H1N1, West Nile and
Frontiers in Immunology | www.frontiersin.org 10
Dengue viruses by inhibiting their initial replication (38), and plays
a key role in the antiproliferative action of IFN-gamma (39).
IFITM1 has been reported to be abnormally expressed in tumor
tissues and it is an independent prognostic biomarker for patients
with acute myeloid leukemia (40), lung adenocarcinoma (41) and
gallbladder cancer (42). KIF20A plays a crucial role in cell mitosis
and cell migration. Findings from several studies (43–45) have
indicated thatKIF20A is abnormally expressed in tumor tissues and
associatedwithpoor prognosis for patientswith soft tissue sarcoma,
ovarian cancer, and breast cancer. Finally,GPR87, which belongs to
the G protein-couple receptor family, has been shown to be
overexpressed in cancers such as pancreatic (46), non-small-cell
lung (47), bladder (48) and hepatocellular (49). In this study, we
present the first evidence that SEMA4D, IFITM1, KIF20A and
GPR87 may possess a prognostic value for melanoma. In specific,
the results of our in vitro experiments suggest that SEMA4D and
IFITM1may function as tumor suppressor geneswhileKIF20A and
GPR87 may function as oncogenes in melanoma. Moreover, our
findings provide the first indication that KIF20A and GPR87 can
regulate the glycolytic ability of melanoma cells.

Although the results of our current study suggest that CIGI
can serve as an effective prognostic tool for use in melanoma
A

B C D

FIGURE 8 | Immune Profile in CIGI. (A) Distribution level of 28 types of immune cells in the high- versus low-CIGI group. (B, C) Correlations between CIGI and Immune
(R = -0.46, p < 0.001) and Stromal (R = -0.36, p < 0.001) scores. (D) Immune-related pathways with differential expressions between the high- versus low-CIGI group.
*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. ns, no significance.
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patients, the limitations associated with this study indicate the
need for additional analyses prior to a clinical application of this
protocol. First, as all samples used in our study were obtained
retrospectively, the inclusion/analysis of prospective samples will
need to be included for verification of our findings. Second,
Frontiers in Immunology | www.frontiersin.org 11
we focused our analyses only as related to the prognostic
value and clinical significance of CIGI. The other potential
functions of SEMA4D, IFITM1, KIF20A and GPR87 in CIGI
will require further investigation with use of additional in vivo
and in vitro experiments
A

B C

D E

FIGURE 9 | Protein level validation and functional analysis of SEMA4D, IFITM1, KIF20A and GPR87 in melanoma versus normal samples. (A) and (B) The mRNA and
prorenin level expression of four genes based on melanocytes and melanoma cells (A375, A875, and MeWo). (C) IHC analysis of SEMA4D, IFITM1, KIF20A andGPR87 in
normal and melanoma tissue. (D) CCK8 assay. (E) Colony formation assays. Data represent means ± SDs; *P < 0.05, **P < 0.01 and ***P < 0.001 (versus control group).
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CONCLUSION

Inconclusion,herewepresent thefindingsofourendeavors todevelop
and validate a novel prognostic classifier for use in patients with
melanoma as based on glycolysis and immune expression profiles.
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