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Pre-emptive vaccination is regarded as one of the most
protective measures to control influenza outbreak.
There are mainly two types of influenza viruses—
influenza A and B with several subtypes—that are
commonly found to circulate among humans. The
traditional trivalent (TIV) flu vaccine targets two
strains of influenza A and one strain of influenza
B. The quadrivalent (QIV) vaccine targets one extra
B virus strain that ensures better protection against
influenza; however, the use of QIV vaccine can
be costly, hence impose an extra financial burden
to society. This scenario might create a dilemma
in choosing vaccine types at the individual level.
This article endeavours to explain such a dilemma
through the framework of a vaccination game, where
individuals can opt for one of the three options: choose
either of QIV or TIV vaccine or none. Our approach
presumes a mean-field framework of a vaccination
game in an infinite and well-mixed population,
entangling the disease spreading process of influenza
with the coevolution of two types of vaccination
decision-making processes taking place before an
epidemic season. We conduct a series of numerical
simulations as an attempt to illustrate different
scenarios. The framework has been validated by the
so-called multi-agent simulation (MAS) approach.
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1. Introduction
Seasonal influenza costs lots of lives throughout the world every year, causing a huge economic
burden to society, involving treatment costs and productivity losses. Costs due to seasonal
influenza have been reported as 2–6% of gross domestic product (GDP) per capita in low- and
middle-income countries (LMICs), compared to only 0.04–0.13% of GDP in developed or high-
income countries [1,2]. There are four main types of influenza viruses, A, B, C and D, that
have been identified so far [3], among which influenza A and B viruses are the most common
among humans that cause seasonal epidemics worldwide; however, circulation patterns and
strain prevalence can be region-specific and time-specific [4]. According to a report published by
the Centers for Disease Control and Prevention (CDC) [5], the United States 2017–2018 influenza
season (1 October 2017 to 19 May 2018) faced severity from both influenza viruses; influenza A
viruses prevailed at the beginning of the season but influenza B predominated in the later part of
the season. As reported by previous studies, influenza A viruses have two strain subtypes, H1N1
and H3N2, influenza B viruses have two subtypes—B/Victoria and B/Yamagata—that have been
commonly found to circulate [6,7].

Annual vaccination against influenza is suggested to be the most effective strategy to protect
from the influenza disease. The traditional trivalent (TIV) vaccine targets three strain subtypes
of influenza viruses (two strains of A and one of the B virus strains); on the other hand, the
quadrivalent (QIV) vaccine contains one extra strain of influenza B viruse that offers improved
protection against influenza B virus infections [3]. Each year public health authorities recommend
which strain should be contained in vaccines for the upcoming season (for example [5,8] for USA).
However, due to the mismatch between the recommended B virus strain for TIV vaccine and
the circulating virus strain, influenza morbidity may increase [4,9]. Inclusion of an extra B strain
to QIV vaccine provides better efficacy than that of TIV vaccine. Because they provide better
protection, some of the developed countries have been turning towards QIV vaccines, although
TIV vaccines are still recommended [8]. Nonetheless, many other countries including Russia are
still relying on TIV vaccine [4]. Moreover, the use of QIV vaccine can be substantially expensive
compared to TIV and may impose a considerable economic burden on LMICs, although the long-
term impact of implementing QIV can be cost-effective [2,10].

So far, a significant amount of research has been conducted investigating the cost-effectiveness
of TIV and QIV vaccine usages for developed countries and LMICs [2,10–13]. Most of these
studies used an individual-based dynamic simulation model (4flu) using demographic data
to evaluate the impact of TIV and QIV vaccines. However, in addition to those analyses, we
also need to ponder individualistic assessment on choosing vaccine types (when both vaccines
are available) as vaccination is usually voluntary in a social perspective. Thus, we need to
consider individual perception on taking the vaccination with disease spreading to have a
better understanding of the immunization programme. Here, we attempt to analyse people’s
vaccination decision (TIV or QIV or none) depending upon cost, effectiveness and other factors
in the framework of a vaccination game [14–30] and then illustrate the resulting impact in
a societal perspective. The vaccination game allows a framework that elucidates behaviour–
disease–vaccination interactions with the help of evolutionary game theory [31–34], which has
been used to study the conflict between self-interest and social interest in various circumstances
[35–38]. Individuals who commit to vaccination (cooperators) can benefit themselves as well as
their surroundings; however, people who do not vaccinate (defectors), expose themselves to the
risk of infection that may cause illness and more financial burden compared to the vaccination
cost, or they may become free riders, benefiting from ‘herd immunity’ that can be attained from
the situation when a larger portion of the population is vaccinated. This scenario creates a social
dilemma that can be explained by the vaccination game [35,39]. In this work, we design a mean-
field vaccination game in an infinite and well-mixed population, with three strategies: taking QIV
vaccine, TIV vaccine, and neither QIV nor TIV. Our approach follows a similar avenue to that of
Kuga & Tanimoto [16], where the vaccination is assumed to be pre-emptive. Notably, the authors
in [16] successfully developed an equivalent mean-field framework of a vaccination game, taking
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inspiration from [40], which mainly focused on a networked population. A similar work related to
[40] can be found in [41]. The number of vaccinees remains the same during an epidemic season as
we are considering seasonal influenza. Moreover, as influenza vaccines are not perfectly effective
[42], we take into account vaccine efficacy in our modelling. The assumption of imperfect vaccine
in the vaccination game can tackle more realistic situations, and lead to interesting results, which
otherwise can be intractable (for instance, see [43,44]). In our current setting, at the end of each
season, individuals assess their perceived payoffs based on the previous season’s experience in
terms of vaccine efficacy, cost, etc., and decide whether to vaccinate or not or if vaccinating then
which vaccine to take for the next season. The strategy adaptation after each season is based on
imitating others’ strategy with better payoffs. The group who chooses QIV vaccine are expected
to get better protection against the disease than that of the group taking TIV vaccine, although
this may depend on the circulation of influenza B virus. However, the cost for TIV vaccine should
be no more than the cost for QIV vaccine. Taking into account all these factors, we combine the
disease spreading dynamics of influenza with the vaccination decision-making process through
an evolutionary framework. We perform our simulations for repeated seasons until we reach a
social equilibrium (steady state). By varying vaccine effectiveness and cost level, our numerical
simulations intend to show an overall picture of influenza epidemics. At equilibrium, we calculate
to what extent the average social payoff attained from the vaccination game falls short from the
desired or social optimum payoff, which we name as, ‘social efficiency deficit’. Moreover, our
approach has been validated with the multi-agent simulation (MAS) approach. We also explore
the robustness of our framework in explaining the situation with influenza A or B virus-dominant
circulation.

The rest of this paper is organized as follows: §2 provides the detailed illustration of the
model covering the epidemic spreading, payoff structure, strategy update and the evolutionary
dynamics of vaccination coverage. Section 3 delivers a comprehensive discussion resulting from a
series of numerical simulations. Section 4 concludes the findings of this work and provides some
future indications.

2. Model description
We entangle the simultaneous spreading of two influenza viruses (A and B) and the evolution of
vaccination (QIV or TIV or none) decision by constructing a repetitive sequence of a two-stage
process in an infinite and well-mixed population. The disease spreading process is governed by
susceptible-infected-recovered (SIR)-like dynamics [45] coupled with vaccination that allow us
to estimate several fractions of individuals at the end of each epidemic period. These different
groups then evaluate their payoffs and revisit their vaccination strategies by copying other
individuals’ strategy who achieved higher payoffs in the previous season. Finally, we update the
fraction of vaccinees of both types (QIV and TIV) using evolutionary equations given in §2e. Let
us note that the whole process is repeated for several steps (generations) until we reach a steady
state. Figure 1 illustrates the whole dynamical set-up.

(a) Epidemic spreading
The first stage of our dynamical system is the disease spreading process that is based on a
SIR-like model coupled with vaccination. Initially, we divide the whole population into three
categories: susceptible (unvaccinated) denoted by S, QIV vaccinees denoted by VQ and TIV
vaccinees denoted by VT. It is not usually recommended to take both vaccines (TIV and QIV)
in a single season [46]; therefore, we disregard any group taking both vaccines in the same
season. As influenza vaccines are not 100% perfect, we consider imperfect vaccinations in our
disease modelling, where both vaccines are presumed to provide the same level of efficiency
against A virus but different efficacies against B virus. The inclusion of these parameters
allows us to consider some individuals from vaccinated groups who fail to get immunity from
vaccination (QIV or TIV) and still face the risk of infection like susceptible. The unvaccinated or
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vaccinated people who fail to get immunity may become infected with either influenza virus
(A or B), and then these infected people transfer to the recovery state after suffering from
illness. Therefore, at time t, an individual can be at any of the six compartments: susceptible,
S(t); QIV vaccinees, VQ(t); TIV vaccinees, VT(t); infected with influenza A, IA(t); infected with
influenza B, IB(t); recovered state, R(t). We presume eQ (0≤ eQ≤ 1) as the vaccine efficacy of
QIV against both influenza A and B viruses. As TIV (QIV) vaccine contains two strains of
influenza A virus and one (two) strain(s) of influenza B virus, we assume that both QIV and
TIV vaccines bestow the same level of effectiveness (eQ (0≤ eQ≤ 1)) against influenza A but
TIV vaccine provides relatively lower effectiveness, eT (0≤ eT ≤ eQ) against influenza B than
that of QIV vaccine. If VQ(0) is the fraction of vaccinees at the beginning of an epidemic
season, then a proportion eQ of VQ(0) i.e. eQVQ(0) gets perfect immunity from QIV vaccine
and, the remaining fraction, VQ(t)− eQVQ(0) becomes vulnerable to the disease, where VQ(t)
is the fraction of vaccinators in the VQ compartment at time t. A similar logic has been used
for TIV vaccinees. The transmission rates and recovery rates for influenza A and B viruses are
assumed βA, γ A and βB, γ B, respectively. It is worth mentioning that the state space variables
represent several fractions of the total population; therefore, we are not considering a population
of any particular size. Although coinfection and superinfection with two influenza viruses are
possible in some cases [47,48], the incidence rate is not so significant. Therefore, our model
disregards the incidence of coinfection and superinfection with two influenza viruses (A and B)
and presumes long-term cross-immunity between them. Although we assume long-term cross-
immunity between two viruses, short-term immunity is possible in reality. The incidence of
short-term cross-immunity between two viruses may allow some individuals recovered from one
virus to be infected with the other one after a short time interval (e.g. [49]). The schematic of
our epidemic model is given in the disease spreading part of figure 1. The model equations are
given by

dS(t)
dt
=−βAS(t)IA(t)− βBS(t)IB(t),

dVQ(t)
dt

=−βA(VQ(t)− eQVQ(0))IA(t)− βB(VQ(t)− eQVQ(0))IB(t),

dVT(t)
dt

=−βA(VT(t)− eQVT(0))IA(t)− βB(VT(t)− eTVT(0))IB(t),

dIA(t)
dt
= βAS(t)IA(t)+ βA(VQ(t)− eQVQ(0))IA(t)+ βA(VT(t)− eQVT(0))IA(t)− γAIA(t),

dIB(t)
dt
= βBS(t)IB(t)+ βB(VQ(t)− eQVQ(0))IB(t)+ βB(VT(t)− eTVT(0))IB(t)− γBIB(t)

and
dR(t)

dt
= γAIA(t)+ γBIB(t).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.1)
It is obvious that S(t)+VQ(t)+VT(t)+ IA(t)+ IB(t)+R(t)= 1. If x, y∈ [0, 1] (s.t. x+ y≤ 1) are

the fractions of QIV and TIV vaccinees at the beginning of a season, i.e. VQ(0)= x, VT(0)= y, then
S(0)= 1− x− y− εA− εB, where εA(→ 0+) and εB(→ 0+) are initial infections with influenza A
and influenza B, respectively.

(b) Outcome of disease spreading
After each epidemic season, we estimate several groups by numerically calculating fluxes from
one state to another. We mainly estimate nine fractions of individuals that are, QIV vaccinees and
healthy-HVQ, QIV vaccinees but infected with influenza A(B) virus-VQIA (VQIB), TIV vaccinees
and healthy-HVT, TIV vaccinees but infected with influenza A(B) virus-VTIA (VTIB), successful
free riders-SFR (who are unvaccinated but did not suffer from any influenza virus), failed free
riders-FFRA or FFRB (unvaccinated individuals infected by either influenza virus). Individuals
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Figure 1. The layout of the whole dynamical set-up. The vaccine efficacy of TIV vaccine against influenza B virus is assumed
eT , which is lower than that of QIV vaccine. However, both vaccines are assumed to have same efficacy (eQ) against influenza
A virus. Once the disease spreading process ends, we estimate several fractions such as vaccinated and healthy, vaccinated but
infected, infected with influenza A(B), etc., and evaluate their payoffs. These fractions then update their strategies for the next
season. This process is repeated until we reach a steady state. Arrows depict the sequence of the evolutionary process. (Online
version in colour.)

Table 1. Several fractions of individuals (at equilibrium) with their payoffs (within brackets).

strategy/state healthy infected with influenza A infected with influenza B

QIV vaccinees (VQ) HVQ (− CQ) VQIA (− CQ− 1) VQIB (− CQ− 1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

TIV vaccinees (VT ) HVT (− CT ) VT IA (− CT − 1) VT IB (− CT − 1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

non-vaccinated (NV) SFR (0) FFRA (− 1) FFRB (− 1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

who remain at S, VQ and VT state at equilibrium (t→∞), that is S(∞), VQ(∞) and VT(∞), are
termed successful free riders, healthy QIV vaccinees and healthy TIV vaccinees, respectively.
Suppose ϕP→Q is the total proportion transferred from state P to state Q during an epidemic
season. Thus, QIV vaccinees who get infected with influenza A(B) virus can be evaluated from
the flux, ϕVQ→IA (ϕVQ→IB ). In a similar way, we can estimate this for TIV vaccinees. The failed free
riders can be estimated by fluxes, ϕS→IA and ϕS→IB .

(c) Payoff structure
Once an epidemic season ends, several groups estimate their payoffs prior to the onset of the next
epidemic season. Suppose the cost of vaccination and infection are, respectively, CV and CI. The
vaccination cost includes the vaccine price with possible side effects due to vaccination. Since
the infection cost is higher than the vaccination cost, we define the relative cost of vaccination
as Cr=CV/CI, (0≤Cr≤ 1). Without loss of generality, we can choose CI = 1. Then the relative
cost for QIV (TIV) vaccine can be assumed as CQ(CT). Since the cost for TIV is assumed
to be no more than QIV, we can presume 0≤CQ≤ 1 and 0≤CT ≤CQ. Therefore, QIV(TIV)
vaccinees who remain healthy during the epidemic period can have a payoff, −CQ(−CT);
however, QIV(TIV) vaccinees who become infected with either influenza virus (A or B) have a
payoff, −CQ− 1(−CT − 1). In addition, payoffs for successful free riders and failed free riders
are assigned as 0 and −1, respectively. All fractions along with their payoffs are summarized
in table 1.
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Using table 1, we estimate the average social payoff 〈π〉; average payoff for QIV vaccinees
(〈πVQ 〉), TIV vaccinees (〈πVT 〉) and non-vaccinators (〈πNV〉) as follows:

〈π〉 =−CQHVQ + (−CQ − 1)(VQIA + VQIB)− CTHVT + (−CT − 1)(VTIA + VTIB)

− (FFRA + FFRB), (2.2)

〈πVQ 〉 =
−CQHVQ + (−CQ − 1)(VQIA + VQIB)

x
, (2.3)

〈πVT 〉 =
−CTHVT + (−CT − 1)(VTIA + VTIB)

y
, (2.4)

and 〈πNV〉 = −(FFRA + FFRB)
1− x− y

. (2.5)

(d) Strategy update
Individuals assess their payoffs after an epidemic season and decide whether to imitate others’
strategy or stay with their previous season’s strategy. In a seminal work regarding the agent-based
vaccination game model, Fu et al. [40] first used the pairwise Fermi function [50,51] to calculate
the likelihood of copying others’ strategy by comparing payoffs, where a focal agent i having
the strategy Si with the payoff π i adopts the strategy Sj of a randomly chosen agent j having the
payoff π j with the probability

P(Si← Sj)=
1

1+ exp[−(πj − πi)/k]
, (2.6)

where the parameter, k > 0 measures the strength of selection; smaller k signifies the strong
selection, that is players are more responsive to the payoff difference. A typical choice of k is
0.1, which has been used in many previous studies such as [16,18–20,29]. Fukuda et al. [18] later
slightly modified the formula (2.6), where rather than comparing with a single agent, a focal
player i compares its payoff π i with an average payoff 〈π j〉 of all neighbours having the same
strategy Sj of a randomly selected neighbour j. The modified formula becomes

P(Si← Sj)=
1

1+ exp
[−(〈πj〉 − πi

)
/k

] . (2.7)

Although formulae (2.6) and (2.7) have been mainly used for agent-based modelling, these
can also be used for the mean-field approach (such as [16,20,28,52]). Inspired by that, our
approach uses formula (2.7) to update vaccination strategies for the next season. In our case,
every fraction (each of nine fractions in table 1) compares its payoff with the average payoff of
a mutually exclusive group (QIV, TIV, non-vaccinated in table 1); for instance, the fraction, HVQ

can, respectively, compare its payoff with the average payoff of TIV vaccinees group (VT) and
non-vaccinators group (NV) by the formula

P(HVQ←VT)= 1
1+ exp

[−(〈πVT 〉 − (−CQ)
)
/k

]

and P(HVQ←NV)= 1
1+ exp

[−(〈πNV〉 − (−CQ)
)
/k

] .

Similarly, we estimate all necessary transition probabilities.
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(e) Evolutionary dynamics
As mentioned before, individuals update their vaccination strategies prior to onset of the
next epidemic season. The evolution of vaccination strategies (QIV or TIV or unvaccinated) is
estimated using the following evolutionary equations that have been derived by extending the
master equation of the mean-field framework in a well-mixed population [52,53]

dx
dt
=−HVQ.VT.P(HVQ←VT)− VQIA.VT.P(VQIA←VT)− VQIB.VT.P(VQIB←VT)

−HVQ.NV.P(HVQ←NV)− VQIA.NV.P(VQIA←NV)− VQIB.NV.P(VQIB←NV)

+HVT.VQ.P(HVT←VQ)+ VTIA.VQ.P(VTIA←VQ)+ VTIB.VQ.P(VTIB←VQ)

+ SFR.VQ.P(SFR←VQ)+ FFRA.VQ.P(FFRA←VQ)+ FFRB.VQ.P(FFRB←VQ) (2.8)

and

dy
dt
=−HVT.VQ.P(HVT←VQ)− VTIA.VQ.P(VTIA←VQ)− VTIB.VQ.P(VTIB←VQ)

−HVT.NV.P(HVT←NV)− VTIA.NV.P(VTIA←NV)− VTIB.NV.P(VTIB←NV)

+HVQ.VT.P(HVQ←VT)+ VQIA.VT.P(VQIA←VT)+ VQIB.VT.P(VQIB←VT)

+ SFR.VT.P(SFR←VT)+ FFRA.VT.P(FFRA←VT)+ FFRB.VT.P(FFRB←VT). (2.9)

Here additions and subtractions, respectively, indicate inflows to and outflows from a state. We
solve equations (2.8) and (2.9) numerically, allowing the system to reach the steady state as, t→∞.

3. Results and discussion
This section deliberately explains results of the whole dynamical process. We vary several
parameters such as transmission rates, vaccine effectiveness, vaccination cost, etc., to illustrate
different scenarios. The symptoms of usual influenza sickness resolve after a period of 3–7
days, so the average durability in the infected stage is 5 days [49]. Therefore, we presume
γ A= γ B= 1/5= 0.2 throughout our numerical experiments.

(a) Single season time series
Let us first briefly discuss the relative dynamics of infections due to influenza A and B viruses for
different transmission rates and degree of initial infections in a single season without considering
game aspect (figure 2). The vaccination coverage for this case is chosen as VQ(0)=VT(0)= 0.333
with eQ= 0.6, eT = 0.4. As eT ≤ eQ, influenza B virus seems to dominate in the case of equal
transmission rate (βA=βB) (figure 2a,b)). However, the virus with higher transmission rate is
found to dominate irrespective to the initial infection. Hence, the sensitivity of initial infections
seems insignificant comparing to the transmission rates, i.e. transmission rates show more impact
on virus dominance.

(b) Evolutionary outcome of vaccination coverage
We estimate the coevolution of both types of vaccination at the end of each season. Owing to the
complexity of equations (2.8) and (2.9), it is difficult to theoretically derive all possible equilibria;
however, it is still possible to derive that numerically by tuning different parameters. Considering
equal transmission rate for both viruses, we estimate six possible combinations of evolutionary
outcomes (figure 3), which are (x, y)≡ (1, 0);(x, y)≡ (0, 0);(x, y)≡ (x*, y*);(x, y)≡ (x*, 0);(x, y)≡
(0, 1);(x, y)≡ (0, y*); where 0 < x*, y* < 1. Figure 3 suggests that there is none of the bi-stability
arising from equations (2.8) and (2.9). One possible reason is that the present model as a nonlinear
dynamical system instinctively has strong sinks, or steeply curved orbits, being insensible to
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Figure 2. Time series of the fractions of infection by two influenza viruses (A and B) for different initial conditions and
transmission rates without considering game approach. The vaccination coverage for each vaccine is assumed approximately
33% with vaccine effectiveness eQ= 0.6 and eT = 0.4. The recovery rate for each flu virus is chosen as 0.2. Under the current
set-up, when βA=βB (a,b), B virus is found to dominate because eT ≤ eQ, whereas the flu virus with higher transmission
rate (c,d) dominates the other one. The transmission rate seems more influential in virus dominance than the degree of initial
dominance of each virus infection. (Online version in colour.)

initial conditions. Let us note that we choose initial values of x and y in such a way so that
x+ y≤ 1. Moreover, when we vary initial values of x, the initial value of y is set as 0.33 and vice
versa.

(c) Phase plane analysis
(i) Case I (βA=βB)

Figure 4 portrays several heatmaps depicting the final epidemic size for influenza A(B) virus-
FESA(FESB), vaccination coverage for QIV(TIV) vaccine and the average social payoff-ASP (using
equation (2.2)) in the steady state as a function of (CQ, CT) presuming an equal transmission
rate for the both viruses (for the mean-field approach, we set βA=βB= 0.5 and IA(0)= 0.00001,
IB(0)= 0.00002). It is worth mentioning that all heatmaps of our analyses presume the transition
from the blue colour to the red colour as a good/better state to a bad/worse state of society
in terms of infection, vaccination coverage and ASP, and vice versa. Clearly, infection due to
influenza B virus predominates the other one that is akin to what we have observed in figure 2a,b
for the case of equal transmission rates. As long as CT < CQ and CT is of lower than a certain
threshold level, a broader regime in TIV heatmaps is covered by the blue colour (figure 2a-iv
and b-iv); the counterpart of this region in QIV heatmaps is covered by the red colour, meaning
that, because of lower cost, most individuals are interested in taking TIV vaccine until it bestows
a considerable efficiency against B virus (that is of course below the efficacy of QIV vaccine).
Despite a major portion taking TIV vaccine, it cannot fully suppress infection due to influenza B
that can be clearly perceived from FESB heatmaps, which, in accordance, bestows a lower average
payoff to society (figure 4a-v). However, the increase of effectiveness (TIV vaccine) against both
viruses (if eQ= 0.8, eT = 0.6) would provide a better situation to society that can be observed
from heatmaps in the second row. Remarkably, vaccination coverage for QIV vaccine seems
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Figure 3. Six possible combinations of QIV and TIV vaccination coverages at equilibrium attained from the evolutionary
equations (2.8) and (2.9). The evolutionary dynamics of the vaccination coverage depends upon the choice of different
parameters. Clearly, there is no bi-stability at equilibrium. There are six possible mixtures of dynamics: (a) x= 1, y= 0,
when CQ= CT = 0.4; eQ= 0.4, eT = 0.3. (b) x= 0, y= 0, when CQ= 0.6, CT = 0.4; eQ= 0.4, eT = 0.3. (c) x= x*, y= y*,
(coexistence or internal equilibria) when CQ= 0.6, CT = 0.4; eQ= 0.8, eT = 0.4. (d) x= x* (internal equilibrium), y= 0,
when CQ= CT = 0.4; eQ= 0.7, eT = 0.4. (e) x= 0, y= 1, when CQ= 0.6, CT = 0.4; eQ= 0.6, eT = 0.4. (f ) x= 0, y= y*,
when CQ= 0.6, CT = 0.4; eQ= 0.8, eT = 0.6. All cases presume, βA=βB= 0.5; γ A= γ B= 0.2. The initial value of y is
kept as, 0.33, while we vary the initial values of x and vice versa. (Online version in colour.)

to be dominant whenever both vaccination costs are comparable. Also, we can perceive the
coexistence of both vaccinees in the borderline region between blue and red colours (yellowish
regime enclosed by dotted lines in (a-iii) and (a-iv)).

Results obtained from the mean-field framework have been justified by a sequence of
numerical simulations based on the MAS approach [18,40] presuming a complete graph as
an underlying network (since we assume well-mixed population) with the population size,
N= 10 000. The transmission rate parameters are chosen as βA=βB= 5.19957× 10−5, which is
estimated as the minimum transmission rate that surpasses the preset threshold final epidemic
size of 0.9 without any vaccination [16]. The corresponding initial infections are IA(0)= 2 agents
and IB(0)= 4 agents. Note that we estimate ensemble average for each 100 realizations. Generally,
results obtained from the mean-field framework and MAS approach are showing overall the same
tendency, albeit having subtle discrepancies in terms of colour scaling that comes from the fact
that the MAS approach undertakes a finite population.

Now let us focus on analysing similar phase diagrams by varying vaccine efficacies. To this
aim, we generate several heatmaps as above as a function of (eQ, eT), 0≤ eT ≤ eQ≤ 1, for the case
of similar and different cost levels (figure 5). Obviously, similar cost for both vaccines would
encourage people to choose QIV vaccine instead of TIV because the former one bestows better
protection against both viruses. This situation illustrates why the sensitivity comes only along the
direction of eQ (upper panels in figure 5). A lower degree of vaccine efficacy would not entice
individuals to take vaccine (red region in figure 5a-iii); however, if eQ passes a threshold level,
the fraction of QIV vaccinees mounts to the highest level (blue region in figure 5a-iii)). A further
increase of eQ seems to suppress both infections significantly, which allows some people to avoid
vaccination by free riding on herd immunity. This is why, after passing a transient regime having
maximum vaccination coverage, the fraction of vaccinees decreases monotonically even with the
increase of eQ (yellowish region in figure 5a-iii).
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Figure4. CQ versus CT (CT ≤ CQ) 2D-heatmapswithdifferent effectiveness levels presumingmean-field (withβA=βB= 0.5,
IA(0)= 0.00001, IB(0)= 0.00002) and multi-agent simulation (MAS) approach (in well-mixed population). Chronologically
each column represents the final epidemic size for influenza A (FESA), the final epidemic size for influenza B (FESB), fraction of
QIV vaccinees, fractionof TIV vaccinees and the average social payoff (ASP). Clearly, the infectiondue to influenzaB is dominating
for the case,βA=βB. The fraction of TIV vaccinees is seen to prevail for certain regime as long as CT is below some threshold
levels, however, QIV vaccinees are predominantwhenever CQ and CT are comparable. Results fromMASapproach showanoverall
similar tendency to that of mean-field approach. The MAS approach presumes 10 000 agents with IA(0)= 2 agents, IB(0)= 4
agents, βA=βB= 5.19957× 10−5, γ A= γ B= 0.2, and takes ensemble average of 100 realizations. (Online version in
colour.)

Nevertheless, if the cost for QIV is higher than TIV (lower panels in figure 5), then individuals’
vaccination choice differs depending upon the degrees of eQ and eT. More specifically, under the
current setting, QIV vaccine is favoured over TIV vaccine if eQ is above 50% (approximately)
and eT is below 40% (approximately); on the other hand, if eT is above 40% (approximately),
then TIV vaccine is preferred over QIV vaccine regardless of eQ (of course with the condition,
eT ≤ eQ). Notably, in this case, the fraction of QIV vaccinees never reaches the maximum as the
corresponding cost is higher; contrarily, TIV vaccinees are seen to reach the highest level for a
mid-range of eT, although it starts decreasing with the further increase of eT that arises with the
prevalence of free riders. Remarkably, the average payoff of society in case of different costs seems
lower than that of the equal cost (see heatmaps for ASP in figure 5) as the former case imposes a
higher financial burden to society.

(ii) Case II (βA >βB)

The case βA > βB (βA= 0.6, βB= 0.4) leads to infection dominance of influenza A over B virus
(figure 6a,b). This situation can be controlled by TIV vaccine alone as it targets two strains of A
virus. Individuals would then mostly prefer TIV vaccine over QIV vaccine as the price of TIV is
lower than the price of QIV (figure 6c,d). As a consequence, we perceive the sensitivity of choosing
TIV vaccine only along the direction of CT.
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Figure 5. eQ versus eT (eT ≤ eQ) 2D-heatmaps with similar (upper panels) and different (lower panels) cost levels presuming
mean-field framework with parameters choices, βA=βB= 0.5, γ A= γ B= 0.2, and initial conditions, IA(0)= 0.00001,
IB(0)= 0.00002. Similar cost encourages people (with a higher degree) to commit QIV vaccine, consequently, showing
sensitivity in the direction of eQ. However, in case of different costs (CQ > CT ), QIV vaccine is seen to favour over TIV vaccine
when eQ≥ 0.5 (approximately), on the other hand, TIV is favoured over QIVwhen eT ≥ 0.4 (approximately). The average social
payoff for similar cost seems to be better than that of the different costs. Moreover, infection due to influenza A is lower than
influenza B. (Online version in colour.)
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Figure 6. The heatmaps (a–d) show the fractions of infected individuals with influenza A and B viruses (FESA, FESB), fraction
of QIV and TIV vaccinees as a function of CQ and CT (CT ≤ CQ), when the transmission rate for virus A is higher than B virus
(βA > βB;βA= 0.6, βB= 0.4). (e–h) The same objects for the case βA < βB; βA= 0.4, βB= 0.6. We choose, eQ= 0.6
and eT = 0.4 for both cases. We can perceive the infection dominance of A and B viruses according to the conditionsβA > βB

andβA < βB. With the current setting, the case,βA > βB implies the total predominance of TIV vaccinees (e,f ). However, if
βA < βB, then QIV vaccinees prevail whenever the cost difference is not so high and both costs are below 0.6 (approximately)
but the prevalence of TIV vaccinees surges with the increase of CQ and the cost difference. The region where QIV is dominant
shows more impact on disease suppression comparing to that of TIV (f,g,h). (Online version in colour.)
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Figure 7. The effect of transmission rates (βA, βB) on disease spreading (a), the vaccine-dependent basic reproduction
number-R0 (b), and the vaccination coverage of both vaccines (c,d). The deep blue region inside the box in (a) represents a
DFE for both viruses, where R0 is below one (b), and accordingly, there is no vaccination coverage of any type inside the box.
Outside of that box, influenza A(B) becomes prevalent with the increase of βA(βB). The red dotted line depicts the threshold
level below(above) which influenza A(B) is dominant. TIV vaccinees predominate when βA gets larger and QIV vaccinees
predominate whenβB increases. The relevant parameters are set asγ A= γ B= 0.2; eQ= 0.6, eT = 0.4; CQ= 0.4, CT = 0.2.
(Online version in colour.)

(iii) Case III (βA < βB)

The predominance of influenza B virus over A virus creates a dilemma of choosing vaccine
types. Individuals prefer QIV vaccine over TIV whenever both costs are comparable or the cost
difference between QIV and TIV is not so high (region enclosed by black dotted lines in figure 6g);
however, TIV vaccine seems mostly favourable in case of higher vaccination cost for QIV or
higher cost difference between QIV and TIV vaccine (region enclosed by red dotted lines in
figure 6h). Figure 6g,h also depicts the coexistence of both types of vaccinees in the yellowish
transient regions. Furthermore, comparing the light blue region (enclosed with black dotted
lines) with the greenish region (enclosed by red dotted lines) in figure 6f, it is observed that
the QIV vaccine-dominant region imposes more effect on disease suppression compared to TIV
vaccine.

(iv)βA versusβB phase plane

We intend to observe an overall impact of the transmission rates on disease propagation and
vaccine uptake. To this aim, we draw heatmaps for total infection (FES) due to both viruses,
the basic reproduction number (R0) and vaccination coverage for both vaccines (QIV, TIV), as
a function of (βA, βB) (figure 7). The vaccine-dependent basic reproduction number R0 [54,55]
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Figure 8. The schematic of SED derivation. At first, we choose a point (C∗Q ,C
∗
T ) on the heatmap (CQ versus CT ) illustrating the

average social payoff (ASP) at equilibrium (EQM) (a), in which there is a corresponding point, (x*, y*), i.e. a corresponding pair
of vaccinees (QIV, TIV). With fixed (C∗Q ,C

∗
T ) and y*, we vary x (0≤ x≤ 1) and estimate the maximum average payoff, which we

term as social optimum (SO) payoff for x at (C∗Q ,C
∗
T ) and y*, i.e.ASPSOx

(C∗Q ,C
∗
T |y∗) (b). After that we derive SED for x at (C

∗
Q , C
∗
T ) by

subtracting ASP at equilibrium from the payoff at social optimum. We follow the same procedure to derive SED for y using (a)
and (c). (Online version in colour.)

is defined as R0 =max{RA
0 , RB

0 }, where RA
0 and RB

0 are the vaccine-dependent basic reproduction
number for influenza A and B viruses, respectively. We derive RA

0 and RB
0 as

RA
0 =

βA

γA
(S(0)+ (1− eQ)(VQ(0)+ VT(0)))

and
RB

0 =
βB

γB
(S(0)+ (1− eQ)VQ(0)+ (1− eT)VT(0)).

Other relevant parameters are set as γ A= γ B= 0.2; eQ= 0.6, eT = 0.4; CQ= 0.4, CT = 0.2. Clearly,
the increase of βA(βB) results in the upsurge of influenza A(B) virus. The deep blue regime inside
the box illustrates the disease-free equilibrium (DFE) for both viruses, where R0 < 1 (figure 7b).
Consequently, we observe no vaccination coverage inside that box (figure 7c,d). We perceive a
red dotted line in FES-heatmap (figure 7a) below(above) which influenza A(B) predominates.
As QIV vaccine provides better protection against B virus than TIV vaccine, we perceive the
predominance of QIV vaccinees in case of higher βB; contrarily, TIV vaccine is favoured over
QIV for higher βA because its price is lower than QIV.

(d) Social efficiency deficit
Now we intend to explore how much the payoff attained at equilibrium falls short from the
desired payoff or social optimum (SO) payoff. We name this payoff shortfall as the social efficiency
deficit (SED) and define as

SED, δ =ASPEQM −ASPSO, (3.1)

where ASPEQM and ASPSO denote the average social payoff at equilibrium and social optimum,
respectively. We use this parameter in explaining the degree of dilemma associated with each
vaccine choice.

(i) Derivation of SED

As there are two vaccines available, individuals face a dual dilemma situation, choose QIV
vaccine or TIV vaccine or none, depending upon their assessment on cost and effectiveness. These
factors allow us to evaluate SED corresponding to both vaccines to ponder the impact of both
types of vaccinations to society. The procedure given below can be followed in calculating SED
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Figure 9. Representation of social optimum payoff (a,b) and SED (c,d) for x (fraction of QIV vaccinees) and y (fraction of TIV
vaccinees) as a function of (CQ, CT ). SED heatmaps are attained by subtracting the ASP at equilibrium (figure 4a-v) from the
social optimum (SO) payoffs for x and y (a,b). The relevant parameters are chosen as: eQ= 0.6, eT = 0.4,βA=βB= 0.5 and
γ A= γ B= 0.2. Referring to figure 4a-i–a-iv, these parameter choices depict the prevalence of influenza B virus and lower
vaccination coverage for QIV vaccine (especially when the cost difference is high). Thewhiteout regions in (c,d) depict that there
is no gap between SO payoff (for x or y) and ASP at equilibrium.More areas in SED-heatmap for x appears to have darker regime
than that of the case for y, which indicates the higher gap between SO payoff for x and ASP at equilibrium. (Online version in
colour.)

for both vaccines. Suppose we wish to derive SED as a function of (CQ, CT). Note that it is also
possible to express SED as a function of (eQ, eT).

Step (I) At first, we estimate ASP at equilibrium (EQM) as a function of (CQ, CT), for instance
consider the heatmap for ASP given in figure 4a-v.

Step (II) Each point on this heatmap corresponds to a pair, (C∗Q, C∗T). Also, there is a
corresponding pair (x*, y*), i.e. vaccination coverage for each vaccine, for each pair (C∗Q, C∗T).
Now choosing y*(x*) as fixed and varying x(y) from 0 up to 1, we estimate the maximum average
payoff (using formula (2.2)), what we call a social optimum payoff for x(y) at the point (C∗Q, C∗T)
(figure 8a–c).

Step (III) Next, we derive SED for x(y) at the point (C∗Q, C∗T) by simply subtracting ASP attained

in step I from the social optimum payoff attained in step II and denote it by δx
(C∗Q,C∗T)

(
δ

y
(C∗Q,C∗T)

)
,

that is
δx

(C∗Q,C∗T) =ASPSOx
(C∗Q,C∗T)|y∗ −ASPEQM

(C∗Q,C∗T)|(x∗,y∗)

and
δ

y
(C∗Q,C∗T) =ASP

SOy

(C∗Q,C∗T)|x∗ −ASPEQM
(C∗Q,C∗T)|(x∗,y∗).
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Figure 8 schematically explains the whole procedure. Now let us explain the heatmaps for
SED that are generated following the above procedure. As an archetype, we choose the case
illustrated in the upper panel of figure 4, where we assumed βA=βB= 0.5 and eQ= 0.6, eT = 0.4.
In that case, we observed that most of the people are inclined to choose TIV vaccine whenever the
cost difference between CQ and CT gets higher but individuals prefer QIV if the cost difference
becomes lower. It is conceivable that the overall desired payoff or social optimum payoff for
QIV vaccinees (x) would be relatively higher than the TIV vaccinees (y), which is appeared
in figure 9a,b, but in this case, the vaccination coverage for QIV seems much lower than TIV
(figure 4a-iii–a-iv), which indicates that the dilemma of choosing QIV vaccine is higher than the
other one. Obviously, this comes from the fact of higher cost associated with QIV vaccine. This
factor results in less contribution of QIV vaccine to ASP (figure 4a-v). As a result, we perceive
relatively higher payoff-gap between social optimum payoff for x and ASP (at equilibrium);
hence, more areas of the heatmap for SEDx are seemed dark compared to its counterpart (SEDy).
The whiteout region in heatmaps (figure 9c,d) depicts the scenario with no SED, that is there
is no gap between social optimum payoff and ASP. There are two white regions in the SEDy-
heatmap (figure 9d), which either come from 100% TIV vaccination coverage (region enclosed by
blue dotted lines) resulting from lower CT and higher CQ (blue region in figure 4a-iii), or from the
scenario when everyone becomes a free rider (region enclosed by red dotted lines in figure 9b,d).
The latter situation can arise for higher vaccination cost or for very low vaccine effectiveness. In
this case, avoiding any type of vaccination is the best strategy (desired strategy), which agrees
with the D(unvaccinated)-dominant equilibrium (figure 4a-iii,a-iv). As a result, the payoff at this
equilibrium also agrees with the social optimum payoff; hence no SED or no dilemma arises in
this case.

4. Conclusion
In this paper, we consider a simultaneous spreading of two influenza viruses (A and B) coupled
with two types of vaccinations. The QIV vaccine contains one extra strain of influenza B virus
and hence provides better protection compared to the TIV vaccine. However, the cost of the
QIV vaccine is higher than TIV, which may create a dilemma for individuals’ vaccination choice.
Here we design a mean-field vaccination game model in an infinite and well-mixed population
to explain people’s vaccination dilemma, entangling an epidemic spreading process of influenza
with the coevolution of two types of vaccinations. Our evolutionary framework assumes three
strategies—choose QIV vaccine, TIV vaccine or none—that evolve at the end of each season by
imitating strategies based on the previous season’s experience. We perform a series of numerical
simulations by varying vaccination cost, vaccine effectiveness, transmission rates, etc., to depict
different scenarios. Our results show that individuals are more inclined to take QIV vaccine
whenever both vaccination costs are comparable; however, they prefer TIV vaccine if the cost
difference gets higher. Notably, the framework has been validated by the so-called MAS approach.

Generally, people’s vaccination choice is influenced by the costs as well as vaccine efficacies;
however, our results show that individuals’ vaccination options (QIV or TIV) are more affected
by the cost difference of both vaccines as long as the vaccine with the lower price is able to
bestow a considerable level of efficiency, especially against B virus. Another interesting result
concerns the variation of transmission rates for both viruses and its resulting effect on disease
propagation and vaccination choice. The higher transmission rate of influenza A virus leads to
a maximum coverage for TIV vaccine since it possesses the same degree of effectiveness against
influenza A virus as that of QIV vaccine but with a lower cost; contrarily, the higher transmission
rate of influenza B virus results in almost complete dominance of QIV vaccinees that is quite
conceivable.

Our analysis also incorporates how much the overall payoff or the average social payoff (ASP)
attained by the process of voluntary vaccination (at equilibrium) falls short from the desired
payoff or social optimum payoff, what we have termed as social efficiency deficit (SED)—the
payoff gap between social optimum and equilibrium. This parameter also helps us elucidate the
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degree of dilemma associated with each vaccination choice. It appears that for the case of equal
transmission rates, people face a bigger dilemma to choose QIV vaccine rather than TIV that
arises from the fact of the higher vaccination cost for QIV even though it confers relatively better
protection.

In sum, this work endeavours to explore individuals’ dilemma on choosing influenza vaccines
through the lens of a vaccination game, where the disease spreading process is modelled by a
simple SIR-like model coupled with two types of vaccinations. Our approach does not consider
any strain-specific infection, rather it relies on virus-specific infection (influenza A and B) with
long-term cross-immunity. It would be interesting to explore strain-specific infection, where an
individual infected with a particular strain can have short-term or long-term cross-immunity
against the other one (e.g. [49]). The inclusion of age structure (for instance [49,56]) in the current
framework could be another aspect to explore. The influenza epidemic varies from one country
to another country, thus it would be also interesting to explore the outlined framework for a
specific country with proper estimation of relevant parameters [56,57]. In addition to a voluntary
vaccination campaign, subsidies [14,58] provided by the government (especially for QIV vaccine)
can enhance vaccination coverage to prevent disease-outbreak more efficiently. Therefore, the
current framework with a subsidy provision could be another avenue to explore.

In the present study, we have presumed a well-mixed situation. The next step for the current
framework may be the inclusion of an underlying network. The focal point of our present model
is plural vaccinations having different capabilities and costs for plural viruses of the same disease.
Such a specific but quite realistic situation would be significantly influenced by a spatial structure
connecting individuals. The well-mixed situation can be said, in a sense, to be an ideal assumption
because the social information helping individuals to decide for vaccination is quickly shared and
can also be said to be an extreme assumption because disease spreading occurs quickly vis-à-vis
the case with the spatial structure. The time delay between information and disease spreading
on the underlying network might be more significant for the model with plural vaccinations and
plural viruses (or plural strains) than the conventional setting with a single vaccination and a
single strain.
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