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Abstract

Glycosaminoglycans (GAGs) are linear negatively charged polysaccharides and important

components of extracellular matrices and cell surface glycan layers such as the endothelial

glycocalyx. The GAG family includes sulfated heparin, heparan sulfate (HS), dermatan sul-

fate (DS), chondroitin sulfate (CS), keratan sulfate, and non-sulfated hyaluronan. Because

relative expression of GAGs is dependent on cell-type and niche, isolating GAGs from cell

cultures and tissues may provide insight into cell- and tissue-specific GAG structure and

functions. In our objective to obtain structural information about the GAGs expressed on a

specialized mouse glomerular endothelial cell culture (mGEnC-1) we adapted a recently

published GAG isolation protocol, based on cell lysis, proteinase K and DNase I digestion.

Analysis of the GAGs contributing to the mGEnC-1 glycocalyx indicated a large HS and a

minor CS content on barium acetate gel. However, isolated GAGs appeared resistant to

enzymatic digestion by heparinases. We found that these GAG extracts were heavily con-

taminated with RNA, which co-migrated with HS in barium acetate gel electrophoresis and

interfered with 1,9-dimethylmethylene blue (DMMB) assays, resulting in an overestimation

of GAG yields. We hypothesized that RNA may be contaminating GAG extracts from other

cell cultures and possibly tissue, and therefore investigated potential RNA contaminations

in GAG extracts from two additional cell lines, human umbilical vein endothelial cells and

retinal pigmental epithelial cells, and mouse kidney, liver, spleen and heart tissue. GAG

extracts from all examined cell lines and tissues contained varying amounts of contaminat-

ing RNA, which interfered with GAG quantification using DMMB assays and characteriza-

tion of GAGs by barium acetate gel electrophoresis. We therefore recommend routinely

evaluating the RNA content of GAG extracts and propose a robust protocol for GAG isola-

tion that includes an RNA digestion step.

Introduction

Glycosaminoglycans (GAGs) are linear, negatively charged polysaccharides and prominent

components of extracellular matrices and cell surface glycan layers. GAGs are synthesized
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from repeating disaccharide building blocks and most GAGs, including heparan sulfate (HS),

heparin, keratan sulfate, chondroitin sulfate (CS) and dermatan sulfate (DS), can be modified

by sulfation, which renders them strongly negatively charged. For example, HS consists of N-

acetylglucosamine and uronic acid disaccharide building blocks and can be sulfated at the N-,

2O-, 3O- and 6O-positions of the carbohydrate ring structures. The sequence of modifications

along the carbohydrate backbone allows sulfated GAGs, particularly HS, to bind growth factors,

chemokines and cellular adhesion molecules, such as fibroblast growth factors, interleukin-8,

selectins and the macrophage-1 antigen (Mac-1), thereby regulating various physiological pro-

cesses including cell growth, morphogenesis, coagulation and inflammation [1–9].

GAG expression and modifications are often tissue- and cell type-specific [10, 11]. There-

fore, isolation and characterization of GAGs from different tissues or cell cultures is important

to unravel tissue- and cell type-specific GAG structure and function [12]. Previously, we have

isolated and characterized a unique mouse glomerular endothelial cell line (mGEnC-1) [13]

and identified specifically sulfated HS domains in the glomerular endothelial glycocalyx that

mediate chemokine binding and leukocyte trafficking during inflammation in vitro and in vivo
[13–18]. Since the presence of many additional functional GAG domains in the glomerular

endothelial glycocalyx is presumed, isolation and analysis of intact GAGs, e.g. using mass spec-

trometry, may yield novel structural information about functional GAG domains.

Described GAG extraction protocols usually involve release of GAGs using chaotropic buff-

ers, non-ionic detergents, protease treatment or alkaline β-elimination, followed by removal of

contaminants by enzymatic or chemical digestion, selective precipitation or chromatography

[12, 19–21]. GAG quantification in mGEnC-1 GAG extracts initially suggested high yields,

with HS as the major component of the mGEnC-1 glycocalyx, as was previously described

[22]. However, the obtained HS fraction appeared largely resistant to digestion with bacterial

heparinases I, II and III, suggesting that the sugars which co-migrated with HS standards dur-

ing barium acetate agarose gel electrophoresis contained non-HS compounds. Subsequently

we identified RNA as a major contaminant. Here, we describe a GAG isolation protocol

including an RNAse treatment that yields GAG extracts that can be reliably visualized by aga-

rose gel electrophoresis and quantified by the DMMB method.

Materials and methods

Cell culture and animal tissue

Conditionally immortalized mouse glomerular endothelial cells (mGEnC-1) were cultured as

previously described [13]. Briefly, mGEnC-1 were grown at the proliferative temperature of

33˚C in 1% gelatin (Sigma-Aldrich)-coated culture flasks (Corning Life Sciences) with

DMEM/Ham’s F12 medium (3:1; Life Technologies) supplemented with 5% fetal bovine

serum (FBS; Bodinco), 1% penicillin/streptomycin (PS; Life Technologies) and 20 units (U)/

ml recombinant mouse interferon-γ (IFN-γ; PeproTech). For differentiation, mGEnC-1 were

seeded at 25% density in uncoated culture flasks and cultured for 7 days in DMEM/Ham’s F12

without IFN-γ at the non-permissive temperature of 37˚C. Primary human umbilical vein

endothelial cells (HUVEC) were grown to confluence on 1 μg/cm2 bovine fibronectin (Bio-

Connect)-coated culture flasks in endothelial cell growth medium (EGM)-2 (Lonza). Immor-

talized retinal pigmental epithelial cells (ARPE-19) were grown to confluence in culture flasks

in DMEM/Ham’s F12 (1:1) supplemented with 10% FBS and 1% PS. All cell lines were main-

tained in T75 culture flasks in a 5% CO2 humidified environment at 37˚C.

Mouse organs were collected from wild-type C57BL/6J mice sacrificed by cervical disloca-

tion. Animal experiments were approved by the animal ethics committee of the Radboud

University.
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Isolation of GAGs from cells and tissues

Original protocol [23, 24]: Cell monolayers were thoroughly washed with phosphate-buffered

saline (PBS), and digested overnight at 37˚C with 125 μg/ml proteinase K (Merck Millipore) in

2 ml extraction buffer (50 mM Tris-HCl, 10 mM NaCl, 3 mM MgCl2 and 1% triton X-100,

pH7.9) per 75 cm2 confluent cell monolayer. The lysate was recovered from the culture flask

and heated to 95˚C for 10 min to deactivate proteinase K before adding 7.5 U/ml DNase-I

(Qiagen) and incubating overnight at 37˚C. The digested lysate was then mixed 1:1 with 4 M

sodium chloride to dissociate GAG-bound peptides, followed by mixing 1:1 with chloroform

and centrifugation for 30 min at 4500xg. The top (aqueous) layer containing purified GAGs

was collected and dialyzed thoroughly against 18.2 MO.cm deionized water (MQ). GAG solu-

tions were then dried using a SC200 Speed Vac centrifugal evaporator (Savant Instruments).

Before analysis, GAG preparations were reconstituted in MQ. GAGs from cryosections of

C57BL/6J mouse tissues (i.e. heart, liver, spleen and kidney) were isolated by the same protocol

described above.

Adapted protocol: An excess of RNase-I (10 U/ml; Thermo Scientific) was added to the

DNase mixture for subsequent extractions. Where indicated, GAG extracts were treated with a

mixture of 0.25 U/ml heparinase I, II and III (Sigma).

DMMB analysis of GAGs

DMMB solution was prepared as previously described [23, 25] with minor modifications. Fifty

mg DMMB (Sigma) was dissolved in 25 ml ethanol, filtered through Whatman filter paper and

used to prepare a solution containing a final concentration of 0.1 mg/ml DMMB, 5% v/v etha-

nol, 0.2 M guanidine hydrochloride (GuHCl), 0.2% w/v sodium formate and 0.2% w/v formic

acid. Subsequently, the dye mixture was diluted (1:1) with an identically prepared, DMMB-

free buffer to create a stable solution. One ml of the prepared DMMB solution was added to

100 μL of sample and vortexed for 30 minutes. The GAG:DMMB complex was precipitated by

centrifugation at 10.000xg for 10 minutes and the supernatant was aspirated carefully. The pre-

cipitate was then reconstituted by vortexing for 30 minutes in 250 μL decomplexant solution

(4 M GuHCl, 10% 1-propanol and 50 mM sodium acetate, pH6.8). Two hundred μL of dis-

solved GAG:DMMB mixture was transferred to a 96 wells plate and the absorbance at 650 nm

was measured using a Bio-Rad Multiplate Reader (Bio-Rad). To quantify the GAG concentra-

tion, absorbances were compared to different amounts (0 to 40 μg/ml) of heparan sulfate from

bovine kidney as a standard (HSBK; Sigma). GAG concentrations are given as mean ± s.e.m.

Significance was determined by ANOVA.

Barium acetate agarose gel electrophoresis and silverstaining of GAGs

Analysis of obtained GAGs on agarose gel was performed as described previously [26] with

minor modifications. In short, 500 mg multipurpose agarose (1%; Roche) was dissolved by

heating in 50 ml 50 mM barium acetate (electrophoresis buffer, pH 5.0), 13 ml were cast on

the hydrophilic side of a 85 x 100 mm gelbond film (Lonza) placed on a glass slide and wells

were excised once the gel had set. A mass of 0.5–1 μg of isolated GAGs were diluted 6x in elec-

trophoresis buffer containing 20% glycerol and 0.01% bromophenol blue. Five μl/well GAG

extract were loaded and electrophoresis was performed in electrophoresis buffer at 60V on a

LKB bromma 2117 multiphor electrophoresis unit (LKB, Bromma, Sweden). Gels were stained

and fixed overnight with 0.1% w/v Azure A (Sigma) in 50 mM sodium formate (pH 3.5) and

10 mM magnesium chloride, destained with 10 mM sodium acetate (pH 5.5) and air dried.

Gels were washed twice for 10 minutes in 1% triton X-100 (Sigma) in MQ and washed again

thoroughly with MQ to remove residual triton X-100. Silverstaining was performed by adding
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100 ml freshly prepared silverstaining solution, consisting of a mixture of 60 mM NH4NO3,

30 mM AgNO3, 3.5 mM tungstosilicic acid and 0.15 mM 37% formaldehyde, 0.47 M Na2CO3

(1:1, v/v). The reaction was stopped with 1% acetic acid in MQ and gels were air dried. GAG

extracts were compared to commercial standards for HS, DS and CS (Sigma).

Ethidium bromide agarose gel electrophoresis

RNA presence in 0.5–1 μg of isolated GAG extracts was analyzed on 1% agarose gel in Tris-

Boric acid-EDTA (TBE; Invitrogen) with 0.01% ethidium bromide.

Results and Discussion

GAGs in the glomerular endothelial glycocalyx mediate important functions [13–18], there-

fore we aimed to isolate pure GAGs from cultured glomerular endothelium to obtain novel

information on composition and structure. To isolate and characterize GAGs expressed by

mGEnC-1, a published protocol for the isolation of GAGs from tissues [23, 24] was followed.

The GAG composition of the mGEnC-1 glycocalyx as assessed by barium acetate agarose gel

electrophoresis implied a large HS and smaller CS content (Fig 1A), which was in line with the

Fig 1. Characterization of mGEnC-1 GAGs by barium acetate gel electrophoresis and DMMB analysis. The

GAG content in extracts from conditionally immortalized mouse glomerular endothelial cells (mGEnC-1) was

visualized by barium acetate gel electrophoresis (A), and quantified relative to heparan sulfate from bovine kidney

using 1,9-dimethylmethylene blue (B). Analysis of heparinase I, II and III-treated mGEnC-1 GAGs on gel indicated

no degradation of the spot that co-migrates with the HS standard.

doi:10.1371/journal.pone.0167336.g001
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previously described HS:CS ratio of 4:1 for endothelium [22]. Isolated GAGs were quantified

by an adapted 1,9-dimethylmethylene blue (DMMB) GAG quantification assay based on the

Farndale method [23–25], which relies on the formation of a GAG-cationic dye complex.

GAGs obtained from mGEnC-1 were quantified relative to HSBK, indicating a yield of

~0.12 μg GAGs per cm2 cell monolayer (Fig 1B). To confirm the relative contribution of HS or

CS to the mGEnC-1 glycocalyx, GAG preparations were treated with heparinases I, II and III

to digest HS. However, the glycocalyx-derived GAG spot co-migrating with HS standards was

not affected by enzymatic degradation with heparinases I, II and III (Fig 1A), suggesting a

major impurity with an electrophoretic mobility comparable to HS.

Therefore, the original isolation protocol was re-evaluated for potential sources of contami-

nation. We reasoned that RNA may be contaminating the GAG extracts, since a high density of

negative charges in RNA could result in co-purification and detection by cationic dyes. When

the purity of GAG extracts was assessed on ethidium bromide agarose gels, a significant polynu-

cleotide impurity was found, which could efficiently be removed by RNase-I digestion (Fig 2A).

Furthermore, when the RNase-I-treated mGEnC-1 GAG extract was re-evaluated on barium

acetate gels these GAG extracts showed a much fainter spot co-migrating with the HS standards

(Fig 2B). Together, the ethidium bromide and barium acetate gel electrophoresis data suggest

that, under the conditions applied, RNA is a major contaminant in the GAG extract obtained

from mGEnC-1 cells. RNA digestion with RNase-I enables determination of the actual GAG

composition and the relative contribution of HS and CS to the mGEnC-1 glycocalyx.

To determine whether RNA is a common contaminant in other cell- and tissue-derived

GAG extracts, and whether this may affect further analysis, GAGs were isolated from HUVECs

and ARPE-19 cells, and from mouse kidney, heart, liver and spleen, with and without includ-

ing an RNase-I digestion step during purification. Like mGEnC-1 cells, both HUVEC- and

ARPE-19-derived GAGs contained substantial RNA impurities that were detected in the ethid-

ium bromide and barium acetate agarose gels (Figs 3A and 4A). Furthermore, analysis of GAG

yield by DMMB assays suggested about 5-fold higher RNA concentrations in HUVEC and

ARPE-19 GAG extracts compared to mGEnC-1 GAG extracts, whereas the true GAG concen-

tration measured by DMMB after RNase treatment was comparable between 40 and 60 ng/

cm2 confluent cell culture (Fig 5A). Kidney, heart, liver and spleen extracts all contained vari-

able amounts of RNA impurities, some of which appeared less susceptible to RNase-I treat-

ment, particularly in spleen extracts (Figs 3B and 4B). GAG isolation from some tissues, such

as the spleen, may therefore require a higher RNase-I concentration for complete RNA degra-

dation. In most tissues, except the kidneys, degradation of the RNA contaminant also resulted

in a pronounced reduction in RNA/GAG yield as determined by DMMB assays (Fig 5B).

The susceptibility of GAG quantification using DMMB to contaminating polyanions has

recently been discussed in the field of tissue engineering as well [27]. Studies on GAGs in syno-

vial fluid showed that contaminating RNA and DNA at concentrations above 20 μg/ml result

in the overestimation of GAG content [28]. Accordingly, quantification of cell/tissue-derived

GAG extracts using DMMB assays in our study revealed a major reduction in apparent GAG

yield from 120 to 280 ng before RNase treatment to between 40 to 60 ng of GAGs per square

cm of cultured cells after RNase treatment (Fig 5A), and a GAG yield of 500 to 1000 ng before

RNase treatment to 200 to 300 ng of GAG per mg of tissue after RNase treatment (Fig 5B).

However, the constant yield of GAGs obtained from mouse kidney tissue, may indicate that

the concentration of contaminating RNA is below the detection threshold for detection with

DMMB, since analysis on gel did reveal an effect of RNase treatment (Fig 4B).

The results from our studies thus clearly demonstrate that GAGs extracted from both tis-

sues and cell-lines contain varying amounts of RNA (Fig 3), which interfere with identification

of the GAGs on barium acetate agarose gel electrophoresis (Fig 4), since RNA appeared to co-
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migrate in between the HS and DS fraction, and with the quantification of GAGs in DMMB

assays (Fig 5). We showed that most of these RNA impurities could be efficiently removed by

overnight incubation with an excess of RNase-I.

Since many of the more recent GAG extraction protocols do not include treatments to

remove RNA contaminants, it was initially hypothesized that the inherent instability of RNA,

as well as abundant endogenous/exogenous RNases would be sufficient to remove contaminat-

ing RNA. Many studies have focussed on isolation of GAGs for quantification or structural

analysis, resulting in a large variety in protocols for GAG extraction. In some of the earliest

publications describing GAG isolations, DNase and RNase were used to remove contaminat-

ing polynucleotides from the GAG extracts [29–31]. However, more recent publications no

longer describe (a combination of) these endonucleases [23, 24, 32–38], which will result in

the ample presence of RNA in GAG extracts. Of course, depending on the specific downstream

application of the GAG extract and additional purification steps such as ion exchange

Fig 2. Characterization of mGEnC-1-derived GAGs reveals RNA as a major contaminant. The RNA content in

extracts from conditionally immortalized mouse glomerular endothelial cells (mGEnC-1) was visualized by ethidium

bromide agarose gel electrophoresis (A), and barium acetate gel electrophoresis (B) before and after RNase

treatment. Enzymatic degradation of RNA in mGEnC-1 GAG extracts removes the RNA band observed on ethidium

bromide gel, and a large spot that appears to co-migrate with HS on the barium acetate gel.

doi:10.1371/journal.pone.0167336.g002
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chromatography, not all GAG extractions require RNA digestion [39–41]. For example, when

incorporating radioactive sulfate into GAGs for the quantification of GAG synthesis in cul-

tured cells, the presence of RNA in the GAG extract may be neglected [42–44]. But also in

Fig 3. Glycosaminoglycans (GAG) extracts contain significant RNA impurities, which can be digested by

RNase-I treatment. Visualizing nucleotide impurities in GAG preparations from conditionally immortalized mouse

glomerular endothelial cells (mGEnC-1), human umbilical vein endothelial cells (HUVEC), immortalized retinal

pigmental epithelial cells (ARPE-19) (A), and mouse kidney, heart, liver and spleen (B) on ethidium bromide

agarose gels, revealed significant RNA contaminations. RNase-I treatment efficiently removed the contamination

from mGEnC-1 and ARPE-19 GAGs, though minor impurities remained in HUVEC-, kidney- and spleen-derived

extracts.

doi:10.1371/journal.pone.0167336.g003

Fig 4. RNA impurities interfere with the analysis of glycosaminoglycans (GAGs) using barium acetate

agarose gel electrophoresis. Resolving untreated GAG extracts by barium acetate gel electrophoresis suggested

relatively large amounts of heparan sulfate (HS) and dermatan sulfate (DS) and relatively little chondroitin sulfate

(CS) in GAGs obtained from mouse glomerular endothelial cells (mGEnC-1), human umbilical vein endothelial cells

(HUVEC) and immortalized retinal pigmental epithelial cells (ARPE-19) (A). GAG extracts from mouse tissues

appeared to contain large amounts of DS (heart and liver) and CS (spleen), whereas kidney-derived GAGs were

enriched in HS, but also contained DS and CS (B). However, the observed staining patterns seemed to result from

contaminating RNA co-migrating between HS and DS, as RNase-I treatment revealed the actual GAG spots

corresponding to primarily HS and CS.

doi:10.1371/journal.pone.0167336.g004

RNA Contaminates Glycosaminoglycans Extracted from Cells and Tissues

PLOS ONE | DOI:10.1371/journal.pone.0167336 November 29, 2016 7 / 13



these settings RNA impurities can become highly relevant during functional assays, because of

the similar physical characteristics between GAGs and RNA. Monitoring the RNA content of

GAG extracts after ethidium bromide agarose gel electrophoresis or by measuring the absor-

bance at 260 nm during purification can reveal contamination, particularly when combined

with high resolution techniques such as capillary electrophoresis [45]. Furthermore, several

protocols use alkaline treatment to release GAGs into solution. RNA is highly susceptible to

alkaline hydrolysis [46], and protocols including alkaline treatment are therefore less likely to

contain significant RNA impurities [47–51]. A drawback of this method however is that both

depolymerisation of GAGs and loss of functional groups, including sulfates, can occur during

the incubation of GAGs in basic solutions [52, 53]. Alkaline treatment may therefore not be an

ideal approach when the goal is to obtain more specific structural information about the

GAGs expressed in tissues or on cultured cells.

Thus, the adaptation of a protocol for GAG extraction must be chosen carefully, since the

application described in the original article may require a lesser degree of purity of the final

GAG extract, as in our studies we experienced problems with the RNA impurity that is not

described in the source of our GAG isolation protocol [23, 24]. In theory, this may lead to false

detection of GAGs after barium acetate gel electrophoresis or DMMB analysis, e.g. when HS

presence is concluded from azure A staining on agarose gels based on a “known” band posi-

tion compared to DS and CS [54] and may therefore be wrongfully assigned. Since polynucleo-

tides are often not considered as potential contaminants in GAG extracts, the complexation

with cationic dyes that occurs in DMMB assays may result in overestimated GAG yields and

wrong assignment of relative GAG compositions [23, 24, 32–38]. It is difficult to discern from

the results of studies that lack controls for RNA content whether GAG extracts were contami-

nated by RNA. However, excessively high GAG yields and intense GAG spots on barium ace-

tate agarose, which cannot be removed by digestion with GAG-specific glycosidases, can

suggest a contamination with polynucleotides.

In conclusion, the similar physical characteristics of GAGs and nucleic acids can result in

significant RNA contamination of GAG extracts, which interferes with GAG compositional

Fig 5. RNA contamination of glycosaminoglycan (GAG) extracts leads to a significant overestimation of

GAG yields. The GAG content in extracts from conditionally immortalized mouse glomerular endothelial cells

(mGEnC-1), human umbilical vein endothelial cells (HUVEC), immortalized retinal pigmental epithelial cells (ARPE-

19) (A) and C57BL/6J mouse kidney, heart, liver and spleen (B) was quantified relative to heparan sulfate from

bovine kidney using 1,9-dimethylmethylene blue. The apparent yield in untreated GAG samples from cell cultures

was significantly overestimated 2- to 6-fold compared to RNase-treated samples, indicating that RNA contamination

interferes with the charge-based DMMB quantification method. RNA also interfered with the quantification of GAGs

obtained from heart, liver and spleen, but not in kidney cortex extracts. GAG concentrations are presented as μg/

cm2 confluent cell monolayer or μg/mg wet tissue. Results are given in means ± s.e.m. *P<0.05 by Anova.

doi:10.1371/journal.pone.0167336.g005
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analysis on agarose gels and charge-based quantification. We therefore recommend to rou-

tinely evaluate the RNA content of GAG extracts and propose a robust protocol for GAG isola-

tion that includes an RNA digestion step (Fig 6).
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