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ABSTRACT: Nanomaterials (NMs) with structural, optical, and dielectric properties
are called functional or smart materials and have favorable applications in various fields
of material science and nanotechnology. Pure and Co-doped MgAl2O4 were
synthesized by using the sol−gel combustion method. A systematic investigation
was carried out to understand the effects of the Co concentration on the crystalline
phase, morphology, and optical and dielectric properties of Co-doped MgAl2O4. X-ray
diffraction confirmed the cubic spinel structure with the Fd3̅m space group, and there
was no impurity phase, while the surface morphology of the samples was investigated
by scanning electron microscopy. The dielectric properties of the synthesized material
are investigated using an LCR meter with respect to the variation in frequency (1−2
GHz), and their elemental composition has been examined through the energy-
dispersive X-ray technique. The existence of the metal−oxygen Mg−Al−O bond has
been confirmed by Fourier transform infrared spectroscopy. The value of the dielectric
constant decreases with the increasing frequency and Co concentration. The optical behaviors of the Co2+-doped MgAl2O4 reveal
that the optical properties were enhanced by increasing the cobalt concentration, which ultimately led to a narrower band gap, which
make them exquisite and suitable for energy storage applications, especially for super capacitors. This work aims to focus on the
effect of cobalt ions in different concentrations on structural, optical, and dielectric properties.

■ INTRODUCTION
Oxides having spinel-like structures are widely used in modern
technology. Such functional materials are used for many
purposes like humidity sensor, catalysts, optical windows, and
so forth.1−4 The spinel magnesium aluminate (MgAl2O4) is
one of the most well-known structural materials having a large
number of applications in various fields.5,6 The spinel-like
materials are used extensively in metallurgical, electrochemical,
and chemical industries due to their outstanding optical and
dielectric properties.7−9 The spinel-type oxides have the
general formula AB2O4, where A and B refer to two distinct
cations of equal ionic sizes and are chemically and thermally
stable.10 The MgAl2O4 spinel crystal exhibits a cubic structure
with space group (Fd3m).11 The oxygen sublattice’s spatial
coordination has pseudo-cubical close packing. The cubic unit
cell has 64 tetrahedral and 32 octahedral interstices between
oxygen atoms. Al3+ inhabit 16 of the 32 octahedral interstices
and Mg2+ fill 8 of the 64 tetrahedral interstices.12

The temperature affects the permittivity and ac conductivity
of the nanoscale MgAl2O4 with frequency, and as a result, the
real part of the dielectric constant and loss factor both increase
with the temperature and decrease with frequency. Addition-
ally, ac conductivity exhibits an opposite trend with frequency,

although it continues to rise with a rise in temperature.13,14

The valence electrons of the doped elements are impacted by
transition metals of (3d) levels, which in turn affect the defect
levels of the host material MgAl2O4. As a result of this
interaction, the A- or B-site cations were insistently replaced
with transition metal ions to attain the desired band structure
tuning for certain applications. For instance, Fe2+ impurities
dominate at the A-site of MgAl2O4 and subjugate their
magnetic properties.15 The optical behaviors’ of the transition
metal-doped MgAl2O4 depend on these two factors, valence
and site type of the doped transition-metal ions.
Several researchers have investigated the dielectric behaviors

of manganese-, chromium-, and iron-doped MgAl2O4
fabricated through the co-precipitation method and found
that the modified value of relative permittivity was increased.16

The continuous isomorphic between magnesium oxide and
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cobalt oxide is the foundation for the production of cobalt-
doped MgAl2O4 samples; this allows for Co2+ ions to replace
Mg2+ ions, which is attributed to their quite close ionic radii,
and yields solid solutions of Mg1−xCoxAl2O4 (0.00 ≤ x ≤
0.09).17,18 Several researchers had adopted various techniques
to fabricate the cobalt-doped MgAl2O4 such as sol−gel,
microwave combustion, solid-state reactions, co-precipitation
method, and so forth.19 Only some researchers like Ullah et al.
used the sol−gel combustion approach to prepare Co2+-doped
MgAl2O4.

4

In this research work, an effort is made to synthesize the
solid solution of Mg1−xCoxAl2O4 (0.00 ≤ x ≤ 0.09) spinel via a
sol−gel combustion method. Due to the importance of this
method, we studied the effect of Co2+ on the relationship
between the structural, microstructural, vibrational, and
dielectric properties (dielectric constant and tangent loss) of
the Mg1−xCoxAl2O4 materials, which, by varying of the
frequency, are improved.

■ RESULTS AND DISCUSSION
X-ray Diffraction Analysis. Figure 1 shows the X-ray

diffraction (XRD) pattern of Mg1−xCoxAl2O4 (0.00 ≤ x ≤

0.09) spinel solid solution. High intensity, sharp peaks with hkl
values (220), (311), (400), (511), and (440) identified the
samples’ crystalline structure. The spinel cubic structure was
confirmed by indexing of peaks, whose lattice constant is 8.08
Å, which matches exactly with PDF card # 01-075-1800 along
with space group (Fd3̅m). The spinel’s single-phase cubic
structure is confirmed by the absences of an impurity peak. For
each composition, the XRD patterns have a high intensity peak
at Braggs angle (2θ = 36°), which correlate to the plane of
(311).20 It has been observed that the lattice constant of
MgAl2O4 spinel increases with Co2+ contents. The variation in
the lattice parameters is attributed to the slight difference in
the ionic radii of cobalt ions (0.74 Å) and magnesium ions
(0.65 Å). This increase in the lattice constant reveals that Mg2+
ions have been substituted by Co2+ ions in the crystal
structure.12,21 The volume of the unit cell increases with Co2+
contents and has been reported in this work. According to
Vegard’s law, the variations in the lattice parameters may be
due to the ionic radius of the dopant element. However, most
of cobalt−magnesium exchange occurs at the spinel’s
tetrahedral site.22 Figure 1b shows the peaks shifting toward
lower Bragg’s angle because the ionic radius of the dopant

material (Co2+) is larger than that of the host material
(Mg2+).23 The Sheerer equation is used to determine the
average crystallite size of samples, as shown in eq 1.24,25

(1)

The Williamson Hall analysis is used to calculate the lattice
strain in the structure, as reported by Mote et al.26 The
dislocation density (δ) is determined by using this eq 2

(2)

The average crystallite size, dislocation density, lattice strain,
and micro-strain of the synthesized samples are summarized in
Table 1.

The XRD theoretical density (ρth) was determined from the
relation

(3)

where M is relative molecular mass, Z is that the number of
atoms per unit cell, NA is Avogadro’s number, and a is the
lattice parameter of Mg1−xCoxAl2O4 (0.00 ≤ x ≤ 0.09) spinel.
Table 2 shows the physical properties like structural, lattice
parameters, volume, density, and porosity of the solid solution
of Mg1−xCoxAl2O4 (0.00 ≤ x ≤ 0.09) spinel. It has been
observed that the porosity increases with the decreasing
relative densities, as Co2+ was increased.27 Porous materials are
a class of materials with low density, large specific surface, and
a range of novel properties in the electrical, mechanical,
thermal, and acoustical fields.28,29 The porosity was calculated
by using eq 4.30

(4)

where ρexp is experimental and ρth is theoretical density.
Surface Morphological Studies. Figure 2a−d shows the

scanning electron microscopy (SEM) micrograph of
Mg1−xCoxAl2O4 (0.00 ≤ x ≤ 0.09) spinel calcined at 800 °C
for 4 h in air. The size, shape, and grain boundary of all the
samples are analyzed by using SEM. Figure 2a shows that the
base sample exhibited a plate-like structure. The structure of
the base sample is in accordance with the previous
literature.9,31 It was also found that the grain size decreases
with the increasing Co2+ content. The lowest average grain size
and maximum homogeneity were observed at x = 0.06. The
morphology of the sample changes to that of nanotubes with
Co2+ contents (at 3%), as shown in Figure 2b. Increasing the

Figure 1. (a) XRD pattern of Mg1−xCoxAl2O4 (0.00 ≤ x ≤ 0.09)
spinel calcined at 800 °C and (b) zoomed view of the (3 1 1) peak
shifting toward the lower angle.

Table 1. Calculated Average Crystallite Size (D),
Dislocation Density (δ), Lattice Strain (η), and Micro Strain
(ε) of Mg1−xCoxAl2O4 (0.00 ≤ x ≤ 0.09) Spinel

parameters X = 0.00 X = 0.03 X = 0.06 X = 0.09
average crystallite size
“D” (nm)

34.241 39.125 51.570 54.135

dislocation density “δ”
(×10−3nm−2)

8.5300 6.7900 3.7600 3.6900

lattice strain “η”
(×10−2)

0.1013 0.0886 0.0672 0.0451

micro strain “ε”
(×10−2)

1.2367 1.0692 0.8531 0.7797

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.3c00541
ACS Omega 2023, 8, 29959−29965

29960

https://pubs.acs.org/doi/10.1021/acsomega.3c00541?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c00541?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c00541?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c00541?fig=fig1&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c00541?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


cobalt content to 6% revealed the shifting morphology from
nanotubes to the irregular shape, as shown in Figure 2c.
However, some large grains may be grown due to the

agglomeration of the smaller grains.24,32 The shape of the
cobalt-doped magnesium aluminate changes into a disc with
increasing Co2+ contents from 0.06 to 0.09, as shown in Figure
2d.33

The elemental composition of each sample is analyzed by
using the energy-dispersive X-ray spectroscopy (EDX)
technique. It confirms the presence of certain elements in
the samples under investigation. Moreover, EDX analysis
revealed the replacement of Mg2+ ions by Co2+ ions. Figure
3a−d shows the EDX pattern of Mg1−xCoxAl2O4 (0.00 ≤ x ≤
0.09) spinel.
EDX patterns confirmed the presence of O, Mg, Al, and Co

elements in the solid solution of MgAl2O4. The elemental
composition of Mg1−xCoxAl2O4 (0.00 ≤ x ≤ 0.09) spinel is
shown in Table 3.
Figure 4a−d shows the transmission electron microscopy

(TEM) micrographs of Mg1−xCoxAl2O4 (0.00 ≤ x ≤ 0.09)
spinel. The internal morphology and size of the synthesized
pure and different cobalt-doped MgAl2O4 spinel are examined

Table 2. Variation of Physical Properties of Mg1−xCoxAl2O4 (0.00 ≤ x ≤ 0.09) Spinel with Co2+ Contents

contents (x) structure lattice parameters (nm) volume (nm3) ρtheoretical (gm/cm3) ρexperimental (gm/cm3) ρrelativedensity (%) porosity (%)

X = 0.00 cubic 0.808 0.528 3.58 3.56 99.6% 0.55%
X = 0.03 cubic 0.797 0.506 3.34 3.30 98.7% 1.19%
X = 0.06 cubic 0.793 0.499 3.10 3.01 97.2% 2.90%
X = 0.09 cubic 0.781 0.476 2.86 2.73 95.34 4.54%

Figure 2. SEM micrograph of Mg1−xCoxAl2O4 (0.00 ≤ x ≤ 0.09)
spinel (a) x = 0.00, (b) x = 0.03, (c) x = 0.06, and (d) x = 0.09.

Figure 3. EDX spectra of Mg1−xCoxAl2O4 (0.00 ≤ x ≤ 0.09) spinel: (a) x = 0.00, (b) x = 0.03, (c) x = 0.06, and (d) x = 0.09.
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by using TEM. From the morphologies, it is clearly visible that
highly crystalline, nanometer-sized ternary oxides were
obtained. The doped Co displayed well-dispersed metal
nanoparticles on the spinel support, as shown in Figure 4d.

■ OPTICAL PROPERTIES
UV−Visible Spectroscopy. The optical properties of

Mg1−xCoxAl2O4 (0.00 ≤ x ≤ 0.09) spinel were examined by
using UV−visible spectroscopy. The energy band gaps for all
samples have been determined by using the TAUC, as shown
in eq 5

(5)

Figure 5a−d shows the UV spectra of Mg1−xCoxAl2O4 (0.00
≤ x ≤ 0.09) spinel and reports that the band gap energy
decreases from 4.09 to 2.79 eV with increasing Co2+ contents.
This is due to the minor difference of ionic radii of Co2+ (0.67
Å) and Mg2+ (0.65 Å).34

The high band gap values of MgAl2O4 may be attributed to
the s−p hybridization between the 3s and 3p of Mg and Al,
respectively, which causes the lowest energy levels in the
conduction band to be filled.35 On the basis of two distinct
cation symmetries, Mg2+ (A) and Al+3 (B) are used to reveal
the optical behavior of 3d transition metals (Co, Ni, and Mn)-
doped MgAl2O4 (AB2O4) spinel. The Co2+ (3d7) ions at the A-
site with Td symmetry exhibit a high band gap energy due to
their high excitation energy (over 3.30 eV).36

FTIR Study. The Fourier transform infrared (FTIR)
spectroscopic analysis revealed information about bonding
and phase composition of the samples recorded in the range of
wave number 400−4000 cm−1, as shown in Figure 6.

Table 3. Elemental Composition of the Various Elements
Present in the Synthesized Samples

elements X = 0.00 X = 0.03 X = 0.06 X = 0.09
Mg 19.20 20.02 20.62 18.67
Al 44.80 41.70 40.91 42.08
O 36.00 34.41 35.45 31.80
Co 3.87 3.02 7.45
total (in %) 100 100 100 100

Figure 4. TEM micrographs of Mg1−xCoxAl2O4 (0.00 ≤ x ≤ 0.09)
spinel: (a) x = 0.00, (b) x = 0.03, (c) x = 0.06, and (d) x = 0.09.

Figure 5. UV spectra of Mg1−xCoxAl2O4 (0.00 ≤ x ≤ 0.09) spinel: (a) x = 0.00, (b) x = 0.03, (c) x = 0.06, and (d) x = 0.09.
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The frequency range 500−900 cm−1 shows the stretching
vibrational mode of aluminum−oxygen (Al−O), metal−
oxygen (M−O), and metal−oxygen−aluminum (M−O−Al)
for the spinel structure.37 The existence of the nitrate group is
confirmed by the absorption at about 1380 cm−1.38 Also, the
absorption band in the 1200−1600 cm−1 of the absorption
spectra reveals that the Mg2+ is substituted by Co2+ ions and
occupy the tetrahedral sites of the spinel MgAl2O4 nano-
crystallites in all spectra. The band about 3480 cm−1 is
attributed to the (O−H) vibrations of the water molecules,
which are absorbed by the samples.39

Microwave Dielectric Properties. In the current research
work, the dielectric properties, that is, relative permittivity and
tangent loss, have been measured by using impedance
spectroscopy at the frequency range (from 1 to 2 GHz). The
dopant concentration affected the dielectric permittivity and
loss of the Mg1−xCoxAl2O4 (0.00 ≤ x ≤ 0.09) spinel.40 The
value of relative permittivity of the base sample decreases with
the increasing Co2+ contents, as shown in Figure 7.

The obtained values of relative permittivity for pure and
doped samples are 44, 35, 27, and 20 at 1 GHz frequency.
Figure 6 also shows that the value of relative permittivity
decreases with the increasing operating frequency. The value of
relative permittivity could be explained easily according to the
relative dipole moments and lattice structure of the sample.41

In the structure of MgAl2O4 spinel, the permanent dipole

moment attained the Centro symmetric position on c-axis,
which modifies the value of relative permittivity. It is
concluded that the smaller the c/a ratio, the lower will be
the value of relative permittivity.42 A Co-doped MgAl2O4
compound is suitable for the application of the humidity
sensor, data storage devices, and communication technol-
ogy.14,18,29 Figure 8 shows the plot of tangent loss (tan δ)
versus operating frequency for the pure and doped MgAl2O4
sample.

Figure 8 shows that the tangent loss decreases with the
increasing operating frequency and Co2+ contents, which may
be due to the accumulation of charge carriers and thermal
activation energy.43 The tangent loss values show fluctuations
with frequency, which may be due to the substitution of a
lower ionic cation (Mg2+) by a higher ionic cation (Co2+). The
frequency-dependent tangent loss is a dimensionless quantity,
and it is good for base station applications.44

■ CONCLUSIONS
The solid solution of Mg1−xCoxAl2O4 (0.00 ≤ x ≤ 0.09) spinel
has been synthesized by the sol−gel combustion method. The
XRD studies reveal that Co2+-doped MgAl2O4 exhibits a cubic
structure. The base and doped samples have same lattice
parameters. The spinel structure was unchanged by the
substitution of the Co2+ cation. The SEM micrograph shows
that the surface morphologies change with Co2+ contents from
a plate-like shape to irregular nanotubes. The EDX studies
confirm the existence of Al, Mg, O, and Co elements. The
FTIR analysis suggested the existence of the M-Al-O bond.
The improved optical properties have been reported by doping
of Co2+ concentrations. The band gap energy and dielectric
constant decrease with the increasing doping concentrations
without the structure distortion. The overall findings may help
in the application of smart technology.
Materials and Experimental Procedure. The solid

solution of Mg1−xCoxAl2O4 (0.00 ≤ x ≤ 0.09) is synthesized
by using the sol−gel combustion method. The chemical
precursors used to synthesize the samples are aluminum nitrate
(Al(NO3)3·9H2O), magnesium nitrate (Mg(NO3)2·6H2O),
cobalt nitrate (Co(NO3)2·6H2O), and citric acid (C6H8O7·
H2O), and they are mixed with an appropriate stoichiometric
ratio. All the precursor chemicals were purchased from Sigma-
Aldrich with a minimal purity research rating of 99.96%. The

Figure 6. FTIR spectrum of Mg1−xCoxAl2O4 (0.00 ≤ x ≤ 0.09) spinel.

Figure 7. Variation of the dielectric constant with Co concentration
and frequency of Mg1−xCoxAl2O4 (0.00 ≤ x ≤ 0.09) spinel.

Figure 8. Variation of dissipation factor of Mg1−xCoxAl2O4 (0.00 ≤ x
≤ 0.09) spinel with frequency.
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solution of all the raw materials is blended in a beaker at a 1:2
molar ratio. The anhydrous citric acid was used as a
combustible fuel catalyst. The citric acid and metal nitrates
are both taken in an equal stoichiometric ratio. In order to
obtain a homogeneous and thick gel of solution, all the
chemicals are poured into a beaker that contained 25 mL of
deionized water and then heated continuously and stirred for
an hour at 120 °C on a hot plate. The whole procedure is
carried out in a ventilated enclosure. The specimens were then
inserted in a muffle furnace at 400 °C for combustion by a
fierce exothermic reaction. To achieve the desired phase of
spinel aluminates, the fine powder of each composition was
calcined at 800 °C for 4 h. The Co2+ ions are substituted on
the A-site of AB2O4 i−e Mg-site cation.
Characterizations. The absolute information of the cell

volume, crystallite size, structural lattice strain, lattice
constants, and the crystal structure was obtained by crystallo-
graphic studies using Panalytical X’Pert software. The grain
size was determined using ImageJ software. The micro-
structural and phase analysis was performed using SEM
(JSM-5910, JEOL Japan) and XRD (JDX-3532, JEOL,
Japan) with Cu Kα radiation (λ = 0.154 nm). The elemental
composition of each sample was analyzed by (EDX)
spectroscopy using the Oxford Inca X-Act to verify the
existence of the probable elemental contents. The absorption
spectra of the (FTIR) were obtained on a Perkin-Elmer GX
FTIR system with a resolution of 10 cm−1 in the 400−4000
cm−1 range to study the bond and functional group attached to
the samples. The optical properties were studied by using
ultraviolet−visible spectroscopy. The absorption spectra of the
samples were investigated using a Perkin-Elmer UV−vis
Spectrometer, λ = 25, in the visible range. An LCR meter
was employed to measure the dielectric properties of the
sintered sample (1−2 GHz)..
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