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Cell-free DNA captures tumor heterogeneity
and driver alterations in rapid autopsies with
pre-treated metastatic cancer
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In patients with metastatic cancer, spatial heterogeneity of somatic alterations may lead to

incomplete assessment of a cancer’s mutational profile when analyzing a single tumor biopsy.

In this study, we perform sequencing of cell-free DNA (cfDNA) and distinct metastatic tissue

samples from ten rapid autopsy cases with pre-treated metastatic cancer. We show that

levels of heterogeneity in genetic biomarkers vary between patients but that gene expression

signatures representative of the tumor microenvironment are more consistent. Across nine

patients with plasma samples available, we are able to detect 62/62 truncal and 47/121 non-

truncal point mutations in cfDNA. We observe that mutation clonality in cfDNA is correlated

with the number of metastatic lesions in which the mutation is detected and use this result to

derive a clonality threshold to classify truncal and non-truncal driver alterations with rea-

sonable specificity. In contrast, mutation truncality is more often incorrectly assigned when

studying single tissue samples. Our results demonstrate the utility of a single cfDNA sample

relative to that of single tissue samples when treating patients with metastatic cancer.
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Despite clinical advances in subsets of cancers due to
modern precision therapies, initial responses to therapy
are often followed by the emergence of resistance and

metastasis. However, spatial heterogeneity between metastases
can confound the evaluation of genetic and transcriptomic bio-
markers in patients presenting with pretreated metastatic disease,
as these may be present in only a subset of lesions1–3. In these
cases, analysis of just a single tissue biopsy from a patient may
mask spatial heterogeneity in actionable and resistance-associated
mutations4. Properly accounting for spatial heterogeneity is,
therefore, crucial for managing patients diagnosed with pre-
treated metastatic cancer.

However, sampling multiple tissue biopsies from patients is
invasive and often impractical. As a potential solution, cell-free
DNA (cfDNA) is increasingly being used to help determine the
next line of therapy for patients with metastatic disease on
treatment5,6. Previous studies have demonstrated that cfDNA
profiling allows for detection of more heterogeneous driver
alterations in a patient relative to single tissue biopsies7–9.
However, the clinical utility of profiling cfDNA relative to sam-
pling multiple tissue biopsies for detecting heterogeneous muta-
tions is unclear, in part because of the difficulty of obtaining
multiple tissue biopsies from patients10–14.

In this study, we quantify the spatial heterogeneity of genetic
and transcriptomic biomarkers in tumors from ten patients from
a rapid autopsy series. We observe that biomarkers predictive of
response to immune checkpoint inhibitors (ICI), including tumor
mutation burden and predictive gene expression signatures, are
generally consistent across metastases. However, some driver
mutations, including those implicated in drug resistance, are
found in only subsets of lesions in a patient, and a single tissue
sample is inadequate for profiling the entire genetic landscape of
metastatic disease. In contrast, we are able to detect more driver
alterations in cfDNA than in multiple randomly selected tissue
samples for 6/9 patients. Recognizing that mutation cancer cell
fraction (CCF) in tumor-derived cfDNA was correlated with the
number of tissue lesions harboring a mutation, we also evaluate
the possibility of using cfDNA to distinguish between truncal and
non-truncal alterations in a patient, and identify a CCF threshold
to classify truncal and non-truncal driver mutations with a spe-
cificity of ~0.80.

Results
Somatic alterations in ten rapid autopsy cases. We sequenced
postmortem metastatic lesions from ten rapid autopsies, includ-
ing six patients with estrogen receptor-positive (ER+) breast
cancer (PBr01–Br06), three patients with cholangiocarcinoma
(biliary tract cancer; PBi01–Bi03), and one patient with non-small
cell lung cancer (PLu01). With the exception of PBr04, patients
were treated with a median of five lines of therapy (range= 2–11)
in the metastatic setting and lived with metastatic disease for a
median of 35 months (range= 7–66 months; Table 1). PBr04
received neoadjuvant chemotherapy and adjuvant chemoradia-
tion, and was diagnosed with recurrent metastatic disease
~4.5 months after the completion of her adjuvant treatment. She
passed away shortly after the metastatic diagnosis without addi-
tional therapy. Complete clinical histories, including treatment
details and clinical timelines, are presented in Supplementary
Fig. 1. We harvested a median of nine metastatic lesions (range=
4–17) from each patient and performed both whole-exome
sequencing (WES) and RNA-sequencing (RNA-seq) of the whole
transcriptome on all collected lesions (Supplementary Fig. 2 and
Supplementary Dataset 1). Wherever possible, we selected lesions
representative of the overall spread of metastatic disease based on
radiological imaging in each patient, in order to capture the full

extent of spatial heterogeneity in these cancers (Fig. 1A and
Supplementary Table 1). The majority of tissue samples were
obtained from liver metastases (74/97). We also performed WES
and RNA-seq on histologically normal tissue from each patient.
For the WES data, we achieved a mean depth of coverage of
between 65–207× (median= 117×) across all samples. Overall,
we identified 10,111 non-silent somatic single-nucleotide variants
(sSNV), 518 short insertions and deletions (indels), and somatic
copy number alterations (SCNAs) across all patients (Supple-
mentary Figs. 3 and 4, Supplementary Dataset 2, and Supple-
mentary Dataset 3).

Genetic biomarkers in postmortem tissue samples. To better
understand the clinical implications of spatial heterogeneity, we
first assessed pairwise genetic similarities across all lesions from
each patient15. To avoid overestimating mutation heterogeneity,
we rescued mutations that were not originally called in a lesion if
they were identified in other lesions from the same patient and
were supported by at least three reads16,17. We also restricted our
analyses to loci where we had sufficient power in all lesions from
a patient to detect a variant in at least three reads, thereby
accounting for variation in sample purity and local sequencing
depth (“Methods”). After using this approach, there was no
association between tumor purity and the fraction of mutations
private to a single tissue sample from a patient (Supplemen-
tary 5A, B).

Median pairwise similarity coefficients varied by patient as
expected given the different evolutionary trajectories observed
(Fig. 1B). For example, PLu01 had a highly linear evolutionary
trajectory and a median similarity index of 0.91, indicating that,
in general, 91% of the mutations detected in a tissue sample
would have also be identified in another sample from this patient
(Supplementary Fig. 6). On the other hand, the branched
phylogenetic structure in PBi01 (median similarity coefficient=
0.42) would have led to underestimation of the cancer’s complete
mutation profile from a single tissue sample. We observed similar
results when repeating the analysis after downsampling the
dataset to account for differences in the numbers of tissue
samples between patients (Supplementary Fig. 5C). Similarly,
although median similarity coefficients were generally higher for
SCNAs (range= 0.77, PBr06–0.99, PBr05; Fig. 1C), subsets of
lesions shifted the median estimates for some patients. There was
no correlation between point mutation and copy number
similarity coefficients (Spearman’s rho= 0.10, p= 0.79).
Together, these observations suggest that while it may be possible
to characterize a cancer’s overall copy number profile from a
single sample, lower pairwise similarities in overall mutation
profiles limit complete evaluation of point mutations from a
single sample. In addition, outlier lesions can hinder evaluation of
both SCNA and mutation profiles.

We next considered heterogeneity in biomarkers related to
somatic alterations rates in the ten cases. Tumor mutation burden
has been established as a clinically validated predictor of response
to ICI18, and we therefore explored spatial heterogeneity in TMB
(“Methods”). The median TMB across all lesions from each
patient ranged from 1.33 (PBi01) to 14.58 (PLu01) mutations per
Mb (Fig. 1D and Supplementary Dataset 1). The median absolute
deviation (MAD) in TMB was relatively low across all patients
(range: 0.05, PBr04–1.15, PBr06 mutations per Mb)2. To better
interpret this level of variation, we considered a previously
described scheme that classified TMB into low (1–5 mutations
per Mb), intermediate (6–19 mutations per Mb), and high (20+
mutations per Mb) categories19. Based on this classification, no
patient in the autopsy cohort had lesions that would have been
classified into distinct categories. Median chromosomal instability
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(CIN), measured by the percentage of the genome altered by
SCNA, ranged between 11.8% (PBr03)–66.8% (PBr02; Fig. 1E).
Variation in CIN was also low with the highest patient MAD
observed for PBr06 (MAD= 5.3%; median MAD across patients
= 0.86%). Together, these data suggest that although evaluation
of single biopsy may be confounded by heterogeneity in mutation
identity, the observed rate of somatic alterations is generally
consistent in patients presenting with pretreated metastatic
disease.

Mutation processes contributing to genetic heterogeneity. To
better characterize the specific mutation processes giving rise to
the observed heterogeneity, we looked for consistent patterns of
base changes across the dataset (“Methods”). We compared the
signatures obtained by de novo analysis with those defined by
specific single-base substitution (SBS) patterns that have been
previously described (Fig. 1F and Supplementary Fig. 7)20–22. We
matched signatures observed in the autopsy cohort with those
defined in the reference set on the basis of maximum cosine
similarity. To better understand the chronology of mutation
processes shaping the observed mutation profiles, we classified
mutations as truncal, branch, or private based on their presence
across each patient’s lesions: truncal alterations were identified in
all metastatic lesions profiled, branch alterations were found in a
subset of lesions, and private alterations were identified in only a
single lesion22 (Supplementary Fig. 7A).

For two of the identified mutation signatures, the highest
cosine similarities were observed with the previously described
SBS1 (cosine similarity= 0.92) and SBS5 (cosine similarity=
0.82), both of which have been associated with patient age at
diagnosis. In addition, two further observed signatures were most
similar to SBS2 (cosine similarity= 0.95) and SBS13 (cosine
similarity= 0.85). Both SBS2 and SBS13 have been attributed to
the activity of the AID/APOBEC enzyme family and were
identified in both truncal and non-truncal lesions from PBr01
and PBr06. One observed mutation signature was most similar to
SBS4 (cosine similarity= 0.91), which has been associated with
tobacco exposure23. This signature was evident in all subsets of
mutations in PLu01, and its presence is consistent with the
patient’s 50 pack-year smoking history. The remaining signature
was most closely related to SBS31 (cosine similarity= 0.84),
which has been associated with molecular damage, resulting from
the treatment with platinum chemotherapeutics. We observed
relatively high prevalence of SB31 mutations in PBr04, PBr05,
PBi01, and PBi02. In all four patients, the prevalence of SBS31
mutations was higher in the non-truncal mutation subsets than in
the truncal subset. The presence of this signature in these patients

is consistent with exposure to cisplatin (Supplementary Fig. 1).
Further exploration of specific treatment-related signatures
confirmed the role of chemotherapy-mediated mutagenesis in
shaping the mutation profiles of PBr02 and PBr03, in addition to
those of the four patients above (Supplementary Fig. 7D)23.
Overall, our observations highlight the role of cell-extrinsic
processes, especially those related to treatment, in contributing to
the acquisition of new mutations in this context.

We also further assessed branch mutations to determine
whether they may have resulted from truncal mutations that were
lost in some lesions. We observed loss of the mutant allele copy,
likely via loss of heterozygosity (LOH), in at least one lesion in 7/
10 patients (“Methods” and Supplementary Fig. 8A)24. The
highest number of these mutation-loss events was observed in
PBr06 (68/1473 total mutations; 4.6%). PLu01 had the highest
proportion of mutation-loss events relative to total mutations (43/
873; 4.9%). These observations suggest that some genetic
heterogeneity may have been introduced by loss of mutations
over the course of cancer progression. Notably, however, there
was no evidence for mutation loss of driver mutations.
Calculation of dN/dS estimates25 also showed that whereas
positive selection of mutations was apparent for truncal
mutations, there was limited evidence of positive selection in
the non-truncal mutation subsets across the cohort (Supplemen-
tary Fig. 8B).

Spatial heterogeneity in functional alterations. We next con-
sidered heterogeneity in functional alterations across the samples
from the ten patients (Fig. 2). We defined functional alterations as
cancer driver and drug resistance-associated alterations based on
previous studies of metastatic cancer (“Methods”)26,27. For each
patient, we evaluated whether functional mutations were truncal
or non-truncal, as defined previously. Activating truncal muta-
tions in the PI3-K/Akt pathway were present in eight patients,
including in all six breast cancer patients (Fig. 1A). Interestingly,
PBr06 harbored two truncal hotspot PIK3CA mutations (E545K,
H1047R) that both preceded high-level amplifications of PIK3CA
in all lesions from this patient, suggesting increased dependence
on PIK3CA signaling28. Copy number analysis also revealed that
the high-level amplification in AKT1 in PBr01 followed the
truncal AKT1 E17K mutation in this patient. In addition, we
observed a second non-truncal PIK3CA (N3451) mutation in
PBr03.

Across all patients, 11/42 (39.3%) of driver alterations
(mutations and SCNAs) were non-truncal. Levels of hetero-
geneity varied by patient: all driver alterations in 5/10 patients
were truncal, whereas the majority of driver alterations were non-

Table 1 Clinical characteristics of patients in the study.

Patient Primary disease Therapy lines (PRE) Therapy lines (MET) Survival (months after
metastasis)

PBr01 ER+/PR+/HER2− breast cancer 3 5 46
PBr02 ER+/PR+/HER2− breast cancer 0 5 35
PBr03 ER+/PR+/HER2− breast cancer 0 6 64
PBr04 ER+/PR−/HER2− breast cancer 2 0a 0a

PBr05 ER+/PR+/HER2− breast cancer 3 11 66
PBr06 ER+/PR−/HER2− breast cancer 2 9 51
PBi01 Cholangiocarcinoma 0 3 9
PBi02 Cholangiocarcinoma 0 3 8
PBi03 Cholangiocarcinoma 0 3 9
PLu01 Non-small cell lung cancer 0 2 7

Treatment duration (number of months) and number of lines of therapy before (PRE) and after (MET) diagnosis of metastatic disease are shown. Complete treatment histories for all patients are
presented in Supplementary Fig. 1.
aPassed away shortly after metastatic diagnosis; all other patients who received pre-metastatic therapy completed their therapy multiple years before metastatic diagnosis.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-23394-4 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:3199 | https://doi.org/10.1038/s41467-021-23394-4 |www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


truncal in PBi01. We observed that driver sSNVs were more than
four times as likely to be clonal (i.e., found in all cells within a
single lesion) than non-driver sSNVs (94.1% of driver sSNVs
clonal, 19.9% of non-driver sSNVs clonal; p < 0.001, OR= 4.0).

We also identified mutations associated with resistance to
specific therapies in some patients. PBr03 harbored a truncal
ESR1 Y537S mutation, which allows for ligand-independent ER

activation, and PBr05 harbored an FGFR2 N549K mutation29.
Both of these mutations were truncal suggesting that the
metastatic clones in these patients were derived from the
expansion of the initial clones harboring these mutations. In
contrast, we observed a subclonal private inactivating mutation
accompanied by LOH in SPEN that evolved in a single liver lesion
from PBr06 (PBr06-Li05). SPEN acts as a corepressor in the ER
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complex and has been associated with resistance to estrogen
inhibition30,31.

Heterogeneity in the metastatic tumor microenvironment. We
then explored spatial heterogeneity in the tumor microenviron-
ment (TME) as this may influence response to immunomodu-
latory therapies. Unsupervised analysis of the of the whole
transcriptome revealed that samples clustered by patient (Sup-
plementary Fig. 9). To explore levels of immune infiltrate across
samples, we first analyzed differences in tumor cellularity esti-
mated using PureCN (Fig. 3A). In general, tissue samples from
breast cancer patients had higher tumor cellularity estimates than
samples from cholangiocarcinoma patients (p= 0.004, Wilcoxon
rank-sum test). In addition, tumor cellularity MADs were low
across samples from the same patient and ranged between 0.04
(PBr01)–0.18 (PBr04; median MAD= 0.09) despite being sam-
pled from different anatomic sites. We then used ESTIMATE to
quantify levels of immune and stromal expression patterns within
each lesion and observed that levels of both stromal and immune-
related gene sets were generally consistent across lesions from the
same patient32. Together, these observations suggest that levels of
immune infiltrate varied primarily by cancer type and by patient,
but that immune infiltrate levels were more consistent across
samples from a single patient.

We next considered heterogeneity in TME composition and
used predefined gene expression signatures to score the expres-
sion levels of specific TME features in each sample (Supplemen-
tary Dataset 4 and Supplementary Fig. 10). We used t-distributed
stochastic neighbor embedding (t-SNE) to cluster samples based
on the resulting scores matrix (Fig. 3B). We observed that tumor
and normal samples from the same patient clustered separately,
and that the normal samples often clustered together by anatomic
site. However, tumor samples from a patient clustered together
suggesting that the TME profiles of lesions from the same patient
were generally more similar to each other than to lesions from
other patients in the context of the TME. We also computed
pairwise distances in TME signature space using the scores matrix
and observed that the pairwise distances between tumor samples
from the same patient were significantly lower (p < 0.05) than
pairwise distances between a patient’s tumor sample and tumor
samples from all other patients for 8/10 patients (PBr02 and
PBr06 not significant; Supplementary Fig. 10A). However, there
was evidence of anatomic site-specific heterogeneity in two
patients. In PBr02, the liver lesion had higher expression of B-
cell-related signatures relative to the three lesions from other sites
(Supplementary Fig. 10B). Similarly, lesions clustered by
anatomic site for PBi01, driven largely by higher levels of

immune infiltrate in non-liver lesions (Fig. 3A). Of note, PBi01
also had the highest proportion of non-truncal SNVs among all
patients, which may have resulted in a more heterogeneous
distribution of neoantigens and consequently more heteroge-
neous TME signatures between lesions.

We then examined variation in expression-based predictive
biomarkers of response to ICI (Fig. 3C). We first analyzed
expression of CD274, the gene that encodes PD-L1, higher
expression of which has been associated with higher response
rates to ICI across multiple cancer types32. MAD expression z-
scores between metastases ranged from 0.13 (PLu01)–0.84
(PBi03) and was <0.5 in 7/10 patients, indicating that CD274
expression was relatively consistent across metastases in indivi-
dual patients. However, two patients (PBi01, PBi02) did have
lesions that were outliers and that could, as single biopsies,
influence CD274 assessment in a patient. Finally, we analyzed the
Cristescu et al. interferon gamma signature, which encompasses
markers of T-cell inflammation and has been shown to predict
response to anti-PD1 therapy28,33. This signature was correlated
with CD274 expression (p < 0.001, Pearson’s correlation coeffi-
cient= 0.56; Supplementary Fig. 11) and heterogeneity between
lesions from a patient resembled that observed for CD274
expression. Notably, there was high expression of this signature in
PLu01 with lower scores observed across all other patients.
Overall, heterogeneity in clinically validated signatures was higher
between patients than between lesions from a single patient and
single biopsies may therefore be suited for biomarker assessment
in the context of ICI.

Representation of somatic alterations in cfDNA. Given the
genetic heterogeneity observed when comparing mutations
between lesions from a patient, we next quantitatively assessed
the use of liquid biopsy for characterizing mutation heterogeneity.
Plasma samples for analysis of cfDNA obtained at or near time of
autopsy were available for 9/10 patients (all except PLu01; Sup-
plementary Table 1). For these samples, we performed sequencing
of 566 cancer driver genes using a custom hybrid-capture assay
that has previously been described (mean depth of coverage=
1007–1643×)33 (Supplementary Dataset 1). To maximize sensi-
tivity within this context, we again rescued high-confidence
mutations identified in the tissue samples if they were supported
by three reads in cfDNA.

All truncal mutations identified in the tissue samples were also
detected in cfDNA (Fig. 4A). In contrast, despite attempting to
rescue mutations not originally called, only a subset of tissue
branch and private mutations were detected in cfDNA, with a
median of only 41.1% of the non-truncal mutations detected in

Fig. 1 Profiling metastatic heterogeneity using rapid autopsies. A Summary of lesions profiled in the rapid autopsy cohort. Li liver, Lu lung, Di diaphragm,
Ad adrenal gland, Pa pancreas, Ly lymph node, So soft tissue, St stomach, Br breast, Ch chest wall, Sp spleen, Bw bowel, Ga gallbladder, Bn bone. B For each
patient, we computed the pairwise similarity based on the Jaccard index for every pair of postmortem tissue samples. Pairwise similarities, represented by
the points, range from 0 (no overlap in mutations) to 1 (identical lesions). The boxplots represent the distributions of these similarities across patients. For
each patient, the boxplot’s whiskers span the minimum and maximum of the distribution (excluding outliers), the box spans the lower and upper quantiles,
and the center represents the median value of the distribution. C As for point mutations, pairwise similarity score was computed for SCNA segments.
Boxplots depict the distributions as described in B. D Tumor mutation burden (TMB) was estimated by summing all classes of sSNVs and indels present at
an allelic frequency of at least 0.5%. All bases in coding regions in the exome-capture panel that were covered by at least 30 reads were considered.
Colored points depict TMB in individual lesions, whereas black diamonds represent the truncal mutation rate across all lesions from a patient. Error bars
indicate the range of TMB estimates across lesions from a patient. E Copy number instability (CIN) was defined as the fraction of the genome altered by
any copy number event. As for TMB, colored circular points and black diamonds represent individual lesion-specific and truncal patient-specific CIN,
respectively. Error bars indicate the range of CIN estimates across lesions from a patient. F Mutation signatures identified in subsets of mutations across
the ten patients. Bars depict the proportions of mutations within each subset that were assigned to the indicated mutation signature from the COSMIC
database. Single-base substitution 1 (SBS1) and SBS5 are associated with patient age, and have been described as resembling molecular clocks. SBS2 and
SBS13 are linked with AID/APOBEC activity. SBS4 has been associated with tobacco exposure and SBS31 has been linked with the mutagenic effects of
platinum therapies. Source data are available for this figure.
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cfDNA across all patients (range= 15.8–87.5%, excluding PBr02).
To determine whether we were powered to detect mutations
present in cfDNA, we used the estimate circulating tumor DNA
(ctDNA) fraction in cfDNA to calculate the power for mutation
detection across a range of ctDNA CCFs for each liquid biopsy
(Supplementary Fig. 12). Power calculations were based on the
median depth of coverage in tissue samples across loci, where
branch and private mutations were detected in tissue but not in

cfDNA. At least 90% power was available to detect mutations
present in a minimum ctDNA CCF of between 0.05
(PBr05)–0.175 (PBi01) with a median minimum ctDNA CCF
of 0.08 across all samples (Fig. 4B). We detected fewer than 40%
of non-truncal mutations observed in tissue samples from PBr06,
despite the relatively high power available in the plasma sample
from this patient (90% power achieved at ctDNA CCF ≥ 0.08). In
addition, non-truncal mutation detection was higher in PBr03 (4/
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Fig. 2 Functional alterations in ten pretreated metastatic cancer. The driver alterations (“Methods”) present in each sample are depicted by colored bars.
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6) than in PBi03 (7/14) even though there was 90% power for
mutation detection at ctDNA CCF ≥ 0.05 in both samples. These
observations suggest that low representation of branch and
private mutations in cfDNA was not due solely to limited power
of detection.

We reasoned that the detection of non-truncal mutations in
cfDNA may be influenced by the number of metastases, in which
a mutation was identified and by the clonal state of the mutation
in individual tissue lesions. We focused only on sSNVs as
estimates of indel variant allele fraction (VAF) can be confounded
by biases in read alignment. For each sSNV, we used the
maximum CCF across all patient-specific tissue lesions as a
conservative measure of sSNV clonality. Multivariate analysis of
the combined dataset indicated that presence in a higher number
of metastases was associated with increased odds of sSNV

detection in cfDNA (odds ratio, OR= 5.50, 95% confidence
interval, CI= 2.62–14.56; Fig. 4C and Supplementary Fig. 13). In
contrast, there was no significant association between maximum
tissue CCF and sSNV detection (OR= 2.23, CI= 0.33–14.72).
This result is consistent with the observation that a significantly
higher proportion of branch (31/37) than of private mutations
(13/80) was detected in cfDNA (p < 0.0001, Fisher’s exact test).
Moreover, for sSNVs detected in cfDNA, mutation CCF in
ctDNA was associated with the number of lesions in which the
mutation was present, with an average increase in ctDNA CCF of
0.08 for every additional lesion (CI= 0.07–0.09). There was no
association between clonal state and mutation CCF in ctDNA.
Together, these results suggest that lesion count is a better
predictor of mutation detection and mutation CCF in ctDNA
than the clonal state of a mutation in any single lesion.

Fig. 3 Spatial heterogeneity in the tumor microenvironment. A Tumor cellularity estimates (from PureCN) and measurements of overall immune and
stromal signatures (from ESTIMATE) are shown for all lesions from each patient. Immune and stromal signature scores were transformed into z-scores
across all samples and point shapes are used to differentiate between liver and non-liver lesions (circle= liver, cross= non-liver). The boxplots represent
the distributions of each variable. For each patient, the boxplot’s whiskers span the minimum and maximum of the distribution, the box spans the lower and
upper quantiles, and the center represents the median value of the distribution. B Single-sample GSEA was used to score a set of TME-related gene
expression signatures and t-SNE was performed, using the resulting scores matrix to cluster samples by their overall TME profiles. Samples clustering
together in the t-SNE plot suggest similarities in TME composition across the dataset. As depicted in the legend, point symbols are used to differentiate
between metastases in the liver, metastases in other organs, and histologically normal samples. Anatomic sites of the normal lesions are also annotated (Ki
kidney, Br breast, Lu lung, Sp spleen, Li liver, Mu skeletal muscle). C Expression levels of CD274 and an ICI-predictive gene signature (Cristescu et al.) are
shown. The y-axis indicates z-scores for each signature across all samples in the dataset. Point shapes are defined in the legend. The boxplots depict the
variable distributions as defined in A. Source data are available for this figure.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-23394-4 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:3199 | https://doi.org/10.1038/s41467-021-23394-4 |www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Tissue samples versus cfDNA for biomarker detection. For
patients with metastatic disease on treatment, molecular testing
using cfDNA or tissue biopsies is often used to help determined
the next line of therapy. However, the sensitivity of cfDNA
relative to tissue biopsies for detecting all clinically relevant
mutations is unclear. The relative utility of cfDNA to determine
mutation truncality has also not been demonstrated.

For each patient, we first determined the mean number of
driver mutations and SCNAs identified for all possible combina-
tions of between one and five postmortem tissue samples. We
focused on the five cases which had at least one non-truncal driver
alteration (Fig. 5A and Supplementary Fig. 14A). Consequently, in
all five cases, more than one driver alteration was missed on
average when sampling a single lesion. In 4/5 cases, the number of
driver alterations observed across all possible combinations of five
lesions was, on average, lower than the actual number of driver
alterations present in each patient. This indicates that non-truncal
driver alterations would be missed in these patients even when
sampling five biopsies. For PBr04, the remaining fifth case for
whom five lesions were profiled in total, a mean of 3.8/4 (standard
deviation, s.d.= 0.45) driver alterations were identified when
sampling four biopsies, and all driver alterations were identified in
only 80% of the four-lesion combinations due to the private trun-
cating ARID1B mutation in this patient. Driver alteration

detection in PBi01 and PBr06 was relatively poor when sampling
subsets of biopsies, with a mean of 3.6/5 (PBi01; s.d.= 0.91) and
6/7 (PBr06; s.d.= 0.68) driver alterations identified when
sampling five biopsies. This was largely due to private NSD1*
and SPEN* mutations in this patient, as well as the absence of
MYC amplification PBr06-Li0 (Supplementary Figs. 3 and 4).
Driver alteration identification was also incomplete on average
when taking five biopsies for PBi02 (mean= 3.3/4, s.d.= 0.46),
which had a single private functional alteration event. The
complete set of driver alterations would therefore be determined
in only 22.2% and 29.4% of all combinations of five biopsies for
PBr06 and PBi02, respectively (Supplementary Fig. 14B). Simi-
larly, the complete functional alteration set would be identified in
31.3% of five-lesion samples from PBi02 and 66.7% of five-lesion
samples from PBr03. When repeating the analysis using a broader
list of driver mutations consisting of all non-silent mutations in a
predefined list of driver genes used to study metastatic
heterogeneity22, we identified increased levels of genetic hetero-
geneity, and even lower detection rate of driver sSNVs when
sampling multiple biopsies (Supplementary Fig. 15).

We next explored the use of cfDNA as a tool to identify driver
alterations in the nine patients with plasma samples. All
functional alterations were detected from a single cfDNA sample
in four patients. When functional alteration detection was

Fig. 4 Detection of tissue mutations in cfDNA. A Proportions of trunk (left) and non-trunk (right) mutations, as classified using tissue samples, that were
detected in cfDNA. The numbers of truncal mutations falling within the panel of 566 genes are shown above the bars. There were no branch mutations
within the panel for PBr02. B Power curves for the detection of point mutations present in a range of ctDNA cancer cell fractions (CCF) are shown for the
nine samples (colors correspond to those in Fig. 3). Power to detect point mutations depends on tumor fraction, depth of coverage, and estimated ploidy.
The medium depth of coverage across all loci where a branch or private mutation was observed in tissue, but not in cfDNA was used for the calculation.
The minimum ctDNA CCFs for which 90% power was achieved are indicated. C Representation of private (black points) and branch (colored circles)
mutations in cfDNA. The CCF in which mutations were observed in ctDNA was influenced primarily by the number of tissue lesions, in which the mutation
was detected (circle sizes), with the maximum CCF across all tissue samples having a lower effect. Only sSNVs were considered for analyses involving CCF
estimation due to the difficulty of reliably estimating depth and VAF for somatic indels. The three samples with at least 20 branch and private mutations
are shown. Met number of metastases, mut number of non-truncal mutations shown in the plot.
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incomplete in cfDNA, this was usually due to the absence of a
single functional alteration. An exception was PBr06, for whom 5/
7 functional alterations were detected in cfDNA (Supplementary
Fig. 16). We then compared the numbers of driver alterations
identified in cfDNA with those identified when sampling multiple

tissue biopsies (Fig. 5B). The number of driver alterations
detected in cfDNA was the same as from a single tissue sample in
four cases, but was higher than the mean number of functional
alterations identified across single tissue biopsies in the three
cases. However, in three cases (PBr04, PBr06, PBi02), the
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Fig. 5 Functional alteration identification in tissue and cfDNA. A The average number of functional alterations (mutations and SNCAs) identified when
sampling all possible combinations of one to five tissue samples from each patient are shown. For between two and five tissue samples, dark colors indicate
alterations detected in lesions sampled, whereas transparent colors indicate alterations present in only a subset of the sampled lesions. The actual number
of driver alterations (i.e., across all lesions) is indicated by dashed lines. The number of metastases sampled from a patient and the actual number of
truncal driver alterations is noted above each plot. Errors bars indicate standard deviation in the number of detected mutations across all combinations of
between one and five tissue samples. Only patients with at least one non-truncal functional alteration are shown (results for the remaining patients can be
found in Supplementary Fig. 14A). B The number of driver alterations identified in each plasma sample compared to the number of alterations identified
when sampling one to five tissue biopsies. “<1” indicates cases where more driver alterations are identified in a single tissue sample than in plasma sample.
For two patients, more driver alterations are identified in the plasma sample than in a single tissue sample. C A threshold for distinguishing between truncal
and non-truncal sSNVs was calculated using ROC analyses on the combined set of sSNVs in the nine cfDNA samples. Trunk, branch and private sSNVs are
shown for each patient against the obtained threshold. Driver sSNVs are indicated by “X” points. Boxplots show the CCF distributions of sSNVs for each
patient: the whiskers span the maximum and minimum CCF values, the box spans the upper and lower quartiles, and the center represents the median
sSNV CCF observed for a patient.
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complete set of functional alterations were detected in a single
tissue sample, but not in cfDNA. Together, these analyses
demonstrate that a single liquid biopsy may allow for more
complete detection of driver alterations than in some combina-
tions of multiple tissue samples, but that the presence of non-
truncal alterations limits complete identification of functional
alterations in some cases.

Targeted therapies may induce a more meaningful clinical
response if they are directed against truncal driver alterations
rather that alterations that are non-truncal. In practice, it might be
assumed a mutation was truncal if it were present in all profiled
biopsies. Based on this principle, we considered whether true
truncal alterations could be distinguished from non-truncal
alterations when randomly profiling two to five lesions (Fig. 5A).
For PBr04, two tissue samples were always sufficient for accurately
determining driver alteration truncality. However, in the remain-
ing cases, some alterations were incorrectly classified as truncal in
some combinations of tissue sample pairs. For example, a mean of
0.47 driver alterations were misclassified as truncal in PBr06 when
sampling two lesions, with one or two additional driver alterations
falsely classified as truncal in 37.8% and 4.4% of all possible pairs,
respectively. A mean of 1.0 alterations were incorrectly classified
as being truncal for PBi01 even when sampling five lesions (mean
= 1.6 when sampling two lesions), despite the absence of any
truncal alterations in this case. This observation demonstrates the
potential for incorrectly classifying truncal mutations when a
cancer’s evolutionary history is unknown.

Finally, we considered whether we could use cfDNA to
determine mutation truncality. Given that sSNV CCF in ctDNA
was correlated with the number of lesions in which the mutation
occurred, we attempted to establish a CCF threshold to distinguish
between truncal and non-truncal sSNVs observed in cfDNA. We
performed receiver operating characteristic (ROC) analysis for the
combined set of sSNVs in all cfDNA samples (area under the
curve, AUC= 0.88; 95% CI= 0.84–0.92), and obtained a thresh-
old of CCF= 0.55 (sensitivity= 0.83, specificity= 0.80) for
classifying truncal sSNVs (Fig. 5C and Supplementary Fig. 17).
Crucially, non-truncal driver sSNVs would have been classified as
truncal using this threshold in only two cases. At least one truncal
sSNVs was misclassified as non-truncal in four cases (one
misclassified in PBi01, one in PBr01, five in PBr02, seven in
PBr04). In contrast, we achieved a specificity of 0.65 when
deriving a CCF threshold for classifying truncal mutations in a
single tissue sample (sensitivity= 0.75; AUC= 0.74; CI=
0.73–0.75; Supplementary Fig. 17). Interestingly, we observed
123 sSNVs in plasma that were not identified in any of the profiled
tissue samples. These sSNVs may have been present in other
shedding lesions that were not profiled. However, the median CCF
for these sSNVs was 0.1 (interquartile range= 0.06–0.19), and
only ten of these mutations, none of which were driver alterations,
were present in CCFs of at least 0.55. These results suggest that it
may be possible to classify true truncal mutations from a single
liquid biopsy in patients with pretreated metastatic disease.

Discussion
In this study, we have characterized the genetic heterogeneity of
ten patients with pretreated metastatic cancer by profiling mul-
tiple metastatic lesions obtained from a rapid autopsy program.
We observed that functional mutations and SCNAs were most
often truncal, 38.3% of functional alterations were non-truncal,
and 7/10 patients had at least two non-truncal driver events.
These results are in contrast to previous analyses of untreated
metastatic cancers, which described notably lower driver altera-
tion heterogeneity in that setting22. Together, these observations
suggest that functional genetic heterogeneity may expand as

individual metastatic lesions evolve over the course of treatment
and progression34. It is possible that some subclonal mutations or
copy number alterations may have not been detected at the
current sequencing depth and that these may influence estimates
of intratumor heterogeneity. However, we used a conservative
approach by focusing on loci for which there was sufficient power
to detect mutations. It is therefore also possible that our con-
servative estimates of intratumor genetic heterogeneity in our
cohort are lower than in reality.

Global intra-patient TME composition was generally more
homogeneous than inter-patient TME composition, even when
considering lesions from different anatomic sites. Three TME
signatures predictive of ICI response were similarly more con-
sistent between lesions from the same patient than between
patients. Tumor mutation burden estimates were similarly rela-
tively consistent between lesions from the same patient. These
results suggest that single biopsies may be informative in some
patients for predicting ICI response, although the actual impli-
cations of the observed variance are unclear as clinically relevant
cutoffs and associated endpoints have not been defined35. In
addition, previous studies have suggested that significant intra-
patient heterogeneity in immune checkpoint-predictive TME
signatures may signal mixed responses to immunotherapy36,37. It
is important to note that the patients in our cohort were not
exposed to ICI, and that greater levels of intra-patient hetero-
geneity may arise in patients exposed to prior TME-modulating
therapies38–40, or if high levels of inflammation were present at a
previous stage in the cancer’s evolution15.

Driver alterations increase the fitness of a cancer cell and may
therefore be prognostically informative or potential targets for
therapeutic intervention. The importance of identifying the full
spectrum driver alterations has been previously demonstrated in
case studies, highlighting heterogeneous synchronous mechan-
isms of resistance to EGFR inhibition in metastatic lung cancers,
and of resistance to PI3-K inhibition in metastatic breast
cancer41,42. Given the observed spatial heterogeneity in driver
alterations, single tissue samples were on average insufficient for
identifying the full set of driver alterations in the patients from
our cohort. In addition, we showed that mutations present in a
single lesion can be incorrectly classified as truncal, which may be
important for predicting the degree of clinical benefit from
targeted14. It is important to note the patients received hetero-
geneous treatments prior to death, and that variation in levels of
genetic heterogeneity may be in part attributable to different drug
and resistance mechanisms.

Plasma collection is less invasive than tissue biopsies and can
capture genetic alterations from multiple metastatic sites7,43. We
found that analysis of cfDNA was superior to taking a single
random tissue sample for detection of driver mutations in two
patients. However, while cfDNA was highly sensitive for detecting
mutations present in multiple lesions, detection of private
mutations in cfDNA was limited using a validated next-
generation sequencing assay. These findings are consistent with
prior studies demonstrating that tumor volume is associated with
mutation detection in cfDNA44,45 and that truncal mutations are
more commonly observed in cfDNA than non-truncal
mutations45. Detection of private mutations may improve using
more recent assays although a recent study failed to detect tissue
alterations in cfDNA even when sequenced to ultra-high depth46.
In addition, recent simulations have suggested that mutations
possibly restricted to single lesions may remain undetected in
cfDNA due to stochastic sampling error47.

However, these observations offer opportunities to dis-
criminate between truncal and non-truncal alterations using
cfDNA, and we consequently attempted to establish a quantita-
tive association between lesion count and cfDNA mutation CCF.
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This allowed us to derive a CCF threshold to predict whether
sSNVs detected in ctDNA were truly truncal. We were able to
achieve reasonable specificity, although such thresholds will vary
by technical factors, cancer type and molecular background (in
our dataset, all breast cancer patients had AKT1 or PIK3CA
mutations). More importantly, our results suggested that a better
assessment of mutation truncality may be obtained from profiling
cfDNA than from a single tissue lesion. We note that patients
with advanced disease generally have higher cfDNA levels than
patients with earlier-stage disease and that this must be con-
sidered when interpreting our findings. In addition, better
understanding the mechanisms of cfDNA shedding from differ-
ent lesions will also provide more context to these results.

For patients with metastatic disease, targeted drugs can be
associated with high response rates and dramatic responses, but
tumor heterogeneity almost inevitably results in resistance and
treatment failure. Consideration of spatial genetic and tran-
scriptomic heterogeneity may therefore result in better treatment
outcomes. The results from our patient cohort provide insight
into the extent of this heterogeneity, and highlight the utility of
cfDNA to identify and prioritize actionable targets in pretreated
metastatic cancer.

Methods
MGH rapid autopsy protocol. Rapid autopsies were performed by an on-call rapid
autopsy team comprising of an oncologist, a pathologist, an autopsy technician,
and tissue collection coordinators within 6 h of patient’s death. Fresh tissue sam-
ples were snap frozen immediately after dissection and stored at −80 °C. Blood
samples were collected from the femoral vein and preserved in cfDNA BCT tubes
(Streck, La Vista, NE, USA) with subsequent plasma separation, as per manu-
facturer’s guidelines. Separated plasma was stored at −80 °C. All specimens and
clinical data were collected and analyzed in accordance with an Institutional
Review Board-approved protocol (Partners Human Research Committees), to
which patients provided written informed consent, and all studies were conducted
in accordance with the Declaration of Helsinki. Standard hospital consent from was
also signed by the health care proxy or the next of kin, as per institutional policies.

NGS profiling of tissue and plasma samples. Simultaneous purification of DNA
and RNA was performed using the Qiagen All Prep Kit (Qiagen, Wetzlar, Ger-
many). RNA-seq libraries were prepared using an RNase H protocol48, and were
sequenced to generate an average of 50 million reads.

The QIAmp Circulating Nucleic Acid kit (Qiagen, Wetzlar, Germany) was used
for DNA extraction from frozen plasma samples. Following library construction
with the Illumina TruSeq Nano DNA Library Prep kit (Illumina, San Diego,
California), libraries were enriched for 566 cancer-related genes (Supplementary
Table 3) using a hybrid-capture system with custom RNA baits (Agilent
Technologies, Santa Clara, California). Enriched libraries were pooled and
sequenced on an Illumina HiSeq 2500 machine.

Point mutation analyses. Sequenced data were aligned with BWA-MEM49 and
processed using the standard GATK pipeline50, comprising duplicate marking,
indel realignment, and base quality score recalibration. Somatic SNVs were called
using MuTect51 using default parameters for paired mutation calling. Further fil-
tering was performed, including the removal of common polymorphisms and
variants present in a panel of normal samples. A minimum depth of 30 reads at the
variant loci was required in the tumor sample. Indels were called using Pindel52 in
multisample mode for all the metastases in each patient, with additional filters
similar to those used for SNVs. A minimum of three reads carrying the indel across
the entire set of samples from a patient was required. To obtain a set of somatic
indels, the numbers of wild-type and mutant reads in the tumor matched normal
sample were compared using Fisher’s exact test, and those variants with
Bonferroni-adjusted p < 0.01 were classified as somatic indels.

We strove to avoid overestimating genetic heterogeneity in our analyses16.
Truncal branch and private mutations were defined using a rescue approach based
on the set of high-confidence mutations identified using the above strategy. If a
high-confidence mutation was observed in any single sample for a given patient, it
was scored as being present in all other samples if it was supported by three reads
with a minimum base quality score of 30 and a minimum mapping quality score of
60. In addition, we retained only loci for which we had 90% power to detect a
variant in at least three reads, given the local depth of coverage and sample purity.
As a consequence, mutations identified at a locus underpowered in any sample
from a patient were excluded from analyses of heterogeneity. A similar strategy was
previously used by Adalsteinsson et al.17. The Jaccard similarity metric was defined

as the intersection of the mutations shared between two samples divided by the
union of the mutations in the sample pair.

To identify functional mutations, we performed the following steps: (1) we
considered only the curated set of 566 genes present on the targeted panel used for
cfDNA profiling (Supplementary Table 3). (2) We compared mutations in these
genes to cancer-specific driver lists from a previous study of specific driver
mutations in metastatic cancers26. Driver gene mutations and classifications (i.e.,
oncogene, tumor suppressor gene) in this resource were identified on the basis of
significant mutation frequencies after accounting for previously defined covariates.
(3) We annotated variants in the autopsy dataset as “functional” if their mutation
patterns matched those described in the cancer-specific reference list (e.g., genes
with inactivating mutations that were annotated as tumor suppressor genes or genes
with recurrent mutations annotated as oncogenes in the cancer-specific reference
list were classified as “functional”). (4) We also annotated genes identified in the
manually curated Tier 1 of the COSMIC Cancer Gene Census27 as functional if
mutations in these genes were found in the corresponding cancer type-specific
primary tumors in COSMIC. Finally, we filtered out mutations in putative driver
genes that are likely due to mis-annotation. For example, there was a high frequency
of mutations in KMT2C across all samples, but this may be a consequence of read
misalignment due to high levels of sequence homology in the genome53.

Tumor mutation burden was estimated using the entire set of point mutations
in coding regions observed for each sample. Bases covered by fewer than 30 reads
were excluded from the calculation, and only mutations with VAF > 0.01 were
considered.

A mutation-loss event was defined as the presence of mutations in some lesions
from a patient, but absent in at least one lesion with loss of the minor allele (LOH),
as determined by PureCN. For each locus with evidence of mutation loss, the
mutation had to be observed in the absence of LOH in at least one lesion. If neither
mutation nor LOH was observed for a locus in a single lesion, the locus was
removed from consideration. This conservative rule was used to avoid calling
mutation-loss events at LOH, where loss of a wild-type allele may have occurred.
There was no evidence of mutation loss occurring by homozygous deletion.

Mutation signature analyses. De novo mutation signature extraction was per-
formed using the MutationalPatterns package54, which uses NMF deconvolution to
identify consistent patterns across the dataset. The factorization rank (number of
clusters) was initially determined using changes in the cophenetic correlation
coefficient, as suggested. The extracted signatures were compared to those ori-
ginally described in COSMIC using cosine similarity metrics. Manual curation,
based on the expected biology for the cancer types in the study, was performed to
refine the extracted signatures. For example, SBS4 (associated with tobacco expo-
sure) was identified in multiple patients initially, but was not consistent with the
expected biology for patients in the cohort with biliary tract cancer. Increasing the
initial number of signatures revealed the presence of the platinum therapy-
associated SBS= 31 in these patients.

Copy number analyses. Log ratios and B-allele frequencies for the germline SNPs
observed in the data were used to perform multisample segmentation, using a
weighted version of the circular binary segmentation algorithm from DNACopy55.
The resulting segments were used as input to PureCN56 to obtain allele-specific
copy number, as well as estimates of tumor purity and ploidy. Initial PureCN
solutions were manually checked and, for some cases, a different solution was used
with the aim of maximizing similarity in copy number profiles between samples
from the same patient. We used the purity estimates from PureCN to filter samples
from the dataset: any sample with a purity estimate <40% was manually reviewed
and removed if it had a non-aberrant copy number profile. Ten samples were
removed using these criteria.

High-level amplifications were defined as events where the total number of
copies in a segment was at least three times the estimated ploidy for a patient,
whereas SCNAs resulting in a total copy number that was at least twice the
estimated ploidy were defined as gains. Partial deletions were called if the observed
number of copies was below half the estimated ploidy. Homozygous deletions and
LOH (including copy number-neutral events) were classified separately.
Proportions of trunk, branch, and private copy number alterations were
determined by considering segments with altered copy number states. CIN was
defined as the total fraction of the genome affected by any copy number event.

Driver copy number events were defined initially as high-level amplifications and
homozygous deletions of oncogenes and tumor suppressor genes, respectively, as
defined in the Cancer Gene Census. To avoid overestimating heterogeneity in copy
number driver events, low-level gains in oncogenes were classified as driver events if
at least one other sample from the same patient had a high-level amplification in the
gene; this is analogous to the rescue method used for point mutations.

Clonality and phylogenetic analyses. CCFs were computed only for somatic
SNVs, as read counts for indels can be biased due to difficulties in alignment. As in
ref. 57, CCF point estimates and CIs were derived by constructing a posterior
distribution over a grid of 100 CCF values between 0 and 1, with probabilities
determined by modeling observed reference and variant read counts with a
binomial distribution. Tumor fraction estimates and copy number profiles from
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PureCN were used for the calculation. CCFs were only reported when the depth of
coverage at a particular base was at least 30. Clonal mutations were defined as those
with CCF ≥ 0.9, with the remaining mutations classified as subclonal.

We used a mutation’s multiplicity to determine whether it occurred early or late
relative to a copy number event with major copy number ≥2 (ref. 57). In these
regions, mutations with multiplicities >1 were assumed to have occurred before the
SCNA. The presence of whole-genomic duplication was determined by considering
the proportion of the genome with an even major copy number58,59. In general,
WGD was said to have occurred if this proportion was >50%. Copy number
profiles of samples were subsequently manually checked to confirm WGD.

Phylogenetic trees were constructed using the “pratchet” algorithm in
Rphylip60. Visualizations were produced with ggtree. Both point mutations and
copy number alterations were used when constructing trees.

RNA analyses. Reads generated from RNA-seq were aligned with STAR61 to hg19
and feature counts were obtained with HTSeq. Raw counts were normalized and
processed with DESeq2, and the variance-stabilizing transformation was applied to
maintain homoskedasticity across the range of expression62. We used a collection
of gene expressions signatures to profile the TME (Supplementary Table 4). These
signatures were derived from analysis of gene expression data from The Cancer
Genome Atlas as sets of genes, where the expression was highly correlated. To
further ensure the signatures were related to the TME, we focused on signatures
that had significantly higher scores than in breast and liver cell lines from the
Cancer Cell Line Encyclopedia63. Scores were computed using single-sample
GSEA64 and individual signature scores were transformed into z-scores across all
the samples in the dataset. T-SNE65 to reduce the z-score matrices into two
dimensions was performed using the R package “Rtnse” with perplexity= 10 and
5000 iterations. The MAD was used to summarize dispersion in signature z-scores.

cfDNA analyses. Reads were aligned and processed as for the whole-exome data,
and the rescue approach was used for some analyses when determining the pro-
portions of trunk, branch, and private mutations detected (Figs. 3 and 4). All
somatic point mutations with a VAF < 0.005 were filtered. Copy number profiles
and tumor fraction in cfDNA were obtained running PureCN independently of the
tissue samples, but possible PureCN solutions were manually reviewed, and the
final profiles were selected to maintain relative consistency (ploidy estimates, gross
segmentation profiles) with the tissue data.

For comparisons with tissue lesions (Figs. 3 and 4), mutation classification (i.e.,
trunk, branch, private) for mutations within the targeted panel was derived using the
WES data tissue samples. Power calculations were performed using PureCN:
assuming a false-positive rate of 5 × 10−7 and a sequencing error rate of 0.001Mb−1,
the minimum mutation CCF for which power of detection was least 90% in each
sample56,58 was calculated. The median depth of coverage across loci at which
mutations were found in tissue samples, but not in plasma was used when
computing power. For each patient in Fig. 5, all possible combinations of metastases
were considered when sampling between one and five lesions, and mean numbers of
driver alterations identified were derived across these combinations. Within the
sampling exercise, an alteration was classified as “truncal” if it was present in all
lesions; for example, when sampling a random combination of four lesions, an
alteration would be classified as truncal if it was observed in all four. ROC curves
were constructed to evaluate the use of CCF thresholds in cfDNA, and the value
nearest to the top-left corner of the curve was selected as the optimal threshold.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The sequencing data used in this study have been deposited in the European Genome-
Phenome Archive under accession code EGAD00001007040. Uploaded data include
BAM files containing raw, aligned sequencing data from the whole-exome, RNA-seq, and
targeted cfDNA experiments. The data are available under restricted access with access
controlled by the Termer Center Data Access Committee. The data may be accessed for
research purposes by contacting juric.dejan@mgh.harvard.edu. In addition,
Supplementary Dataset 1 contains sample-level statistics (e.g., mean depth of sequencing,
tumor cellularity) used for CCF computations; Supplementary Dataset 2 contains point
mutation calls for all samples; Supplementary Dataset 3 contains copy number segment
calls for all samples; and Supplementary Dataset 4 contains the genes present in the gene
expression signatures use to study the TME. Source data are provided with this paper.
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