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Abstract: Although some atomically thin 2D semiconductors have been found to possess good
thermoelectric performance due to the quantum confinement effect, most of their behaviors occur
at a higher temperature. Searching for promising thermoelectric materials at room temperature is
meaningful and challenging. Inspired by the finding of moderate band gap and high carrier mobility
in monolayer GeP3, we investigated the thermoelectric properties by using semi-classical Boltzmann
transport theory and first-principles calculations. The results show that the room-temperature lattice
thermal conductivity of monolayer GeP3 is only 0.43 Wm−1K−1 because of the low group velocity
and the strong anharmonic phonon scattering resulting from the disordered phonon vibrations with
out-of-plane and in-plane directions. Simultaneously, the Mexican-hat-shaped dispersion and the
orbital degeneracy of the valence bands result in a large p-type power factor. Combining this superior
power factor with the ultralow lattice thermal conductivity, a high p-type thermoelectric figure of
merit of 3.33 is achieved with a moderate carrier concentration at 300 K. The present work highlights
the potential applications of 2D GeP3 as an excellent room-temperature thermoelectric material.

Keywords: thermoelectricity; power factor; lattice thermal conductivity; GeP3 monolayer; first-principles;
Boltzmann transport

1. Introduction

Thermoelectric (TE) materials, which could convert thermal energy into electric energy,
have become more and more important due to their potential in resolving the global
warming and the energy dilemma [1,2]. The efficiency of TE conversation is quantified
by the TE figure of merit ZT = S2σT/κ. Here, T is the temperature, σ is the electrical
conductivity, S is the Seebeck coefficient, and κ is the sum of electronic and phonon (lattice)
thermal conductivity. These TE coefficients are connected by the carrier concentration
and will lead to a maximum ZT value at a proper carrier concentration. In the past few
years, numerous efforts have suggested that the TE performance of low-dimensional
systems could be enhanced compared to their bulk counterparts because of the quantum
confinement effect [3–5].

Graphene-like atomically thin 2D materials, such as germanene, black phosphorene,
arsenene, silicene, and transition-metal dichalcogenides monolayers have attracted intense
interest in thermoelectrics recently [6–11]. Some of them showed excellent TE performance
at a moderate or higher temperature. As we all know, TE materials with higher ZT values
at room temperature will make them commercially viable for the cooling and power
generation field [12]. However, searching for room-temperature 2D high-performance TE
materials is still challenging, because the relatively high lattice thermal conductivity at
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room temperature hinders the increase of the ZT value. For example, the optimized ZT
values at 300 K are only 0.01 for monolayer graphene, 0.16 for monolayer graphyne, 0.14
for monolayer WSe2 [7,8]. Although the ZT value can reach 1.2 at 1200 K for p-type CdPSe3,
it is only 0.5 at room temperature [9]. Therefore, it is necessary to search for promising
room-temperature TE materials.

Latterly, a new type of 2D monolayers MP3 (M = Ga, In, Ge, Sn) received growing
attention in view of their novel chemical and physical properties [13–21]. Their structures
are associated with arsenic, which can be regarded as one M atom replacing every fourth
atom in the arsenic layer and the rest replaced by phosphorus (P) atoms. Interestingly,
when the thickness is equal to or greater than three layers, both SnP3 and GeP3 will
become metals due to the correlation between lone-pair electrons of interlayer Ge(Sn) and P
atoms [13,14]. Importantly, all the MP3 monolayers are predicted to be 2D semiconductors
with high carrier mobilities and moderate energy gaps [13–16], and the biaxial compressive
strain can lead to the transition of indirect-direct band gaps for both GeP3 and SnP3 [13–15].
In addition, both GeP3 and SnP3 monolayers have been predicted as promising candidates
for future applications in Li-ion batteries and electrocatalysis [17,18]. Even so, there have
been little research on the TE properties for 2D MP3 [19–21]. We would like to explore
and understand the electron and phonon transport properties of 2D GeP3 belonging to
an MP3 family.

In this work, we demonstrate from the first-principles calculations that the GeP3
monolayer obtains a superior p-type S2σ due to the Mexican-hat-shaped dispersion and
the orbital degeneracy for the valence bands. Meanwhile, an ultralow lattice thermal
conductivity is obtained and understood from the phonon spectrum, phonon group velocity,
Grüneisen parameter, vibration modes of lattice, and three-phonon scattering phase space.
The superior power factor and the ultralow lattice conductivity lead to a high p-type
ZT value of 3.33 at 300 K, which indicates the potential of monolayer GeP3 as a room-
temperature TE material.

2. Computational Methods

Our calculations include three parts. Firstly, the structural optimization of the GeP3
monolayer is achieved by the VASP code [22]. The generalized gradient approximation
(GGA) in the Perdew–Burke–Ernzerhof (PBE) type is adopted for the exchange-correlation
functional [23]. A 550 eV is set for the cutoff energy, and a 15× 15× 1 q-grid is chosen in the
Brillouin zone. We use the hybrid functional (HSE06) [24] to obtain the band structure and
the electronic transport properties because the GGA usually underestimates the band gap.

Secondly, the electronic transport properties are computed by the Boltzmann transport
theory within the relaxation time approximation in the BoltzTraP code [25]. The κe is
conducted by the Wiedemann-Franz law κe = LσT, here, L = 2.44× 10−8 WΩK−2 represents
the Lorentz number [26]. The carrier relaxation time τ is estimated by the deformation po-
tential theory, which has been extensively applied for 2D systems [6,27,28]. The calculated
electron (hole) relaxation time at room temperature is 1.9 (6.2) × 10−13 s, which is close to
the results obtained by Zeng et al. [29].

Thirdly, the thermal transport properties are obtained via solving the phonon Boltz-
mann transport equation with ShengBTE [30]. A 4 × 4 × 1 supercell with 7 × 7 × 1 k-mesh
is chosen to acquire the second-order and third-order interatomic force constants (IFCs).
The cutoff of interaction is up to the sixth nearest neighbors for the anharmonic IFCs. The
interlayer separation of bulk is used as the thickness of the monolayer to calculate the
lattice thermal conductivity, which has been used in other 2D monolayers [31,32]. It is
worth noting that the present computational approaches of transport properties have been
reviewed recently by Kozinsky and Singh [33].

3. Results and Discussion

The crystal structure of the GeP3 monolayer is plotted in Figure 1a,b. The optimized
lattice constant a = b = 6.96 Å is closed to the earlier theoretical values [13,17,18]. We first
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calculate the electronic band structure and the density of states (DOS) within HSE06. It
is distinctly seen in Figure 1c that the GeP3 monolayer is an indirect band gap (0.53 eV)
semiconductor, which is consistent with the value of 0.55 eV reported by Jing et al [13]. The
calculated total and atomic orbit-resolved DOS (Figure 1d) reveal that both conduction
bands and valence bands derive from the hybridized P and Ge p orbitals. The uppermost
valence bands emerge so-called “Mexican-hat-shaped” dispersion, which can greatly en-
hance the TE properties [34,35]. As can be seen from Figure 1c, the “Mexican-hat-shaped”
dispersion on the top of valence bands show heavy and light bands simultaneously. The
heavy bands along the M-K direction are very flat, which will lead to a large DOS effective
mass and thus, a large Seebeck coefficient. Meanwhile, the light bands with distinct disper-
sion along M-Γ and K-Γ directions will result in high electrical conductivity. Moreover, the
two separated bands are degenerate at the K point on the top of the valence bands. Such
degenerate band structure feature is considered to take great effect on electronic transport
and will give rise to a high density-of-state effective mass and in turn a large Seebeck
coefficient [36,37].
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Figure 1. The top (a) and side (b) views of the crystal structure and the band structure (c) and atomic
orbit-resolved density of states (d) for monolayer GeP3. The pink and green balls represent the Ge
and P atoms, respectively.

On the basis of the obtained band structure of the GeP3 monolayer, we further com-
puted the electronic transport properties including the S, σ, PF, and κe. We simulate the
doping by the rigid band approximation. The obtained σ and S with the change of carrier
concentration n at three different temperatures are shown in Figure 2a–d. As can be seen,
the Seebeck coefficient of p-type doping is larger than that of n-type doping due to the
flat valence bands along the M-K direction and the band degeneracy at the K point. With
assured carrier concentration, the Seebeck coefficient increases with the increase of temper-
ature. Besides, the p-type doping σ is much larger than that of n-type doping because of
the strong dispersion along the M-Γ and K-Γ directions. It is natural the maximum power
factor can be achieved in p-type because a larger Seebeck coefficient and higher electrical
conductivity are obtained in p-type simultaneously. By comparing the S and σ values
of the p-type and n-type for monolayer GeP3, it is found that the “Mexican-hat-shaped”
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dispersion for valence band structure can not only significantly increase the S by the flat
band, but also avoid the poor performance of the σ. Figure 2e, f shows the power factor
S2σ. It can be seen that the p-type S2σ is much larger than that of the n-type one, which
implies that greater TE performance could be achieved by the p-type doping. Typically,
the obtained room-temperature p-type S2σ is about 0.0245 Wm−1K−2 for monolayer GeP3,
which is even larger than the well-known TE material Bi2Te3 (0.003 Wm−1K−2) [38]. In
addition, the plotted electronic thermal conductivity κe (Figure 2g,h) indicates that the
changes of σ and κe with temperature and carrier concentration are uniform due to their
correlation according to the Wiedemann–Franz law [26].
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Figure 2. The absolute value of Seebeck coefficient (a,b), the electrical conductivity (c,d), the power
factor (e,f), and the electronic thermal conductivity (g,h) with the change of carrier concentration and
temperature for monolayer GeP3. The left (right) part represents the p-type (n-type) doping.

After attaining the electronic transport properties of the GeP3 monolayer, we now
examine the phonon transport property. The obtained phonon band structure and phonon
density of states of GeP3 monolayer are presented in Figure 3a. No imaginary phonon
frequency appears which implies the stability of monolayer GeP3. The lowest three phonon
modes at the Γ point are acoustic phonon branches, i.e., the in-plane transverse acoustic
branch (TA), the z-direction acoustic mode (ZA), and the in-plane longitudinal acoustic
branch (LA). The maximum frequency of acoustic branches is only 1.81 THz, which is
comparable or lower than those of admirable TE materials, such as PbTe and SnSe [39],
indicating a smaller phonon group velocity in monolayer GeP3. In addition, the flat phonon
dispersion characteristics of acoustic branches closed to the Γ point is also a key to obtaining
a small phonon group velocity and a low lattice thermal conductivity. As expected, the
group velocities that could be computed by ∂ω/∂k are 1.70, 1.27 and 1.63 kms−1 for
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the LA, ZA and TA branches at the Γ point, respectively, which are smaller than those
of PbTe, SnSe [39], and SnTe [10]. Meanwhile, the low-frequency optical branches are
overlapped and mixed with the acoustic modes, resulting in strong interactions and large
three-phonon processes, which will have a great influence on the κl of monolayer GeP3.
The calculated total and partial phonon DOS show that the low-frequency optical branches
and the acoustic modes are derived from the vibrations of the Ge and P atom while the P
atom forms the high-frequency optical modes. So, the thermal carry through the Ge–P bond
is the major heat transfer means in the GeP3 monolayer. Due to the flat phonon dispersion
closed to the Γ point for acoustic branches, the PhDOS is truly sharp, and consequently,
a low κl could be anticipated.
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Figure 3. The phonon dispersion (a), the temperature-dependent lattice thermal conductivity (b), the
frequency-dependent Grüneisen parameter γ (c) and three-phonon scattering phase space W (d) at
300 K, and the p-type (e) and n-type (f) figure of merit ZT with the change of carrier concentration and
temperature for monolayer GeP3. The inset in (b) shows the cumulative lattice thermal conductivity
as a function of phonon mean-free-path (MFP) at 300 K.

The κl which is computed by solving the phonon Boltzmann transport equation
performed in ShengBTE [30] can be expressed as

κL,αβ = ∑
qs

CV(qs)υα
g(qs)υβ

g(qs)τqs (1)

where q, s, CV, vg, and τ represent the wave vector, the dispersion branch, the phonon mode
volumetric specific heat, the group velocity, and the phonon lifetime, respectively. The calcu-
lated κι for monolayer GeP3 as a function of temperature T is plotted in Figure 3b. It can be
seen that the κl for the GeP3 monolayer is fairly low, especially at a high temperature. Typi-
cally, the κl for the GeP3 monolayer is only 0.43 Wm−1K−1 at 300 K, which is much lower
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than those of good TE materials of SnSe (0.62 Wm−1K−1) and PbTe (2.30 Wm−1K−1) [39],
as well as 2D CdPSe3 (1.25 Wm−1K−1) [9]. Such low κl means that monolayer GeP3 could
be a favorable room-temperature TE material. Note that, in our calculations based on
the phonon Boltzmann transport equation (ShengBTE code) [30], the phonon-phonon,
the isotope and the boundary scatterings are included, but the carrier-phonon scattering
is not considered. So, the lattice thermal conductivity κl is independent of the carrier
concentration n. In Figure 4, we present a comparison of the calculated κl and κe. One can
see that the characteristics of (κe + κl)~n is similar to that of κe~n. The κl is higher than the
κe at the low n, but it is opposite at the high n.
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GeP3. The left (right) part represents the p-type (n-type) doping.

To get more perception for the phonon thermal transport properties, we calculate
the three phonon scattering phase space W and Grüneisen parameter γ for monolayer
GeP3, as plotted in Figure 3c,d. The γ could qualitatively characterize the anharmonic
phonon scattering, and the W could give the comprehension of the number of available
channels for anharmonic phonon scattering. Usually, larger |γ| means strong anharmonic
phonon scattering and thus leads to a low κl. The calculated average value of the Grüneisen
parameter |γ| for acoustic branches is 9.6, which is high and indicates the strong anhar-
monicity and thus a low κl can be obtained for monolayer GeP3. In addition, it is found
that the large Grüneisen parameter and three phonon phase space mainly exist in the
low-frequency region, especially for the acoustic branches, which reveals that the acoustic
branches contribute most to the total lattice thermal conductivity.

Besides, we study the phonon vibration modes in terms of the computed 2nd IFCs.
We show in Figure 5 some typical vibration modes of monolayer GeP3 at Γ point. The
phonon modes presented in Figure 5a–c are the vibration of three acoustic modes (LA, TA
and ZA, respectively). The results show that the vibration directions of these branches are
firmly along the out-of-plane (ZA) or the in-plane (LA and TA). Figure 5d is the vibration
type of the lowest optical mode. In this mode, the Ge atoms are fixed, some P atoms vibrate
out-of-plane, while other P atoms move in-plane in different directions. Similar phonon
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vibration modes could also be observed in higher-frequency optical branches (Figure 5e,f).
These optical modes are effortlessly thermally activated at 300 K and seriously hinder
thermal transport as a result of phonon-phonon scattering, and thus, a low κl is gained for
monolayer GeP3.
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Figure 5. The typical vibrational modes of the acoustic phonon branches (LA (a), TA (b) and ZA (c))
as well as three low-frequency optical phonon branches (d–f) for monolayer GeP3 at the Γ point. The
arrows denote the atomic displacement directions at 300 K.

Nanostructure is one of the important ways to enhance ZT value by hindering phonon
transport [3–5]. The phonon boundary scattering would greatly depress the κι as long as
the length of the nanostructure is as short as the phonon mean free path (MFP). Therefore,
the discussion on phonon MFP is necessary to study the size effect and also significant
to design nano TE devices. The calculated cumulative lattice thermal conductivity (κC)
in regard to MFP at 300 K for monolayer GeP3 is shown in the inset of Figure 3b. The
calculated κC keeps increasing as the increase of MFP till the thermodynamic limit is
reached. The critical value of MFP (l0) to the maximum lattice thermal conductivity at
300 K is only 8.2 nm. In general, nanostructures with l0 short than 10 nm is favorable for
their TE performance. By comparing with other TE materials, monolayer GeP3 shows
a fairly low l0 value. Thus, the intrinsically short MFP for monolayer GeP3 hinders the
potential for further decrease of κι. In other words, the effect of size on κι for monolayer
GeP3 is not so significant.

Finally, according to the above calculated thermal transport coefficients, we computed
the ZT value with the change of temperature and carrier concentration. Note that, the
present ZT is an estimation based on the relaxation time approximation, because the
carrier relaxation time is complex, and it is approximated as a constant in the present
calculations by the BoltzTraP code [25] based on the Boltzmann transport theory. As
shown in Figure 3e,f, the optimal ZT value increases with the increasing temperature. The
p-type has high ZT value than the n-type because of the large power factor of p-type than
n-type. For the p-type doping at 300 K, the optimal ZT value for monolayer GeP3 is as
large as 3.33 with a large Seebeck coefficient of 400 µV/K at the hole concentration of
5.07 × 1012 cm−2, while the value is only 0.78 for the n-type doping. Therefore, monolayer
GeP3 is an excellent p-type room-temperature TE material due to the high-power factor
and the low thermal conductivity. The optimal p-type ZT value of 3.33 at 300 K is higher
than most of 2D semiconductors, such as p-type CdPSe3 (0.5 at 300 K) [9], p-type InP3 (2.06
along the armchair direction at 300 K) [19], and n-type α-In2Se3 (2.18 at 300 K) [40], etc.
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4. Conclusions

In summary, thanks to the recent finding of monolayer GeP3 with high carrier mobility
and a moderate energy gap, we perform the first principles to explore the electron and
phonon transport properties for monolayer GeP3. The Mexican-hat-shaped dispersion
and the band degeneracy of valence bands result in a high p-type power factor. The low
frequency of acoustic branches, low phonon group velocity, large Grüneisen parameter and
large three-phonon scattering phase space result in an ultralow lattice thermal conductivity
of 0.43 Wm−1K−1 at 300 K. Therefore, a high p-type ZT value of 3.33 is achieved at 300 K,
which is higher than most of the 2D semiconductors, making monolayer GeP3 an excellent
room TE material.
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