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Abstract

Gaming disorder, which is characterized by multiple cognitive and behavioral symptoms,

often has comorbid psychiatric conditions such as depression and attention-deficit hyperac-

tivity disorder. Neurobiological effects of the comorbid disorders so far reported are not con-

verging, exhibiting positive and negative alterations of the connectivity in brain networks. In

this study, we conducted resting-state functional magnetic-resonance imaging and whole

brain functional connectivity analyses for young participants consisting of 40 patients diag-

nosed with the gaming disorder, with and without comorbid conditions, and 29 healthy con-

trols. Compared to healthy controls, the gaming disorder-alone patients had partially

diminished connectivities in the reward system and executive control network, within which

there existed central nodes that served as a hub of diminished connections. In the gaming

disorder patients who had comorbidity of autism spectrum disorder, the diminished connec-

tions were enlarged, with alteration of the hub nodes, to the entire brain areas involved in

the reward system including cortical, subcortical and limbic areas that are crucial for reward

processing, and to the whole cortical areas composing the executive control network. These

observations suggest that the neurodevelopmental condition coexisting with the gaming dis-

order induced substantial impairment of the neural organizations associated with executive/

cognitive and emotional functions, which are plausibly causal to the behavioral addiction, by

rearranging and diminishing functional connectivities in the network.
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Introduction

Gaming disorder has been defined in the International Classification of Diseases, the Eleventh

Revision for Mortality and Morbidity Statistics, World Health Organization (ICD-11) [1], as a

pattern of gaming behavior characterized by impaired control over gaming, increasing priority

given to gaming over other activities, and continuation or escalation of gaming despite the

occurrence of negative consequences. Previous studies on clinical and behavioral features of

the Internet gaming disorder (IGD), a gaming disorder associated with Internet use (more

generally, Internet addiction: IA), have revealed coexistence of psychiatric disorders with the

IGD. Of these, the most commonly observed disorders include depression and attention-defi-

cit hyperactivity disorder (ADHD) [2–6]. A meta-analysis reported significantly higher pro-

portion of patients with depression in individuals with IA than in healthy controls [7]. A

review article [8] also described that the prevalence of ADHD was higher in IA subjects than

in non-IA subjects. The overall severity of ADHD symptoms in IA groups was significantly

worse than in healthy control. Diverse comorbid psychological pathologies were reported to

have association with IGD; 92% of reviewed studies had significant correlations with anxiety,

89% with depression, 87% with ADHD or hyperactivity symptoms, and 75% with social pho-

bia/anxiety and obsessive-compulsive symptoms [9]. Meanwhile, measures of depression and

autistic traits had strong correlation with scores on Internet Addiction Test in a group consist-

ing of about half-and-half lower and higher problematic Internet-use groups [10]. Psychiatric

patients who were problematic Internet users had significantly higher scores than normal

Internet users on self-rated scales of sleep problems, depression, trait anxiety, ADHD, autism,

obsessive-compulsive disorder, social anxiety disorder, and impulsivity [11]. The last two stud-

ies imply that the developmental disorder of autism spectrum disorder (ASD) has close associ-

ations with IGD as well as ADHD. Thus, the comorbidity of ASD may be expected to impact

the symptoms of IGD patients.

In a cellular and molecular model of drug dependence, the region of nucleus accumbens in

the ventral striatum, which is a target of dopaminergic links from the ventral tegmental area in

the midbrain, is the central structure receiving projections from the olfactory cortex, amygdala

and limbic cortex [12]. The mesolimbic circuit including the nucleus accumbens, amygdala

and hippocampus was hypothesized to be the key zone that mediates the rewarding and rein-

forcing effects related to drug intake [13]. The dopamine innervation in the mesolimbic circuit

extends to the anterior cingulate cortex and orbitofrontal cortex in the forebrain to form the

mesocortical dopamine system. The orbitofrontal cortex and anterior cingulate cortex were

most frequently implicated in drug addiction to be activated during intoxication, craving, and

bingeing but deactivated during withdrawal [14]. These cortical regions were proposed to be

involved in cognitive and emotional functions and supposed to regulate motivation, drive, and

self-control [15].

As for the behavioral addiction, an fMRI activation study for pathological gambling indi-

viduals using Stroop task showed diminished response in the ventromedial prefrontal cortex,

which was implicated in poor impulse control [16]. In other fMRI study, reduction of activa-

tion in the ventral striatum and ventromedial prefrontal cortex was observed in pathological

gamblers during a guessing task that was known to otherwise activate the ventral striatum. The

magnitude of activation was negatively correlated with gambling severity, implying a defi-

ciency of the mesolimbic reward system [17]. Problematic gamblers and heavy smokers com-

monly showed reduced responsiveness of the dorsomedial prefrontal cortex, compared to

healthy controls, during successful as well as failed response-inhibition in a stop signal task

[18]. The cortico-striatal neural circuit comprising the orbitofrontal cortex, ventromedial

prefrontal cortex, anterior cingulate cortex and the striatum was implicated in reward
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responsiveness, impulsivity and compulsivity in the impulse control disorders that are concep-

tualized as the behavioral addiction [19]. The mesolimbic and mesocortical reward systems

were suggested as the central brain mechanisms underlying the behavioral addiction in con-

gruence with drug/substance-use addictions [20].

In IGD/IA subjects compared to controls, alteration of different variables associated with

striatal activities was reported. Those activities include: reduced dopamine expression level of

the striatum [21]; reduced levels of dopamine D2 receptor availability in subdivisions of the

striatum including the bilateral dorsal caudate and right putamen [22]; decreased fMRI activa-

tion in the ventral striatum during the anticipation of monetary rewards [23]; reduced func-

tional connectivity of the dorsal putamen with posterior insula-parietal operculum [24];

reduced activation in the striatum, inferior frontal gyrus and presupplementary motor area

during Go-Stop task [25]; and reduced functional connectivity of the prefrontal cortex with

dorsal striatum, pallidum and thalamus which are involved in the prefrontal-striatal circuit

[26]. The outcomes of these studies imply depressed activities of the striatum-related structures

in the IGD and cognitive conditions. Based on these findings, observations of wide brain

regions, including the prefrontal cortex, limbic structures and other dopamine-innervated

areas are desirable to clarify the impact of IGD on the brain activities.

A functional connectivity study with resting-state (rs-) fMRI is a versatile neurobiological

approach requiring no tasks during recording; the procedure is suited for clinical use especially

for young patients, who may have difficulty in responding appropriately to activation tasks.

Prior functional connectivity studies on IGD and IA predominantly employed a seed-based

approach using brain regions which were determined based on a priori knowledge, models, or

hypotheses [23, 25, 27–43]. Key regions in the reward circuit related to addiction, such as the

striatum, nucleus accumbens, orbitofrontal cortex, anterior cingulate cortex and insula, have

frequently been used as the seeds. Diminished connectivities of these seeds with other brain

areas were broadly observed in IGD/IA subjects compared to controls, while enhancement of

the connectivity was also found.

As for the influence of major comorbid conditions of ADHD and depression on the IGD,

several studies have reported alterations of rs-functional connectivity. IGD males with comor-

bid depression had diminished connectivity of a seed in sub-areas of the anterior cingulate cor-

tex with the prefrontal cortex, compared with IGD males without depression, while the

connectivity of the same seed was enhanced with the precuneus and posterior cingulate cortex

[41]. Negative mood states of depression and anger reflected poorer or impaired connectivity

among the default mode network (DMN) regions in IGD males, compared to healthy controls

[36]. Posterior cingulate cortex-seeded connectivity was expanded in IGD subjects without

childhood ADHD, compared to those with childhood ADHD, in the brain regions implicated

in salience processing [38]. Within IGD subjects, depression scores were negatively correlated

with the connectivity between the left amygdala and right dorsolateral prefrontal cortex [42].

IGD subjects with major depression disorder and/or ADHD had enhanced connectivity of

DMN and executive control network (ECN) compared to healthy controls [37]. The results of

these seed-based functional connectivity studies are not convergent; comorbidity of ADHD

and depression either enhanced or reduced the connectivities in brain regions related to differ-

ent networks.

Although the seed-based approach is effective to identify altered connections with the

region of interest, it cannot provide a comprehensive picture of the whole brain because the

number of seed regions is limited. To explore large scale functional organization, network-

based statistics have been used to examine functional connectivity in the entire brain. The

underlying principle of the network-based statistics relies on the interconnectedness of node

links in topological space [44], which tends to yield long significant links going through
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multiple nodes. Several studies based on the network-based statistics have reported alterations

of the connectivity links in IGD/IA individuals compared to controls. Those altered connectiv-

ity links included: cortico-subcortical circuits with reduced values of functional connectivity,

in which the putamen was most extensively involved [45]; disrupted long-range connections

in the frontal, parietal, and occipital lobes having negative and positive functional-connectivity

differences between IA and healthy subjects [46]; and the networks interconnected mostly in

frontal regions where functional connectivity was positively- and negatively-correlated with

the score of Internet Addiction Test in healthy subjects [47]. The whole brain network-based

statistics approach permits identification of altered long connections through many nodes.

However, it is difficult to disentangle the identified multiple connections, which are usually

overlapped, into known functional networks or reward circuits.

In this study, we aimed to evaluate the influence of comorbid conditions on the direction

and extent of the alteration of functional networks in individuals diagnosed with gaming dis-

order (GD) based on the criteria in ICD-11. For this purpose, we conducted whole brain func-

tional connectivity analyses in a data-driven way, with no use of predetermined seeds, using

nonparametric tests to find significantly altered clusters of node links. Focus was given to the

ASD and ADHD, as the primary comorbid conditions of interest, since these two neurodeve-

lopmental disorders coexisted mostly in the GD patients who participated in the present study.

In view of the behavioral association of ASD trait in problematic internet users [10,11], we

expected that the ASD may have a substantial neurobiological impact on GD patients.

Materials and methods

Participants

The experiment was conducted with the approval of The Ethics Committee of Kurihama Med-

ical and Addiction Center (KMAC), Human Bioethics Review Committee of Tokyo Denki

University, and Ethics Review Committee on Research with Human Subjects of Waseda Uni-

versity. The aim of the study and procedures of MRI recording were explained to all partici-

pants and accompanying guardians of non-adult participants. Written form of informed

consent was obtained from all prior to the commencement of experiment.

The patients participated in this study were outpatients of KMAC ranging from 12–26

years of age. They were diagnosed with GD by trained psychiatrists according to the criteria

defined in the ICD-11 [1], which states that “in order for a diagnosis of the GD to be assigned,

the gaming behavior and other features are normally evident over a period of at least 12

months, although the required duration may be shortened if all diagnostic requirements

(briefly described at the top of Introduction) are met and symptoms are severe.” Here, the

diagnosis of GD is not based on numerical measures. For all the patients, the diagnoses of ASD

and ADHD were also conducted based on the criteria defined in Diagnostic and Statistical

Manual of Mental Disorders, Fifth Edition (DSM-5) [48]. The ADHD section of the Japanese

version of the Semi-Structured Interview for the Genetics of Alcoholism (version2) was also

used to confirm the diagnosis of ADHD [49]. In addition, GD patients were diagnosed with

disorders of depression, schizophrenia and other disorders using various instruments includ-

ing the Mini International Neuropsychiatric Interview (MINI) [50]. For any conditions of

ASD, ADHD, or other disorders, numerical measures on the severity of syndromes were not

acquired or used as criteria of the diagnosis. Finally, the patients were separated into the GD

individuals with no comorbid conditions (hereafter denoted by GD group) and those having

comorbid conditions of ASD, ADHD, depression, or schizophrenia (denoted by GDcm

group).
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For healthy controls (HC), we recruited payed volunteers of young (17-year-old and below)

and adult (above 17-year-old) groups from Junior-High/High Schools and Universities,

respectively. Selection of the HC group was done by excluding individuals having GD, ASD,

ADHD or other conditions in the following procedures. The young volunteers were given the

same interviews, with accompanying parents/family, as the GD patients by the members of

KMAC at the students’ school-campus. Based on these interviews, individuals who were sus-

pected to have possibilities of GD and/or aforementioned conditions were screened out. For

adult HC, volunteers of university students were administered a series of self-report question-

naires (Japanese-versions) of Internet Addiction Test (IAT) [51], Beck Depression Inventory-

II (BDI-II) [52], Autism-Spectrum Quotient [53] and Adult ADHD Self Report Scale (ASRS

-v1.1) [54]. The scores of these tests were used to find suspected individuals, adopting thresh-

old scores of the questionnaires indicated in related literatures. The suspected individuals hav-

ing scores equal or higher than any of these thresholds were excluded from the participants.

Though not used in screening, the questionnaire of Barratt impulsiveness scale 11 was also

administered [55]. After these tests, the selected adult HC individuals had mean scores of:

IAT = 28.8 (40), BDI-II = 4.9 (11), AQ = 13.1 (34), ASRS = 1.6 (4) and BIS-11 = 57.1, where

the adopted threshold scores are indicated in the parenthesis. The entire HC group comprised

the selected young/adult participants.

Table 1 summarizes the information of the participants of the HC (n = 29), GD (n = 23)

and GDcm (n = 17) groups whose data were analyzed in this study. Note, we removed two

individuals (HC and GD) from the aforementioned selected participants based on a criterion

of head motion during MRI recording, which was evaluated in the data preprocessing

(described in Methods). The sex of all participants was male. The GDcm group comprised

eight ASD, five ADHD, two ASD/ADHD, and two other (depression and schizophrenia) indi-

viduals. Analysis of variance (ANOVA) and post hoc tests revealed a difference in the mean

age (p = 0.019) between the HC (19.4 years) and GD (17.0 years) groups. To compensate for

this statistically significant age difference in the assessment of functional connectivity (FC)

values while utilizing the data of all participants, we used weighted averaging of variables, a

procedure which is described later. When we applied this method for the age assessment, non-

significant difference (p = 0.118) was confirmed between the HC and GD groups. Between the

GD and GDcm groups, there were no significant differences in the mean age, education period

and gaming time/period. It is thus expected that the difference in the functional connectivity

between the GD and GDcm groups would reflect effects of comorbidity conditions, under

equal demographic characteristics.

Recordings and data preprocessing

Recordings of functional magnetic resonance imaging were performed using a 3.0 T scanner

(GE; Discovery MR 750w). Time signals of rs-fMRI were acquired in an echoplanar imaging

Table 1. Demographic information and characteristics of participants.

HC GD GDcm

Group size 29 23 17

Mean age (years) 19.4 ± 3.57 17.0 ± 3.50 17.2 ± 4.20

Education period (years) 12.1 ± 3.26 9.91±3.22 9.59 ± 3.05

Gaming time (hours/day) 1.52 ± 1.24 6.00 ± 2.78 6.13 ± 4.55

Gaming period (years) N/A 9.57 ± 4.74 8.77 ± 5.95

HC: healthy control, GD: gaming disorder, GDcm: gaming disorder with comorbid conditions of ASD, ADHD, depression and schizophrenia.

https://doi.org/10.1371/journal.pone.0233780.t001
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(EPI) scheme with echo time (TE) = 30 ms, repetition time (TR) = 2800 ms and flip angle (FA)

= 90˚. The acquisition matrix was 64 × 64 in a field of view (FOV) of 240 mm. The slice thick-

ness was 5 mm without gap, and 150 volumes of 28 slices were acquired in each participant.

The participants were instructed to lie quietly, i.e., motionless, in the scanner with their eyes

closed, not to sleep and, not to think about any events. Though no device was used for objec-

tive verification except for the scanner monitor, all participants subjectively reported that they

were awake during the scan.

The first 10 volumes of the rs-fMRI signals were discarded to assure equilibrium of magne-

tization. Functional data of each participant were corrected for head movement, and a mean

realigned image was created using the Statistical Parametric Mapping toolbox, version 8

(SPM8; Welcome Department of Cognitive Neurology, London, UK). Scan volumes exceeding

2-mm head movements were discarded. The data set was spatially normalized into the stan-

dard space defined by the Montreal Neurological Institute (MNI) template and spatially

smoothed using 8-mm isotropic Gaussian kernel to compensate for inter-individual anatomi-

cal variance.

The framewise displacement of head motion in the rs-fMRI recording is a crucial index of

data quality that may influence the connectivity network [56]. A criterion of the mean frame-

wise displacement across volume scans (mFD) of 0.2 mm has been proposed, in a comprehen-

sive comparative study [57], for the reduction of motion-related artifacts. Calculations of the

mFD using a toolbox [58] revealed that two participants had excessive mFD values: 0.25 mm

(2.6 times the mean of participant’s HC group); and 0.40 mm (3.2 times the mean of partici-

pant’s GD group). After removing these two participants, low mFD values of 0.09 ± 0.02,

0.11 ± 0.04 and 0.09 ± 0.03 mm were obtained for the HC, GD and GDcm groups, respectively.

Though not significant, there was a marginal difference of the mFD among the three groups

(p = 0.053, main effect of ANOVA). We did not implement the global signal regression for

denoising as it might cause artifactual negative correlations [59, 60] or artifactual group differ-

ences in FC [61, 62], though the global signal has been regressed in some whole-brain FC stud-

ies for IA subjects [46, 47].

Evaluation of functional connectivity

Time series of rs-fMRI signals were filtered to a frequency width of 0.017–0.09 Hz to extract

blood-oxygen-level dependent (BOLD) signals. We analyzed the value of FC of the BOLD sig-

nals between anatomical areas of the brain defined by Automated Anatomical Labeling (AAL)

[63], which parcels the brain into 116 areas. The AAL has commonly been used as an anatomi-

cal atlas in functional network studies [64], especially in whole brain functional connectivity

analyses employing network-based statistics and topological theory [45–47, 65–67]. The cere-

bellum and vermis are divided into 30 areas in the AAL, which have many inter-areal connec-

tions (2665) between the cerebellum, vermis and other brain areas. We focused our functional

connectivity analysis in the cerebral cortex and related regions such as the limbic and subcorti-

cal structures, by excluding connections with the cerebellum/vermis. Thus, we studied total

4005 connections across 90 AAL areas in the brain.

The functional connectivity is based on the correlation of time-series BOLD signals

between a pair of nodes, which are given by AAL areas in this study. To calculate this correla-

tion, time-series signals of all voxels in each AAL area were averaged to form a single wave-

form, and then Pearson’s correlation coefficient was calculated and used as the value of FC. In

the assessment of FC for the HC and GD groups between which a small age difference of

HC> GD existed, we adopted a method of weighted averaging to suppress the influence of the

age difference. In this method, weighted group-mean FC is expressed by �FC ¼ SaiFCi=Sai,
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where ai is the weight coefficient of participant i. The higher and lower mean ages of the HC

and GD groups were mainly caused by high age HC-participants at 22 and 23 years-old (nage =

5 each) and low age GD-participants at 13 and 14 years-old (nage = 4 each), where nage is the

number of participants in an age-bin. These nage exceeded the mean number of participants

per age-bin across the two groups of nmean = 3 (nearest integer to the exact value of 2.6). Then,

we let the coefficients ai of these high- and low-age participants be ai = nmean/nage to reduce

and equate the contribution from the excess nage participants to what would be given by nmean

participants. The ai of other participants were 1, as in the conventional averaging. We did

not raise the ai of participants having the nage lower than nmean, because enhancing the contri-

bution of small number of participants per age-bin would increase errors. In the weighted

averaging of group-mean dispersion ð �SD2Þ, which was required in the calculation of t-test

between groups, �FC and FCi in the above equation were replaced with �SD2 and ðFCi �
�FCÞ2,

respectively.

Following the above-mentioned procedures, we obtained the group-mean FC and its dis-

persion using the data of all participants in a group. We then conducted statistical evaluation,

i.e., connection (node link)-wise comparisons, of the group-mean FC for 4005 node links in

the whole brain between HC and GD, GD and GDcm, and HC and GDcm groups. We used

Welch’s two-sample t-test [68] in the FC-comparison as this method is thought reliable when

two groups have unequal dispersions and unequal sample sizes.

Analyses of node links and core nodes

A large number of significant node links (> 200) were observed in between-group compari-

sons at a p-level of<0.05 (two-tailed). To focus on major node links associated with function-

ally important networks, we restricted node links by raising the significance level to p < 0.02.

The obtained node links at this p-value were appropriate (see Table 2) to search for networks

in the HC versus GD, and GD versus GDcm group-comparisons. After this connection-wise

assessment, clusters of suprathreshold node links were identified in which all node links shared

a common node as a center of the cluster (hereafter referred to “core node”).

We evaluated the statistical significance of core nodes, i.e., cluster-level significance, using

nonparametric permutation test that can control over Family-Wise Type 1 Error (FWE) in

multiple comparisons in the whole brain. To develop a data-driven approach that does not

rely on a priori concepts, we adopted the procedures described in previous literatures

[65,69,70]. First, all participants in two groups to be compared were reassigned randomly to

Table 2. Brain regions and AAL areas of core nodes observed for the three group-contrasts of FC.

Contrast (links)

HC > GD (51) GD > GDcm (117) HC > GDcm (1316)

Brain regions AAL areas of core nodes (number of node links)

Frontal r-OLF (10), SFGorb (6) − r-SFGdsl (52), l/r-IFGorb (49/59)

Frontal − − r-SFGmed (49)

Central r-PreCG (5), r-PCL (12) − r-PCL (45)

Temporal − r-TPstg (13), l/r-TPmtg (48/25) l/r-TPstg (67/72), l/r-TPmtg (68/55)

Temporal − l/r-HES (50/53), r-ITG (61)

Parietal − − r-IPL (58), l-ANG (39)

Occipital r-CAL (5) − l-CAL (49), r-CUN (45)

Limbic r- HIP (9) − r-PHG (46), r-MCC (55)

l/r = right/left hemisphere. Full names of abbreviated AAL areas are shown in the captions of Fig 2.

https://doi.org/10.1371/journal.pone.0233780.t002
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one of the two groups while keeping the sample number in each group unchanged. Appropri-

ate weighted-averaging and Welch’s t-test were conducted for suprathreshold node links, from

which a series of core nodes having a node link cluster were identified. Among those, the larg-

est core node and its cluster size were recorded. We conducted 5000 repetitions of this process

while permuting participants’ group assignments and determining the maximum cluster size.

The results yielded a relationship between the maximum cluster-size and its occurrence proba-

bility. Finally, clusters with their size exceeding the maximum cluster-size at a given occur-

rence probability (threshold) were regarded as significant. The p-value of 0.02 in the initial

connection-wise test was used as this threshold. We thereby obtained the core nodes having

cluster-level significant node links for three between-group comparisons among the HC, GD

and GDcm groups. Finally, we estimated networks consisting of significant node links to the

core nodes; a network was composed by selecting AAL areas, known as network components,

from counter nodes linking to core nodes.

To evaluate the significance of comorbidity conditions in the GD> GDcm group-contrast,

we conducted connection-wise regression analyses of FC using three factors (regressors) of

comorbidity, i.e., ASD, ADHD, and depression/schizophrenia for the significant node links

that belonged to core nodes. The significance of the comorbidity of ASD or ADHD was deter-

mined by the p-value (< 0.05) of the regression coefficient.

Results

Group comparisons of functional connectivity

In between-group comparisons of FC at a significance level of p< 0.02, we obtained 51, 171

and 1316 connection-wise significant node links having HC> GD, GD> GDcm and

HC> GDcm contrasts, respectively. Node links having opposite group contrasts were not

observed at the p-level up to< 0.05. Table 2 shows brain regions and AAL areas of significant

core nodes assessed by permutation tests, with cluster size (the number of connected nodes)

shown in parentheses. Although the number of core nodes was fewer for the GD > GDcm

compared to the HC> GD contrast (2 vs. 6), total node links were much greater for the former

contrast because of greater cluster size. It was also found that the core node areas did not over-

lap between these two group-contrasts. These results imply that the spatial distribution of the

node links converging to core nodes, in association with comorbid conditions, in the

GD > GDcm contrast was distinct from the distribution of the node links in the HC > GD

contrast, and that effects of comorbidities dominated the effects of gaming disorder.

To quantitatively examine the alteration of connectivity, we calculated the group-mean FC-

value of principal core nodes: right hippocampus (r-HIP) for the HC> GD group-contrast;

and left temporal pole of middle temporal gyrus (l-TPmtg) for the GD > GDcm group-con-

trast. The results (Fig 1) indicated that the reduction of the mean FC, represented by the Z-

and p- values, was obviously greater between GD and GDcm groups than between HC and

GD groups. This is in line with the increase in cluster size of the core nodes and the total node

links in the GD > GDcm group-contrast compared to the HC > GD group-contrast.

Although we set the significance level of node links and core nodes at p< 0.02 in this study,

we made comparison of features of core nodes and functionally important networks with

those obtained by applying a conventional threshold at p< 0.05. In the Supporting Informa-

tion, S1 Table shows brain region, area and the number of significantly diminished node links

observed at p< 0.02 and p< 0.05, for the FC contrasts of HC> GD and GD > GDcm groups.

It was confirmed that core nodes at the lower threshold (p< 0.05) included all the core nodes

and diminished links (k) at p< 0.02. Additional core nodes at p< 0.05 were found in the AAL

areas contralateral to the core-node areas at p< 0.02, or mostly in the same brain regions of
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central, limbic and temporal areas. No overlapping of core-node areas between the two group-

contrasts observed in this study (Table 2 in the text) was also maintained at p< 0.05. As seen

in S2 Table, diminished core-node links that belong to the reward system (RWS) and networks

(ECN and DMN) shared counter subregions of the brain at p< 0.05 with increased node

numbers and at p < 0.02. Importantly, the absence of diminished-link nodes (the anterior cin-

gulate cortex (ACC) and the putamen/pallidum (PUT/PAL) of basal ganglia) at p< 0.02 in the

RWS for the HC> GD group-contrast was consistent at the lower threshold (p< 0.05). These

two diminished areas were concordantly found at the two p-levels for the GD > GDcm group-

comparison. Thus, the general features of core nodes and diminished system/network areas

are consistent between the threshold of the present study and the conventional p-value of 0.05.

Node-link areas in the HC > GD group-contrast

Node links to core nodes with significantly reduced FC were distributed in wide areas in the

brain. We classified the brain areas of the counter node of node links into appropriate brain

regions to estimate a network/system. It was assumed that a set of counter node areas in sepa-

rate brain regions that were interconnected through a core node could form a network.

Table 3 shows the core nodes identified for the HC> GD group-contrast with (x, y, z) MNI

coordinates and the p-value of the core-node cluster, i.e., average p-value across node links.

Fig 1. Mean FC-values for the principal core nodes of right hippocampus (r-HIP) in the HC versus GD group-

comparison and left temporal pole (l-TPmtg) of the middle temporal gyrus in the GD versus GDcm group-

comparison. Mean FC was calculated across the 10 lowest-p node links to the core node.

https://doi.org/10.1371/journal.pone.0233780.g001
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The number of node links to the core node is indicated in the row for each brain region. We

selected appropriate brain regions of node links and assigned them to a plausible network

based on a priori knowledge. The ECN and reward system (RWS) were estimated. Note that

the frontal and parietal cortices were parceled into subregions consisting of one to four AAL

areas so that each subregion corresponded to a separate component of a network/system. Fig 2

shows the spatial distribution of the core nodes and connected nodes with significantly

reduced FC plotted on a horizontal (x, y) plane of MNI coordinates and superimposed on a

schematic brain surface. The brain region is differentiated by the symbol color, and the color

of connection lines indicates the estimated network/system.

The central executive network was originally proposed to consist of dorsolateral frontal cor-

tex and posterior parietal cortex [71,72]. It was extended to the ECN by adding the ventrolat-

eral frontal cortex, which may play a role in response suppression/inhibition and thus

implements the control in executive function to operate as “executive control” [73,74]. In the

estimated ECN shown in Fig 2, five significant nodes-link areas existed in the prefrontal cor-

tex: three (r/l-MFG, r-SFGdsl) in the dorsolateral region, and two (l-IFGtri, r-IFGopc) in the

ventrolateral region, where l/r indicates left/right hemispheres. Since the prefrontal cortex

includes eight AAL areas of the ECN, it follows that five of eight (5/8) prefrontal ECN areas

were occupied by significantly reduced-FC node links. In the posterior parietal region that

consists of six AAL areas of the ECN, two significant nodes (2/6) existed in the r-PCUN and r-

SPL areas. These node-link areas can briefly be seen in Fig 2. The prefrontal nodes were linked

to core nodes of the precentral gyrus (r-PreCG) and hippocampus (r-HIP), to which the poste-

rior parietal nodes were linked directly or via the core node of the paracentral lobule (r-PCL)

core node. Thus, the dorso/ventrolateral frontal areas and the posterior parietal areas jointly

formed an ECN having significantly reduced connectivities.

Table 3. Cluster-level significant core nodes observed for the FC difference of HC>GD groups, and brain regions with the number of node links connected to the

core node.

Core node r-SFGorb r-OLF r-PCL r-PreCG r-CAL r-HIP

MNI coordinates (19, 58, -13) (3, 14, -14) (4, -35, 76) (35, -16, 64) (5, -70, 11) (28, -4, -5)

Cluster-p 0.014 0.016 0.013 0.016 0.013 0.014

Brain regions Number of node links �NW/SYS

Dorsolateral frontal 1 2 1 1 ECN (4)

Ventrolateral frontal 1 1 ECN (2)

Orbitofrontal 1 2 5 RWS (6)

Medial-orbitofrontal 2 RWS (2)

Central 1 2 3 (4)

Temporal 4 1 1 (5)

Inferior parietal 1 (1)

Posterior parietal 1 1 1 ECN (2)

Occipital 3 2 2 (6)

Middle cingulate 1 1 (1)

Hippocampus/PHG 2 1 1 RWS (2)

Caudate 1 1 (1)

�ECN = executive control network, RWS = reward system. The sum of nodes, not node links, in each brain region is indicated in the parenthesis of NW/SYS. AAL areas

included in the brain regions related to the network/system are as follows: Dorsolateral frontal (SFGdsl/MFG); Ventrolateral frontal (IFGopc/tri); Orbitofrontal

(SFGorb/MFGorb/IFGorb); Medial-orbitofrontal (REC); Inferior parietal (IPL); posterior parietal (SPL/PCUN/ANG). For the full name of abbreviated AAL areas, see

captions of Fig 2.

https://doi.org/10.1371/journal.pone.0233780.t003
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The RWS is based on the nucleus accumbens in the ventral striatum and limbic structures

of amygdala and hippocampus [13], extending to the anterior cingulate cortex and the orbito-

frontal cortex [14]. Among a total of ten areas in the orbitofrontal and medial orbitofrontal

regions of the RWS, eight areas (8/10) were occupied by the significant node links, including

Fig 2. Two-dimensional view of core nodes (large symbols) and AAL node areas having a FC difference of

HC>GD groups. MNI coordinates of core node areas are the maximum location of the mean BOLD signal in the HC

group. The color of nodes indicates brain regions: red = frontal; green = central; blue = temporal; purple = parietal;

orange = occipital; black = limbic, orange-brown = basal ganglia. The symbol of nodes indicates depths of node in the

z-axis: square = orbital; triangle = ventral; circle = dorsal locations. Estimated network/system are indicated by color

lines: dark brown = ECN; pink = RWS. Full names of abbreviated AAL areas used in the tables and figures: SFG/MFG/

IFG = superior/middle/inferior frontal gyrus, REC = gyrus rectus, OLF = olfactory cortex, SMA = supplementary

motor area, Pre/PoCG = pre/post central gyrus, PCL = paracentral lobule, STG/MTG/ITG = superior/middle/inferior

temporal gyrus, TPstg/mtg = temporal pole of STG/MTG, HES = Heschl gyrus, FFG = fusiform gyrus,

SMG = supramarginal gyrus, SPL/IPL = superior/inferior parietal lobule, PCUN = precuneus, ANG = angular gyrus,

CAL = calcarine fissure and surrounding cortex, CUN = cuneus, LING = lingual gyrus, SOG/MOG/IOG = superior/

middle/inferior occipital gyrus, ACC/MCC/PCC = anterior/middle/posterior cingulate cortex, AMG = amygdala,

HIP/PHG = hippocampus/parahippocampal gyrus, INS = insula, CAU = caudate, PUT = putamen, PAL = globus

pallidum, THL = thalamus. Portions of AAL areas: dsl/orb/med = dorsolateral/orbital/medial part, opc/tri = opercular/

triangular part.

https://doi.org/10.1371/journal.pone.0233780.g002
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the superior/medial/inferior frontal gyrus of orbital part (l/r-SFGorb/l-MFGorb/r-IFGorb),

gyrus rectus (l/r-REC) and olfactory cortex (l/r-OLF) (Fig 2). Some of these nodes were linked

to the core node of r-HIP through the r-OLF and middle cingulate cortex (r-MCC). Other

orbitofrontal nodes were linked to a core node of the paracentral lobule (r-PCL), which had a

link to the HIP core node. Thus, it seems that the HIP played a role as a center of the orbito-

frontal connections in the RWS with significantly reduced FC. However, this RWS circuitry

did not have components of the putamen (PUT) and globus pallidum (PAL) of the basal gan-

glia, which plausibly correspond to the ventral striatum. Thus, most of the orbital frontal areas

were involved in the RWS, but the system was incomplete as crucial areas of the ventral stria-

tum were absent.

Node-link areas in the GD> GDcm group-contrast

In the GD> GDcm group-contrast, 86 links to core nodes having significantly reduced FC

were observed. They belonged to the core nodes of temporal poles of bilateral middle temporal

gyri (l/r-TPmtg) and right superior temporal gyrus (r-TPstg). Using these data, 51 and 11

node links were determined as significant to the ASD- and ADHD-conditions with regression

analysis, respectively. Table 4 shows the core nodes and brain regions that included node links

to the core nodes, separately for the ASD and ADHD conditions. The spatial distribution of

the core nodes and node link-areas plotted on the horizontal (x, y) plane of MNI coordinates

are shown in Fig 3 for the ASD-significant condition.

In clear contrast to the HC > GD difference, all areas of the basal ganglia (caudate, puta-

men, globus pallidum: CAU/PUT/PAL) were observed to have reduced-FC links to the core

nodes of bilateral temporal poles (l/r-TPmtg and l-TPstg) in the ASD-significant condition.

Here, the major part of the PUT is known to be included in the ventral striatum of the RWS

Table 4. Cluster-level significant core nodes observed for the FC difference of GD>GDcm groups, and brain regions with the number of node links to the core

nodes which were significantly related to ASD and ADHD conditions.

Core node l-TPmtg r-TPmtg r-TPstg l-TPmtg r-TPmtg

MNI coordinates (-40, 14, -31) (42, 11, -32) (53, 9, -10) (-40, 14, -31) (42, 11, -32)

Cluster-p 0.007 0.012 0.011 0.007 0.012

Brain regions ASD-related node links (�Node) NW/SYS ADHD-related node links (�Node)

Medial frontal 1 (1) DMN

Dorsolateral frontal 3 (3) ECN

Ventrolateral frontal 4 2 (4) ECN

Orbitofrontal RWS 2 (2)

Insula 1 2 (2)

Posterior cingulate 1 (1) DMN 2 1 (2)

Temporal 3 2 (5)

Temporoparietal JCT 2 2 (2)

Inferior parietal 1 1 (1) DMN

Posterior parietal 2 (2) ECN 3 2 (3)

Occipital 4 3 (6)

Hippocampus 2 (2) RWS

Caudate 2 1 (2)

Putamen/pallidum 4 3 4 (4) RWS

Thalamus 1 (1) 1 (1)

�Node is the sum of nodes, not node links, in each brain region. DMN = default mode network.

https://doi.org/10.1371/journal.pone.0233780.t004
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together with the nucleus accumbens (NAc) [75]. The central location of the PAL at the

group-mean BOLD maximum in this study was close to the coordinates of NAc reported in

the previous study [76]. Thus, the area of PUT/PAL plausibly corresponds to the ventral stria-

tum of the RWS reflecting the activity of the NAc. It was also found that the left amygdala

(AMG) had reduced-FC links (p< 0.02) to the temporal poles (l/r-TPmtg) via the left HIP

core node. Contrary to the full node links in the basal ganglia areas, no significantly reduced

node links were found in the orbitofrontal regions of the RWS. However, if we combine the

results of diminished node-link areas obtained for the HC> GD and ASD-related

GD > GDcm group-contrasts (Tables 3 and 4 and Figs 2 and 3), it is expected that 8/10 (eight

of ten) orbitofrontal areas, 4/4 PUT/PAL areas, 3/4 HIP/PHG areas of the RWS would have

significantly reduced connectivities in a group comparison between HC and GDcm; the

comorbidity of ASD condition in the GDcm patients would facilitate the FC reduction such

that the connections in most areas of the mesolimbic circuit of the RWS are diminished.

Fig 3. Two-dimensional view of core nodes (large symbols) and AAL node-link areas having a FC difference of

GD>GDcm groups. Results are shown for the nodes significant to the ASD comorbid condition of the GDcm group.

Symbols and lines are indicated as in Fig 2. The estimated DMN is indicated by green lines. Full names of abbreviated

AAL areas are shown in the captions of Fig 2.

https://doi.org/10.1371/journal.pone.0233780.g003
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As for the estimated ECN, reduced-FC node links existed in four AAL areas (l/r-IFGtri/opc)

in the ventrolateral frontal region and in two posterior parietal areas of angular gyrus (l/r-ANG)

that were not observed in the HC> GD group-contrast. If we combine the results for the

HC> GD and GD> GDcm group-contrasts, significantly reduced-FC node links would be

observed in 8/ 8 frontal areas and 4/6 posterior parietal areas of the ECN for the group compari-

son between HC and GDcm. This estimation suggests that the GDcm group having ASD comor-

bidity may have diminished connections in most of the ECN areas, compared to the HC group.

The DMN was revealed in imaging studies as a set of regions that consistently showed greater

activity during resting states than during cognitive tasks [77,78]. Main brain regions of the DM

network were shown to include the posterior cingulate cortex (PCC), inferior parietal lobule (IPL)

and medial frontal cortex [79]. In Fig 3 and Table 4, reduced-FC node links existed in the superior

frontal gyrus of medial part (l-SFGmed), the r-PCC and the l-IPL, from which a configuration of

the DMN including the frontal, cingulate and parietal regions was inferred. However, the

reduced-FC links were incomplete as a network and limited to the left hemisphere.

In significantly reduced node links observed for the ADHD-condition, bilateral core nodes

of the temporal pole (l/r-TPmtg) were confirmed. AAL areas of the counter nodes indicated

the olfactory cortex, posterior cingulate cortex, thalamus, angular gyrus and precuneus.

Node-link areas in the HC > GDcm group-contrast

To examine the aforementioned predictions about combined results of the HC> GD and

GD > GDcm group-contrasts, we sought AAL areas and their connections, which belonged to

the ECN, RWS and DMN, from large number of significantly diminished node links in the

HC> GDcm group-contrast (Table 2). To do this, we assigned the left and right temporal

poles (l/r-TPmtg/stg) as core nodes and selected the links of the core nodes that had counter

node-areas included in the above networks/system. The obtained results showed that the

counter node areas of the selected links formed the ECN, RWS of almost completed structures

but an incomplete structure of the DMN, as summarized in Table 5. The ECN consisted of

diminished nodes in all bilateral dorsolateral and ventrolateral frontal areas and bilateral pos-

terior parietal areas (SPL, ANG and PCUN). The diminished nodes in the RWS comprised

bilateral areas of the orbitofrontal cortices, anterior cingulate cortex (ACC), amygdala (AMG),

HIP, and PUT/PAL. The diminished nodes in the DMN were bilateral but only connected to a

core node of the left temporal pole (TPstg). These results for the HC> GDcm group-contrast

are consistent with the prediction that the ASD comorbidity would have effects on GDcm

patients to extend and complete diminished ECN and RWS.

Table 5. Brain areas of the network and system having diminished links to the selected core nodes of temporal poles, observed for the HC> GDcm group-contrast.

ECN RWS DMN

l/r-TPmtg l/r-TPstg l/r-TPmtg l/r-TPstg l-TPstg

AAL areas connected to the core nodes

l/r-SFGdsl l/r-SFGdsl l/r-SFGorb l/r-SFGmed

l/r-MFG l/r-MFG �l/r-MFGorb �l/r-MFGorb

l/r-IFGtri l/r-IFGtri l/r-IFGorb l/r-IFGorb

l/r-IFGopc l/r-IFGopc l/r-ACC l/r-IPL

l/r-SPL l/r-SPL l/r-AMG l/r-AMG l/r-PCUN

l/r-ANG l/r-ANG l/r-HIP l/r-HIP l-PCC

l/r-PCUN l/r-PCUN l/r-PUT/PAL l/r-PUT/PAL

�Connected via the OLF area. Full names of AAL areas are described in the captions of Fig 2.

https://doi.org/10.1371/journal.pone.0233780.t005
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Discussion

Executive control network and reward system

We estimated diminished ECN and RWS from the clusters of reduced-FC nodes. In the dimin-

ished ECN observed in the GD group compared to the HC group, dorsolateral/ventrolateral

prefrontal nodes and posterior parietal nodes were identified. Those areas were interconnected

with reduced-FC mainly via the HIP core node (Fig 2). Similar configuration of the ECN was

confirmed in the ASD-significant GDcm group compared with the GD group, in which

diminished nodes were extended to new areas in the dorsolateral/ventrolateral frontal and pos-

terior parietal regions. (Fig 3). These results suggest that the ECN is a fundamental mechanism

that is diminished by the effect of gaming disorder alone, and that the comorbidity of ASD

tends to extend the diminishment of the ECN in the frontal and posterior parietal regions.

Finally, the ECN was diminished in almost all component areas in the ASD-significant GDcm

group compared to the HC group. Previous imaging studies on IGD individuals have revealed

negative correlation of the performance of executive/cognitive control, evaluated with Stroop

test, with the functional connectivity within the ECN [27], and with functional and effective

connections between the ECN and salience networks [31]. The outcomes of these activation

studies are in line with and support the observation of diminished ECN in the GD group in

this study.

Diminished connectivities of the RWS were observed in the GD group compared to the HC

group in wide areas of orbitofrontal and limbic HIP/PHG regions, but not the basal ganglia

areas (PUT/PAL) crucial for the RWS (Fig 2). These PUT/PAL areas, and the AMG and bilat-

eral HIP were found with diminished connectivities in the ASD-significant GDcm group com-

pared with the GD group. Finally, the orbitofrontal cortex, anterior cingulate cortex,

amygdala, PUT/PAL and HIP were confirmed with diminished connectivities in the GDcm

versus HC group comparison (Table 5). We presume that the diminished connections of the

orbitofrontal, HIP and PUT/PAL (ventral striatum) areas represent the mesocortical and

mesolimbic circuits [13].

Alteration of the mesocortical/limbic reward system has previously been associated with

behavioral addictions [20]. In relation to the IGD, several studies have reported altered activi-

ties of the striatum: reduced levels of dopamine expression and dopamine receptor availability

[21,22]; decreased activation during inhibition and reward-anticipation tasks [23,25]; and

reduced functional connectivities with the dorsal PUT and dorsal striatum/PAL [24,26]. All

these studies suggest decremental alteration of the striatum activity, which is consistent with

our observation of the diminished frontal-to-ventral striatum connectivities in the GDcm

group. Furthermore, the wide brain areas of the diminished RWS found in this study are coin-

cident with the reported pattern of altered activation in heroin-dependent individuals, includ-

ing prefrontal cortices, limbic structures and basal ganglia structures [80]. Taken together, the

diminishment of the connectivity in the brain areas of orbitofrontal cortex, ventral striatum

and limbic structures observed in the GDcm group with coexisting ASD, in comparison to the

HC group, suggests that the mesocortical circuits of the RWS were disordered in a similar cir-

cuitry as in behavioral addiction. We presume that the coexistence of the ASD condition had

substantial detrimental effects on the RWS in gaming disorder patients.

Basis of the influence of comorbid conditions

We inferred effects of coexisting conditions of ASD/ADHD from the difference of FC between

the GD and GDcm, and between the HC and GDcm groups. The primary finding in the

GDcm group is the increase in spatial extent of diminished ECN and RWS in the entire
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network regions. We sought conceivable mechanisms underlying these alterations in the

neurobiological findings revealed by brain imaging.

Previous studies for autism patients and autistic individuals indicated: reduced regional

cerebral blood flow in the prefrontal cortex/insula, and specific perfusion pattern in the medial

prefrontal and limbic regions in children with infantile autism [81]; delayed maturation, i.e.,

hypoperfusion, of the frontal cortex at ages of 3–4 years and normal values by 6–7 years in

autistic children [82]; low correlation of regional cerebral metabolic rates of glucose (func-

tional interaction) between frontal/parietal and other cortical/subcortical regions in healthy

autistic males [83]; and reduced activation during spatial working memory task in dorsolateral

prefrontal cortex and posterior cingulate cortex in autistic subjects [84]. As for patients/indi-

viduals with ADHD, previous studies have shown reduced activation [85], reduced structural

connectivity [86], correlation of the grey matter volume with the severity of symptoms [87]

and decreased gray matter volume [88] in the prefrontal cortices and related structures. These

studies suggest that young individuals with ASD and ADHD tend to have metabolic, structural

and functional anomalies in the prefrontal cortex and its connections to other brain regions.

Provided that incompleteness exists in the function and/or structure of prefrontal cortex in the

GDcm group with coexisting ASD/ADHD, this weakened prefrontal activity might facilitate the

reduction of prefrontal-based connectivities in a network. In line with this, diminished node links

were found in almost all AAL areas of dorsolateral/ventrolateral and orbital prefrontal regions of

the ECN and RWS in the GDcm group compared to the HC group, as described so far.

Core nodes

Core nodes were defined as the central node having a cluster of significantly diminished con-

nections to other counter-node areas. The observation of the core nodes is an important out-

come of cluster-based statistics, in which clusters of maximal size are searched [70,89]. In the

HC> GD group-contrast of FC, the HIP core node had reduced-FC links to the primary

visual areas (CAL) bilaterally (Fig 2), while other core nodes (SFGorb, OLF) had reduced-FC

links to higher visual areas (LING, SOG, CUN) in the occipital cortex. These observations

imply that the HIP node area specifically received visual information from the primary visual

cortex through diminished connections.

With respect to the visual processing, a visual information pathway coursing from the pari-

etal lobe downward to the HIP in the medial temporal lobe [90] is known in the dorsal visual-

information streams. This pathway subserves spatial navigation, whereas traditional parieto-

prefrontal and parieto-premotor pathways support spatial working memory and visually

guided action, respectively. In line with this notion, the damage to the parieto-medial temporal

pathway was reported to result in topographic disorientation in human [91]. Meanwhile, neu-

rons in human entorhinal cortex, which is a main input area to the HIP, were activated during

a virtual navigation task [92]. In addition, the HIP was involved in visual discrimination of

complex spatial-scene stimuli [93]. The results of these studies indicate that the HIP engages in

the spatial navigation and visual discrimination, which should be important in the gaming

such as visually-guided-actions in varying background environments. This kind of visual per-

ception and cognition may be additive to the main function of memory of the HIP associated

with emotion and learning.

These versatile functions of the HIP suggest the possibility that the HIP plays a role as a cen-

tral core node in the functional network/system, operating multiple-information processing. It

should also be mentioned that the HIP/PHG have vulnerability to structural and neuronal

changes by intensive game playing. Reported altered quantities include the grey matter volume

of the PHG and occipital/parietal cortices [94], the grey matter density of the HIP, precuneus,
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inferior frontal gyrus and others [95], and the connectivity between the HIP/PHG and the

fronto-executive system [96]. Such vulnerability may contribute to the diminishment of node

links to the HIP core node.

An interesting finding is the emergence of the temporal pole core nodes (TPmtg/stg) in the

GD versus GDcm group-comparison. Anatomical and functional connectivity studies have

shown that the anterior temporal lobe has connections, in its parceled subregions, with wide

brain regions including auditory, somatosensory, visual, and olfactory areas [97,98]. Thus, the

anterior temporal lobe serves as a converging center of the posterior sensory information. It

was proposed that the anterior temporal lobe acts as a binding hub for semantic memories of

different sensorimotor modalities to form concepts [99]. As for pathways, information from

the posterior sensory/association cortices is transferred to the anterior temporal lobe through

nerve bundles of (a part of) superior, middle and inferior longitudinal fasciculi [100,101],

some of which may overlap with the ventral visual-information pathway. Then, the converged

information at the anterior temporal lobe is transferred to prefrontal cortices through the

uncinate fasciculus. The importance of the uncinate fasciculus as a bridging pathway between

the anterior temporal lobe and the orbitofrontal cortex has been pointed out in a review [102].

Taken together, the previous findings for the anterior temporal lobe suggest a possibility

that the temporal-pole operate as a converging center of the information from posterior corti-

cal cortices. This notion is supported by the node links from wide regions of the occipital, tem-

poral and parietal cortices to the temporal-pole core nodes observed in the GD > GDcm

group-contrast (Fig 3). We suppose that GD individuals, especially with ASD/ADHD comor-

bidities, utilize abundant information of visual, auditory, and somatosensory stimuli during

gaming, and that this information is transferred via temporal poles and processed in the orbi-

tofrontal cortices of the RWS. It should be noted that the anterior temporal lobe has close

intrinsic connectivity with subcortical regions including the ventral striatum, AMG, and oth-

ers, in addition to orbitofrontal cortices [103]. Therefore, it is plausible that the links of the

PUT/PAL, ACC, AMG, and HIP share the core nodes of the temporal pole with the links of

the orbitofrontal areas in the common RWS, and that these node links jointly have diminished

connectivities in the GDcm individuals having comorbid conditions. This connection scheme

of the node links and the diminishment of FC are consistent with the observations in the

HC> GDcm group-contrast (Table 5).

Methodological issues/limitations

Functional connectivities and network measures derived from rs-fMRI signals are susceptible

to head motion [56,104]. Various approaches such as global signal regression, framewise-dis-

placement regression and scrubbing have been proposed and evaluated to correct for the head

motion artifacts, whereas they may further affect the FC estimates depending on the strategies

to be used [56,57,105–107]. We adopted an approach of thresholding the mean framewise-dis-

placement (mFD) [57] and obtained low mFD values for the HC, GD, and GDcm groups. It is

expected that the variation of the FC with mFD within a group may not directly affect the

between-group comparison of FC unless difference exists in the mean mFD. However, there

was a marginal group difference of mFD (0.02 mm greater in the GD group than the HC and

GDcm). Although greater head motion is thought to underestimate the FC [104], it is not clear

whether the remained mFD difference affects the group comparison of FC. Furthermore, any

difference of mean mFD between groups should be confounded with the factor of group in

regression analysis. Thus, difficulty may exist to interpret the outcomes when the mFD is

regressed out in the evaluation of the FC. How to reduce head motion artifacts precisely in the

estimation of group difference of FC is a subject of future investigation.
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A limitation is the small sample size of participant groups, especially of GDcm group. We

conducted connection-wise regression analyses to select ASD- and ADHD-significant node

links for the GD > GDcm group-contrast. Of 86 diminished-FC node links to the core nodes

(TPmtg/stg), 51 nodes were significant to the ASD condition, but only 11 nodes were signifi-

cant to the ADHD. Although this result suggests a minor impact of the ADHD relative to the

ASD, reduced statistical power due to a small sample size of ADHD group (n = 7 including

ASD/ADHD conditions) should have detrimental effect. Further research is required with

greater population of patients to differentiate the network structure depending on the comor-

bidity of ASD and ADHD.

In summary, we investigated effects of comorbidity conditions on the gaming disorder.

Substantial impact of the ASD was revealed, extending diminished areas of the ECN and RWS

in the entire network regions. This finding suggests that the coexisting ASD facilitates

impairment of executive/cognitive and emotional functions in the individuals with gaming

disorder. We presume that the whole brain resting state FC (rsFC) analysis, without using pre-

determined seed regions, made it possible to estimate the ECN and RWS in a single investiga-

tion. To our knowledge, this is the first investigation reporting the influence of comorbidity of

ASD on the rsFC in gaming disorder patients. The association of the diminished ECN/RWS,

evaluated with the rsFC, with behavioral measures of GD/GDcm patients is a subject of future

study.
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