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Abstract 

Background: Trabecular bone texture (TBT) analysis has been identified as an imaging biomarker that provides 
information on trabecular bone changes due to knee osteoarthritis (KOA). In parallel with the improvement in medi‑
cal imaging technologies, machine learning methods have received growing interest in the scientific osteoarthritis 
community to potentially provide clinicians with prognostic data from conventional knee X‑ray datasets, in particular 
from the Osteoarthritis Initiative (OAI) and the Multicenter Osteoarthritis Study (MOST) cohorts.

Patients and methods: This study included 1888 patients from OAI and 683 patients from MOST cohorts. Radio‑
graphs were automatically segmented to determine 16 regions of interest. Patients with an early stage of OA risk, with 
Kellgren and Lawrence (KL) grade of 1 < KL < 4, were selected. The definition of OA progression was an increase in the 
OARSI medial joint space narrowing (mJSN) grades over 48 months in OAI and 60 months in MOST. The performance 
of the TBT‑CNN model was evaluated and compared to well‑known prediction models using logistic regression.

Results: The TBT‑CNN model was predictive of the JSN progression with an area under the curve (AUC) up to 0.75 
in OAI and 0.81 in MOST. The predictive ability of the TBT‑CNN model was invariant with respect to the acquisition 
modality or image quality. The prediction models performed significantly better with estimated KL (KLprob) grades 
than those provided by radiologists. TBT‑based models significantly outperformed KLprob‑based models in MOST 
and provided similar performances in OAI. In addition, the combined model, when trained in one cohort, was able to 
predict OA progression in the other cohort.

Conclusion: The proposed combined model provides a good performance in the prediction of mJSN over 4 to 6 
years in patients with relevant KOA. Furthermore, the current study presents an important contribution in showing 
that TBT‑based OA prediction models can work with different databases.
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Background
Knee osteoarthritis (KOA) is a musculoskeletal condi-
tion frequently encountered not only in primary care 
but also in orthopedic and rheumatology clinics [3]. Due 
to the heterogeneity of osteoarthritis, i.e., its numerous 
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phenotypes [27] and the wide variability in the trajectory 
of disease progression [12], it is of the utmost importance 
to identify KOA patients who have a greater potential of 
progressing more rapidly.

Therefore, it is relevant to develop imaging biomarkers 
that can help the emergence of new therapeutic treat-
ments and particularly new disease-modifying drugs. 
Due to the role of the subchondral bone and its remode-
ling status in KOA progression, texture analysis and tibial 
subchondral bone mineral density assessments are recog-
nized and established methods to characterize structural 
alterations associated with KOA [18]. Recently, using the 
OAI database, the predictive ability of baseline trabecular 
bone texture to distinguish patients with or without radi-
ographic progression was slightly improved compared to 
that of conventional clinical risk factors such as age, gen-
der, body mass index (BMI), and joint space width (JSW) 
[10, 15]. Previously published studies have shown only 
moderate performance for predicting KOA progression 
when using pain, race, and previous knee injury [8, 17] 
as predictor factors. However, since data for pain, race, 
and previous knee injury were available in both OAI and 
MOST cohorts, we evaluated the performance of our 
proposed models with these three additional clinical 
predictors.

In parallel with the improvement in medical imaging 
technologies, several machine learning techniques have 
been proposed for the diagnosis and prediction of KOA 
[14, 26]. Automatic KOA diagnosis is becoming increas-
ingly popular [4, 23, 26] as it has a high potential to com-
plement the OA diagnostic chain and make radiographic 
KOA grading more objective.

The aims of this study were twofold: (i) to evaluate the 
predictive ability of a combined approach using both tra-
becular bone texture (TBT) descriptors, calculated by a 
variogram-based method [9, 10], and radiological grav-
ity scores, calculated by deep learning-based Siamese 
CNN tools [26], to predict KOA progression; (ii) to study 
the use of the same KOA progression prediction model 
validated on independent OA cohort datasets (OAI and 
MOST), by training the model on one dataset and test-
ing it on the other, and vice versa. The TRIPOD check-
list (Transparent reporting of a multivariable prediction 
model for individual prognosis or diagnosis) was used as 
a framework of quality assurance of the present manu-
script [22].

Methods
Patients
In this study, the data used in the preparation were 
obtained from the OAI and the MOST databases. Details 
about the acquisition and grading protocols in the OAI 
and the MOST studies are available online at https:// nda. 

nih. gov/ oai and http:// most. ucsf. edu, respectively. The 
primary selected dataset included only the knee images 
of patients with available KL grades [13] and the Osteoar-
thritis Research Society International (OARSI) grades as 
well as the clinical covariates: age, gender, BMI, Western 
Ontario and McMaster universities osteoarthritis index 
(WOMAC) pain, race, and history of knee injury. From 
the selected dataset, the knees with preexisting OA with 
2 ≤ KL < 4 [5, 10] at baseline were considered in the pre-
sent study, in accordance with the European Medicines 
Agency [3] which recommended to include patients with 
KL radiographic entry criteria of grades 2 or 3 for stud-
ies of structure-modifying drugs. The selected dataset 
was divided into two sub-datasets according to the type 
of acquisition modality: the computed radiographs (CR), 
i.e., digital images acquired by a device using X-ray-sen-
sitive plates which are then read by a processor, and the 
digitized X-ray films (RG).

In order to evaluate the effect of the quality of images 
on the performance of the predictive models, each of the 
two datasets (CR and RG) was further divided into two 
groups according to the quality of the corresponding 
radiographs. In the first non-quality-controlled (nonQC) 
group, all radiographs were included except those show-
ing materials (such as metallic materials, prostheses, and 
screws) in the subchondral zone, whereas in the second 
quality-controlled (QC) group, exclusion criteria also 
included radiographs with exposure problems (Fig.  1) 
in addition to those imposed in the nonQC group. The 
aim of this exclusion was to avoid the disturbances of 
these artifacts in the calculation of TBT parameters. 
This grouping strategy led to four sub-datasets, namely 
QC-CR, nonQC-CR, QC-RG, and nonQC-RG. As a 
result of the inclusion/exclusion criteria previously 
described, 2740 knees (425 cases, OAI) and 845 knees 
(297 cases, MOST) were judged as eligible for this study. 
Figure 2 shows the number of subjects and knees for each 
sub-dataset. The characteristics of selected OA cases and 
controls are summarized in Tables 1 and 2 for OAI and 
MOST cohorts, respectively.

Definition of OA progression
Patients with or without OA progression were selected 
using the following definitions: OA progressors (cases) 
included patients with non-severe KOA (KL grade 2 ≤ 
KL ≤ 3) at baseline and with an increased mJSN grade 
(ΔmJSN >0) over the predefined control period (48 
months and 60 months for OAI and MOST cohorts, 
respectively. ΔmJSN denotes the difference between 
OARSI mJSN grades at baseline and check points. OA 
non-progressors (controls) included patients with non-
severe KOA at baseline and a constant mJSN grade 
(ΔmJSN = 0) over the predefined control period.

https://nda.nih.gov/oai
https://nda.nih.gov/oai
http://most.ucsf.edu
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Regions of interest (ROI)
A patchwork construction technique using a semi-auto-
matic method to extract the ROIs has been previously 
described [10]. In the current study, in order to extract 
the trabecular bone ROIs, a fully automatic approach, 
thanks to the BoneFinder [19] software, was used to 
delimit the femoral and tibial bone edges. The patchwork 
consists of 16 ROIs mapping the whole tibial trabecular 
area (Fig.  3). Our algorithm firstly uses BoneFinder to 
identify the rough position of the bone in the image and 
then outline 148 points of the tibial and femoral contours. 
For the left knee, points 48 and 64 mark the lateral and 
medial extremities of the tibia, respectively. For the right 
knee, the medial extremities of the tibia are identified by 
the points 122 and 138, respectively. Secondly, the algo-
rithm approximates the tibial subchondral baseline as the 
line going through these anatomical points. Thirdly, this 
line is used to determine the orientation and size of the 
16-ROI patchwork under the cortical plates. The square 
ROI dimensions were proportional to the knee width 
defined as the distance between the outer tibial margins. 
In our sub-dataset, radiographs presented different pixel 

spacing ranging from 0.1 to 0.2 mm, and the average ROI 
side length was 73 ± 18 pixels (10.1 ± 0.9 mm), ranging 
from 7 to 13 mm.

Texture analysis
Fractal analysis consists in assigning a fractal dimension 
(FD) and other fractal characteristics to a dataset [11].

Several methods have been developed to measure the 
FD of a signal including the well-known technique of 
fractal signature analysis (FSA) [20], the Whittle esti-
mator (WhE) [7], and the quadratic variation method 
(VAR) [9, 10]. These three different fractal analysis meth-
ods provided consistent results in their capacity to pre-
dict OA progression [10]. In the current study, the VAR 
method, used by Janvier et  al. [9], was retained for our 
experiments.

As reported earlier [9], the cut-off scale was observed 
around 500 mm on the empirical variograms and two 
fractal parameters were extracted: μFD and mFD cor-
responding to the texture complexity computed for 
the two micro (μ-scale) and the milli (m-scale) scales 

Fig. 1 Radiographs from the OAI cohort with overexposure (A) and with materials (B), and radiographs from the MOST cohort with overexposure 
(C) and with materials (D)
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of observation under 400 mm and above 600 mm, 
respectively. Four TBT parameters (microscopic scale: 
horizontal  μFD, vertical μFD, and macroscopic scale: 
horizontal mFD, vertical mFD) were computed in the 16 
ROIs, resulting in 64 descriptors.

KL grading using Siamese neural networks
A Siamese neural network (SNN)-based method pro-
posed by Tiulpin et  al. [26] was used to estimate the 
probability distribution of the KL grades of baseline radi-
ographs included in our study, in the objective to propose 
a fully automatic KOA progression prediction model. An 
SNN is a class of neural network architectures that con-
tain two or more subnetworks sharing the same configu-
ration. SNNs are known to be robust to class imbalance, 
which is usually the case in medical applications [2, 21]. 
A full description of the used SNN-based method can be 
found in [25, 26].

Statistical analysis
Logistic regression was used to predict KOA progression. 
Several statistical models were developed involving not 

only clinical covariates and radiological scores but also 
TBT-based parameters:

• Model_1: cov
• Model_2: cov+TBT
• Model_3: cov+mJSN+lJSN
• Model_4: cov+KL
• Model_5: cov+KLprob
• Model_6: cov+lJSN+mJSN+TBT
• Model_7: cov+KLprob+TBT
• Model_8: cov+KLprob+lJSN+TBT
• Model_9: covPlus+KLprob+lJSN+TBT

where lJSN denotes lateral joint space narrowing, cov 
denotes the traditional clinical covariates (age, gen-
der, and BMI), and covPlus denotes the cov param-
eters accompanied with additional clinical data (race, 
WOMAC pain, and history of injury).

The TBT-CNN model (Model_8) includes baseline 
TBT, KLprob, lJSN, and cov. The KLprob was computed 
as the linear combination of the five probabilities of the 
KL grades predicted by the CNN-based model.

Fig. 2 Flowchart illustrating the selection of study subjects from the OAI and MOST datasets (n is the number of patients and k is the 
corresponding number of knee radiographs at baseline). From the OAI and MOST initial database, selected sub‑datasets were considered, including 
OA patients with 2 ⩽ KL<4 at baseline, with and without quality control conditions
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Table 1 Characteristics of the patients and knees in the OAI subset with different image modalities in the study

Baseline 48 months

Controls Cases Total Controls Cases Total

nonQC-CR (k=1723) (k=286) (k=2009) (k=1723) (k=286) (k=2009)

 Age (years) 62.3 (±9.0) 62.4 (±8.1) 62.3 (±8.8) 66.3 (±9.0) 66.4 (±8.1) 66.3 (±8.1)

 BMI (kg/m2) 29.4 (±4.6) 30.6 (±4.7) 29.6 (±4.7) 29.3 (±4.8) 31.0 (±5.0) 29.6 (±4.9)

Gender

 F 59% 51% 58% − − −
 M 41% 49% 42% − − −
Medial JSN grade

 0 741 41 782 741 0 741

 1 617 116 733 617 21 638

 2 365 129 494 365 119 484

 3 0 0 0 0 146 146

Lateral JSN grade

 0 1421 270 1691 1394 264 1658

 1 171 12 183 133 10 143

 2 131 4 135 136 11 147

 3 0 0 0 60 1 61

nonQC-RG (k=592) (k=139) (k=731) (k=592) (k=139) (k=731)

 Age (years) 62.9 (±9.1) 62.9 (±8.1) 62.4 (±8.8) 66.3 (±9.0) 66.9 (±8.1) 66.4 (±8.1)

 BMI (kg/m2) 29.9 ( ± 5.2) 31.0 (±5.1) 30.1 (±5.2) 29.9 (±5.4) 31.4 (±5.6) 30.2 (±5.5)

Gender

 F 67% 63% 36% − − −
 M 33% 37% 34% − − −
Medial JSN grade

 0 245 23 268 245 0 245

 1 208 44 252 208 9 217

 2 139 72 211 139 53 192

 3 0 0 0 0 77 77

Lateral JSN grade

 0 498 134 632 489 134 623

 1 48 2 50 35 1 36

 2 46 3 49 39 3 42

 3 0 50 0 29 1 30

QC-CR (k=1419) (k=228) (k=1647) (k=1419) (k=228) (k=1647)

 Age (years) 62.7 (±9.0) 62.7 (±8.2) 62.7 (±8.9) 66.7 (±9.0) 66.7 (±8.2) 66.7 (±8.2)

 BMI (kg/m2) 29.3 (±4.6) 30.4 (±4.6) 29.5 (±4.6) 29.3 (±4.8) 30.7 (±4.9) 29.5 (±4.8)

Gender

 F 59% 47% 57% − − −
 M 41% 53% 43% − − −
Medial JSN grade

 0 620 31 651 620 0 620

 1 496 90 586 496 15 511

 2 303 107 410 303 91 394

 3 0 0 0 0 122 122

Lateral JSN grade

 0 1164 219 1383 1142 215 1357

 1 146 7 153 114 7 121

 2 109 2 111 112 6 118

 3 0 0 0 51 0 51
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In Model_8, the mJSN was not included, due to the high 
correlation between the baseline mJSN and KLprob grades.

To avoid overfitting problems, all the models were evalu-
ated using a 10-fold cross-validation repeated 300 times. 
Each model was evaluated using the AUC of the receiver 
operating characteristic (ROC) as a global performance cri-
terion. The model classification accuracy (ACC), the proba-
bility that a random example is correctly classified, was also 
computed to investigate the relevance of different models. 
An ACC is defined as the ratio of the number of correct 
predictions relative to the total number of predictions.

All statistical analyses were performed using the R Sta-
tistical tool (version 3.6.3) including the packages MASS 
(for stepwise AIC optimization), Caret (for the cross-
validation training), and the pROC (for pROC curves and 
comparisons). Comparisons between the models were 
based on the ROC curves using the Delong method [6].

In order to reduce the number of parameters before 
training the prediction models, a backward selection of 
the TBT parameters (64 variables) was automatically per-
formed using the Akaike Information Criterion (AIC) 
[1] as an iterative criterion. At each iteration, the AIC 
removes one parameter and preserves the most efficient 
parameter(s) to limit overfitting effects.

Results
Performance comparison
The cov and the JSN scores at baseline are presented 
in Table  1 for the OAI dataset and in Table  2 for 

the MOST dataset. The ROC curves of the 8 mod-
els were calculated using data from nonQC-OAI and 
MOST sub-datasets (Fig. 4). The models’ AUC values 
using all considered sub-datasets are summarized in 
Table 3.

In OAI and MOST datasets, Model_1 was not predic-
tive of OA progression (AUC < 0.6). The combination of 
cov with TBT or KLprob (Model_2 or Model_5 respec-
tively) improved the prediction to a level comparable 
with that obtained by the combination of cov with JSN 
(Model_3).

In the MOST dataset, Model_2 was predictive of 
JSN progression (AUC≥0.74) and significantly bet-
ter than Model_4 which combines cov and baseline 
KL (AUC≤0.65); Model_2 outperformed Model_5 
(p = 0.021); Model_2 significantly improved the predic-
tion compared to Model_3, especially in the RG subset 
(p = 0.017); and Model_3 significantly outperformed 
Model_5 (p < 0.03) in all scenarios regardless of the acqui-
sition modality and image quality.

Model_5 showed a significantly better AUC than 
Model_4, in all cases (p < 0.02 in OAI and p < 0.03 in 
MOST datasets). Model_7 achieved a similar perfor-
mance with AUCs up to 0.75 (p > 0.2) in the OAI data-
set and up to 0.80 (p > 0.05) in the MOST dataset. The 
AUCs of Model_7 were significantly better than those of 
Model_3, especially in the OAI RG subset (p < 0.004) and 
in the MOST dataset (p < 0.02). Model_6, which com-
bines cov, JSN, and TBT, previously proposed by Janvier 
et al. [10], achieved a similar performance.

Table 1 (continued)

Baseline 48 months

Controls Cases Total Controls Cases Total

QC-RG (k=407) (k=94) (k=501) (k=407) (k=94) (k=501)

 Age (years) 62.0 (±8.9) 62.4 (±8.6) 62.1 (±8.9) 66.01 (±8.9) 66.4 (±8.6) 66.1 (±8.6)

 BMI (kg/m2) 29.8 (±5.3) 30.5 (±5.4) 29.9 (±5.3) 29.9 (±5.6) 30.9 (±5.8) 30.1 (±5.6)

Gender

 F 71% 72% 71% − − −
 M 29% 28% 29% − − −
Medial JSN grade

 0 184 16 200 184 0 184

 1 134 29 163 134 7 141

 2 89 49 138 89 34 123

 3 0 0 0 0 53 53

Lateral JSN grade

 0 341 89 430 335 89 424

 1 35 2 37 23 1 24

 2 31 3 34 27 3 30

 3 0 0 0 22 1 23

k the number of knees

“−” means no changes compared to baseline. Values for age and BMI are represented as mean (±standard deviation)
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Table 2 Characteristics of the patients and knees in the MOST subset with different image modalities in the study

Baseline 48 months

Controls Cases Total Controls Cases Total

nonQC-CR (k=306) (k=125) (k=431) (k=306) (k=125) (k=431)

Age (years) 63.2 (±7.7) 62.8 (±7.7) 63.1 (±7.7) 68.2 (±7.7) 67.8 (±7.7) 68.1 (±7.7)

BMI (kg/m2) 31.7 (±6.0) 33.3 (±6.7) 32.2 (±6.3) 31.7 (±6.0) 33.8 (±6.6) 32.3 (±6.2)

Gender

 F 67% 62% 65% − − −
 M 33% 38% 35% − − −
Medial JSN grade

 0 126 14 140 126 0 126

 1 124 45 169 124 11 135

 2 56 66 122 56 38 94

 3 0 0 0 0 79 76

Lateral JSN grade

 0 216 116 333 202 114 316

 1 53 6 59 36 5 41

 2 37 3 40 34 3 37

 3 0 0 0 34 3 37

nonQC-RG (k=244) (k=172) (k=416) (k=244) (k=172) (k=416)

 Age (years) 64.4 (±7.6) 63.12 (±8.2) 63.8 (±7.9) 69.4 (±7.6) 68.1 (±8.2) 68.8 (±8.2)

 BMI (kg/m2) 30.9 (±5.3) 32.2 (±6.7) 31.4 (±5.9) 30.8 (±5.6) 32.6 (±7.3) 31.5 (±6.4)

Gender

 F 68% 55% 63% − − −
 M 32% 45% 37% − − −
Medial JSN grade

 0 101 13 114 101 0 101

 1 98 80 178 98 10 108

 2 45 79 124 45 72 117

 3 0 0 0 0 90 90

Lateral JSN grade

 0 208 168 376 187 161 348

 1 22 3 25 17 5 22

 2 14 1 15 24 6 30

 3 0 0 0 16 0 16

QC-CR (k=269) (k=107) (k=376) (k=269) (k=107) (k=376)

 Age (years) 63.4 (±7.7) 62.9 (±7.7) 63.2 (±7.7) 68.4 (±7.7) 67.9 (±7.7) 68.2 (±7.7)

 BMI (kg/m2) 31.2 (±5.7) 32.7 (±5.4) 31.6 (±5.6) 31.1 (±5.6) 33.3 (±5.7) 31.7 (±5.7)

Gender

 F 65% 57% 63% − − −
 M 35% 43% 37% − − −
Medial JSN grade

 0 116 11 127 116 0 116

 1 109 40 149 109 8 117

 2 44 56 100 44 34 78

 3 0 0 0 0 65 65

Lateral JSN grade

 0 191 100 291 179 100 279

 1 49 4 53 32 2 34

 2 29 3 32 31 3 34

 3 0 0 0 27 2 29
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In all different scenarios, the proposed TBT-CNN 
model (Model_8) significantly improved the AUC com-
pared to the Model_3 (p < 0.003) in the OAI dataset and 
(p < 0.02) in the MOST dataset. Model_8 increased the 
AUC up to 0.75 in the OAI dataset and 0.81 in the MOST 
dataset. Model_8 significantly outperformed Model_6 

and Model_7 in the OAI CR and CR&RG subsets 
(p < 0.003) and in the MOST CR&RG subsets, regardless 
of the image quality. The same observation held when 
considering the MOST-nonQC-RG subset (p < 0.05). Fur-
thermore, Model_8 had a good accuracy (ACC > 0.8) in 
the OAI dataset and (ACC > 0.7) in the MOST dataset. 

Table 2 (continued)

Baseline 48 months

Controls Cases Total Controls Cases Total

QC-RG (k=205) (k=124) (k=329) (k=205) (k=124) (k=329)

 Age (years) 64.7 (±7.7) 63.0 (±7.7) 64.0 (±7.7) 69.7 (±7.7) 68.0 (±7.7) 69.0 (±7.7)

 BMI (kg/m2) 30.9 (+5.4) 32.9 (±7.2) 31.7 (±6.2) 30.9 (±5.8) 33.4 (±7.8) 31.8 (±6.7)

Gender

 F 76% 67% 72% − − −
 M 24% 33% 28% − − −
Medial JSN grade

 0 91 11 102 91 0 91

 1 78 58 136 78 9 87

 2 36 55 91 36 50 86

 3 0 0 0 0 65 65

Lateral JSN grade

 0 173 122 295 153 115 268

 1 19 1 20 17 5 22

 2 13 1 14 20 4 24

 3 0 0 0 15 0 15

k the number of knees

“−” means no changes compared to baseline. Values for age and BMI are represented as mean (±standard deviation)

Fig. 3 Knee trabecular bone mapping using Bone Finder software for ROI selection. Dots are the anatomical markers automatically defined by 
Bone Finder. Each patchwork is defined by 16 squared ROIs
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Fig. 4 ROC curves obtained for the OA progression prediction. Data from the OAI‑nonQC‑CR (A), RG (B), and CR&RG (C) sub‑cohorts and from the 
MOST‑nonQC‑CR (D), RG (E), and CR&RG (F) sub‑cohorts. QC and nonQC denote quality control and non‑quality control, respectively. CR and RG 
denote computed radiographs and digitized X‑ray films, respectively
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With the additional clinical covariates (race, WOMAC 
pain, and history of injury) used in Model_9, the results 
showed no improvement on the prediction performance 
compared to the proposed model (Model_8) in both OAI 
and MOST datasets.

Performance comparison with respect to acquisition 
modality
In terms of the acquisition modality, no significant differ-
ences in AUCs of the 8 models were found with regard 
to the three different scenarios (CR, RG, and CR&RG) 
(p > 0.1), in both OAI and MOST datasets.

Performance comparison with respect to image quality
Results showed that the image quality (QC and nonQC) 
had no statistically significant effect on the performance 

of the 8 models (p > 0.2) in the OAI dataset and (p > 0.4) 
in the MOST dataset. Thus, quality control is not a dis-
criminating determinant of KOA progression prediction.

The prediction performance of models trained on one 
dataset and tested in another dataset
Model_8 was tested in two scenarios. In the first scenario, 
the model was trained on the OAI dataset. The trained 
model was then used for the prediction of OA progres-
sion in the MOST dataset. In the second scenario, the 
model was trained on the MOST datasets. The trained 
model was then used for the prediction of OA progres-
sion in the OAI dataset.

Results showed the ability of this model trained on one 
cohort to predict progression in the other cohort with 
AUC > 0.7 in the CR and CR&RG cases, whatever the 

Table 3 Summary of AUC values of the 8 models: data from OAI and MOST datasets

Model_1 Model_2 Model_3 Model_4 Model_5 Model_6 Model_7 Model_8

OAI-QC
 CR 0.58 0.69 0.71 0.63 0.69 0.72 0.72 0.75

 RG 0.50 0.73 0.68 0.60 0.67 0.67 0.75 0.75

 RGCR 0.56 0.69 0.71 0.63 0.69 0.69 0.72 0.74

OAI-nonQC
 CR 0.58 0.69 0.70 0.63 0.68 0.72 0.72 0.73

 RG 0.55 0.72 0.68 0.63 0.67 0.74 0.74 0.75

 RGCR 0.58 0.68 0.70 0.63 0.68 0.72 0.72 0.73

MOST-QC
 CR 0.56 0.75 0.74 0.64 0.68 0.78 0.78 0.79

 RG 0.58 0.80 0.74 0.65 0.68 0.80 0.80 0.81

 RGCR 0.57 0.75 0.75 0.65 0.68 0.78 0.78 0.79

MOST-nonQC
 CR 0.56 0.74 0.72 0.62 0.67 0.77 0.77 0.78

 RG 0.58 0.77 0.74 0.65 0.71 0.79 0.79 0.80

 RGCR 0.57 0.75 0.74 0.64 0.69 0.78 0.78 0.79

Table 4 Results obtained from training on one cohort (OAI/MOST) and testing on another cohort (MOST/OAI)

Modality Metric Train. on OAI and validation on MOST Train. on MOST and validation on OAI

NonQC QC NonQC QC

CR AUC 0.74 (0.68–0.79) 0.73 (0.67–0.79) 0.7 (0.67–0.74) 0.71 (0.68–0.75)
DOR 6.82 5.95 3.42 4.04

ACC 0.74 0.74 0.77 0.73

RG AUC 0.64 (0.59–0.70) 0.63 (0.56–0.69) 0.69 (0.64–0.74) 0.59 (0.53–0.65)

DOR 3.01 4.34 3.36 2.51

ACC 0.62 0.65 0.74 0.78

CR & RG AUC 0.73 (0.70–0.77) 0.73 (0.69–0.77) 0.71 (0.68–0.74) 0.71 (0.68–0.74)
DOR 5.82 6.91 4.03 4.04

ACC 0.7 0.72 0.83 0.82
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quality of the radiographs (Table 4). However, the model 
trained in the RG subset did not achieve the same perfor-
mance (AUC < 0.7).

Discussion
An important contribution of this study consists in 
showing that OA prediction models can work with 
different databases. To the best of our knowledge, the 
present study is the first to evaluate the capability of 
combined models, including TBT and CNN-based 
parameters, to predict KOA progression, in both OAI 
and MOST datasets. The TBT-CNN model consistently 
provided the best performance in comparison with the 
other models [15, 16, 26] not only when training and 
testing on the same cohort (with AUC up to 0.81) but 
also when training on one cohort (OAI or MOST) and 
testing on the other one (MOST or OAI). When testing 
on another cohort, the TBT-CNN model was always 
predictive particularly in the CR and CR&RG sub-
sets (AUC ≥ 0.7), which was not the case for the other 
models.

Our study also included an evaluation of the effect of 
different acquisition modalities and image qualities on 
the performance of our combined prediction models.

The TBT-CNN model significantly outperformed the 
other models, regardless of the quality of the images 
considered, especially with complete selected OAI and 
MOST datasets (Fig. 4). The same results were obtained 
when using the QC- and nonQC-CR sub-datasets of 
the OAI cohort and the nonQC-RG sub-dataset of the 
MOST cohort.

The AUC of the TBT-CNN model varied from 0.73 to 
0.75 in OAI and from 0.78 to 0.81 in MOST, whereas the 
AUC of the cov-JSN model achieved a maximum AUC of 
0.71 in OAI and 0.75 in MOST (Table 3).

In both cohorts, the results showed that the per-
formance of the TBT-CNN model was invariant with 
respect to acquisition modality and image quality. More-
over, results showed that the model prediction perfor-
mance was better when using CNN-based estimations of 
KL than those measured manually by radiologists in the 
OAI and MOST datasets. In addition, the performance 
of the proposed prediction model remained unchanged 
when adding more clinical data including race, WOMAC 
pain, and history of injury. Whatever the cohort, the 
modality of the radiographs, and the quality of the radio-
graphs, the CNN-based estimation of KL grades provided 
better results than those obtained from a discrete ordinal 
grading method. An automatic estimation of JSN grades 
using a CNN-based method [25] might also be of interest 
to improve the prediction of OA progression.

However, the performance of the prediction model 
using CNN-based estimations was statistically less 

significant than when using TBT parameters in the 
MOST dataset. The performance of the two approaches 
was similar in the OAI dataset.

Previous studies have demonstrated that the texture 
analysis of subchondral bone from conventional knee 
radiographs could be a good indicator of the prediction 
of knee OA progression [10, 15, 16, 28, 29].

In a recent study by Kraus et al. [15], the use of TBT 
calculated by the FSA method in combination with 
other clinical covariates and radiological parameters 
was investigated to propose a predictive model of OA 
progression using a large sample of 579 RG&CR radi-
ographs selected from the OAI cohort. They investi-
gated not only the radiographic but also the knee pain 
progression status over 12 and 24 months. However, 
the performance of the proposed model was modest 
(AUC = 0.633 − 0.649).

Involving a much larger dataset of 1124 CR radio-
graphs, Janvier et  al. [10] proposed a prediction model 
that included JSN grades in addition to TBT and cov 
parameters. In their study, the TBT analysis covered the 
medial and lateral subchondral bone. This model showed 
the ability to predict OA progression over 48 months, 
providing an AUC score of 0.77 using the WhE estimator 
for the TBT parameters.

Strengths and limitations
Due to a lack of information in the MOST cohort regard-
ing the JSW, our study took into consideration only the 
discrete ordinal JSN grades. It would be interesting to 
consider the use of the continuous JSW values or joint 
space area (JSA), for which an additional step is required 
to calculate these values from the selected radiographs.

In the current study, age, sex, and BMI were chosen 
as clinical predictors. Other predictors of KOA progres-
sion such as self-reported previous knee injury and knee 
pain may also be included in future studies. However, 
the main focus of this study was to show the ability of 
image-processing-based models to predict KOA progres-
sion, rather than investigating other clinical covariates for 
KOA progression prediction.

It should be noticed that the duration of the two tested 
cohorts is not the same (48 months for OAI and 60 
months for MOST). Unfortunately, the OAI cohort did 
not include imaging data at 60-month follow-up, and the 
MOST cohort did not include imaging data at 48 months. 
Consequently, the use of time-to-event data analyses was 
not relevant since the occurrence of KOA progression 
is more or less a continuous phenomenon. It has been 
shown, however, that our proposed models provide a 
good performance in the prediction of KOA progression 
when trained on one cohort and tested on the other.
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The present study has several important strengths. It 
involves the use of two large datasets. In addition, the 
proposed model takes advantage of an extensive set of 
TBT parameters [9, 10] and CNN-based KL grades for 
the prediction of OA progression. We also evaluated the 
effect of different image quality and modality scenarios 
on the performance of the prediction of OA progres-
sion. A major contribution of our study is the evaluation 
using a model trained on one cohort and validated on 
the other. In this case, the progression prediction models 
were not only trained on the OAI dataset and tested on 
the MOST dataset, as proposed by Tiulpin et al. [24], but 
also trained on the MOST dataset and tested on the OAI 
dataset, which has never been explored to date. Further-
more, the combination of TBT and CNN-based estima-
tion of KL grades significantly improves the prediction 
of OA progression. This combination provides mutual 
information between the evolution of shape surrounding 
the knee joint space [24–26] and texture variations in the 
proximal tibial subchondral bone.

Conclusions
In conclusion, our study has demonstrated the feasibility 
of using the TBT-CNN model to predict mJSN progres-
sion in both OAI and MOST cohorts. This model exhib-
ited a good diagnostic performance regardless of both 
the acquisition modality and the image quality when the 
model was trained and tested on the same cohort. More-
over, when trained on one cohort, the TBT-CNN model 
was able to predict mJSN progression on another cohort 
in the CR and CR&RG subsets, irrespective of the image 
quality.

However, further experiments are needed to develop 
more comprehensive risk assessment models for KOA 
progression prediction. In particular, other TBT meth-
ods such as the Variance Orientation Transform (VOT) 
[30], FSA, and WhE methods, as well as the automatic 
calculation of certain radiographic parameters such as 
JSN, JSW, or JSA scores, could be investigated.
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