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ngiotensin-I-converting enzyme
(ACE) inhibitory tri-peptides: a combination of 3D-
QSAR and molecular docking simulations†

Fangfang Wang *a and Bo Zhoub

Angiotensin-I-converting enzyme (ACE) is a key enzyme in the regulation of peripheral blood pressure and

electrolyte homeostasis. Therefore, ACE is considered as a promising target for treatment of hypertension.

In the present work, in order to investigate the binding interactions between ACE and tri-peptides, three-

dimensional quantitative structure–activity relationship (3D-QSAR) models using comparative molecular

field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) methods were

developed. Three different alignment methods (template ligand-based, docking-based, and common

scaffold-based) were employed to construct reliable 3D-QSAR models. Statistical parameters derived

from the QSAR models indicated that the template ligand-based CoMFA (Rcv
2 ¼ 0.761, Rpred

2 ¼ 0.6257)

and CoMSIA (Rcv
2 ¼ 0.757, Rpred

2 ¼ 0.6969) models were better than the other alignment-based models.

In addition, molecular docking studies were carried out to predict the binding modes of the peptides to

ACE. The peptide–enzyme interactions were consistent with the derived 3D contour maps. Overall, the

insights gained from this study would offer theoretical references for understanding the mechanism of

action of tri-peptides when binding to ACE and aid in the design of more potent tri-peptides.
1. Introduction

Research has proven that food proteins can act as a signicant
source of active peptides with antihypertensive, opioid, immu-
nomodulation, antioxidative, antimicrobial, antithrombotic,
antiamnestic, hypocholesterolemic, and other activities.1,2

Among these bioactive peptides, angiotensin I-converting
enzyme (ACE) inhibitory peptides have been extensively
studied for their capability to prevent hypertension, which has
been estimated to affect one third of the western population.3

Therefore, ACE peptides can be applied as potent functional
food additive and represent natural alternative to ACE inhibitor
drugs.

ACE is a peptidyl-dipeptidase that is activated by chloride
and possesses broad in vitro substrate specicity.4 Studies
indicate that ACE is widely distributed in mammalian tissues,
such as vascular endothelial cells, absorptive epithelial, neu-
roepithelial, and male germinal cells et al.5,6 In addition, two
distinct isoforms (the somatic and smaller testicular types) are
generated from a single gene at alternative initiation sites.7

Generally, ACE can convert the biologically inactive angiotensin
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I to the potent vasoconstrictor and cardiovascular trophic factor
angiotensin II,8–10 which possesses some actions, such as
increasing arterial pressure, increasing sodium and uid
retention, enhancing sympathetic adrenergic function and
causing cardiac and vascular remodeling. Evidences suggest
that inhibition of ACE is considered to be a useful therapeutic
method in the treatment of hypertension. Therefore, ACE has
become a vital target in the development of drugs to control
high blood pressure.

Up to now, a large number of potent and specic ACE
inhibitors have been developed as orally drugs that were used in
the treatment of hypertension.11 In 1977, Cushman et al.12

synthesized ACE inhibitor captopril for the rst time. Since the
drug was approved for use in 1981, the role of ACE inhibitors in
the clinical treatment of hypertension has been generally
recognized by the medical community. The commonly used
ACE inhibitors can be divided into two categories, thiol-
containing (SH) group and non-thiol-containing (carboxyl,
phosphoryl) group.13 The sulphydryl group-containing ACE
inhibitor is captopril,14 the carboxyl group-containing ACE
inhibitor includes benazeri, celazapril, enalapril, imidapril,
lisinopril, perindopril, quinapril, ramipril, and trandolapril,15

and the phosphoryl-based ACE inhibitor mainly refers to fosi-
nopril.16 However, these ACE inhibitors would give rise to
several side effects, such as rapid absorption and excretion,
cough, rst dose hypotension, hyperkalemia, increased creati-
nine, kidney damage, and taste dysfunction, etc.17–20 To this end,
researchers hope to nd a safer alternative to antihypertensive
RSC Adv., 2020, 10, 35811–35819 | 35811
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Table 1 Molecular structures of ACE inhibitory peptides used for 3D-
QSAR analysis

Compound Structure pIC50

1* FEP 1.08
2 LKP 0.60
3 ALP 2.38
4 LRP �0.57
5 IEP 0.20
6 LAP 0.54
7* GRP 1.30
8 LSP 0.23
9 IAP 0.43
10* MNY 1.82
11 LEP 0.28
12 TNP 2.32
13 VSP 1.00
14 VLP 1.91
15 ILP 1.51
16 LNP 1.76
17* VGP 1.42
18 GKP 2.55
19 VYP 2.46
20* IKP 0.84
21* FAP 0.58
22 AVP 2.53
23 VRP 0.34
24 LYP 0.82
25 DLP 0.68
26 IRP �0.13
27* FQP 1.08
28 LQP 0.28
29 GEP 2.51
30* VMP 1.46
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drugs. Meanwhile, the food-derived ACE inhibitory peptide also
exerts signicant antihypertensive effect on hypertensive
patients, but no antihypertensive effect on those patients with
normal blood pressure. Researches have proven that the food-
derived ACE inhibitory peptide possesses some advantages,
such as easily absorbed, high safety, small toxic and side effects
on normal kidneys and blood vessels. Therefore, ACE peptides
will have good application prospects as antihypertensive drugs
and health foods.21–23

The experimental approach to examine the relationship
between activities and structures is time-consuming and labo-
rious. An alternative method, before large experimental studies
of peptides is to be considered, which can be used to draw on
the advantage of previously found relationship between bioac-
tivities and chemical structures. Quantitative structure–activity
relationship (QSAR) analysis has been successfully used as
a modelling and predictive tool for predicting the functional
activity of peptides.24,25 Furthermore, QSARmethods are dened
to nd a series of quantitatively correlated relationship between
the physical–chemical characteristics of compounds and the
biological effects employing the theoretical calculation and
statistical analyses. In addition, QSAR plays a signicant role in
drug design and medicinal chemistry, and it nds application
in predicting the binding activity of novel compounds by
mathematical expression.26,27

Several QSAR models have been constructed, namely
multiple linear regression (MLR),28 articial neural networks
(ANN)29 and partial least squares regression (PLS),30 to screen
a large amount of peptides efficiently and to predict the
potential ACE inhibitory activities. In recent years, much
attention has been paid to the discovery and synthesis of novel
peptides with ACE inhibitory activity. Therefore, the objectives
of this work are to (1) construct 3D-QSAR models to elucidate
the relationship between the structure and activity of ACE tri-
peptides; (2) further predict the activities of novel potent ACE
inhibitory peptides based on the developed models.
2. Materials and methods
2.1 Data collection

For 3D-QSAR and molecular docking studies, a series of ACE tri-
peptides with inhibitory activities (IC50) were compiled from
researches.31–38 Initially, the structure of peptides was mini-
mized by Tripos force eld39 with Powell conjugate gradient
descent method and the partial atomic charges were added
using Gasteiger–Huckel method.40 Initially, the in vitro IC50

values were converted to the corresponding pIC50 values and are
listed with their sequences in Table 1. Additionally, the data set
was split into a training set to construct the quantitative models
and a test set to test the performance of the derived 3D-QSAR
models.
2.2 Alignment of dataset

Molecular alignment is considered as the most critical step for
constructing reliable 3D-QSAR models.41 In this work, three
different alignment rules were employed: template ligand-
35812 | RSC Adv., 2020, 10, 35811–35819
based alignment, docking-based alignment, and common
scaffold-based alignment.

Template ligand-based alignment: all peptides in the
training and test set were aligned to the most potent peptide 18
on the common substructure (Fig. 1A, depicted in blue), and the
resulting alignment conformations are shown in Fig. 1B.

Docking-based alignment: the conformation of each peptide
was retrieved from molecular docking by considering orienta-
tion and scoring. The chosen conformation was added with
Gasteiger–Huckel partial atomic charges, and the conforma-
tions were aligned together inside the receptor binding site
(Fig. S1A†).

Common scaffold-based alignment: the process was the
same as the template ligand-based alignment, the conforma-
tions were selected from molecular docking results, and the
nal alignment is shown in Fig. S1B.†
2.3 3D-QSAR studies

The 3D-QSAR models were developed using CoMFA and CoM-
SIA approaches. For CoMFA analysis, the standard steric and
electrostatic elds were calculated in the cubic lattice by a sp3

hybridized carbon with a +1.0 charge and grid spacing of 2.0 Å.
The cut off value and the column ltering was set to
30 kcal mol�1 and 2.0 kcal mol�1 respectively for both elds.42
This journal is © The Royal Society of Chemistry 2020



Fig. 1 (A) Structure of compound 18 used as a template for template ligand-based alignment; (B) the alignment for ACE from the template
ligand-based alignment.
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In the case of CoMSIA analysis, ve descriptors consisting of
steric, electrostatic, hydrophobic, hydrogen bond donor, and
hydrogen bond acceptor elds were calculated at each lattice by
a sp3 carbon probe atom with a charge +1, hydrophobicity +1,
and hydrogen bonding properties of +1, and the attenuation
factor was set to 0.3.

Partial least squares (PLS) is a mathematical tool that can be
used to derive signicant 3D-QSAR models. This approach is
commonly employed to correlate biological activities to molec-
ular structures through cross-validation and non-cross-
validation. In the present work, leave-one-out (LOO) method
was employed to perform a cross-validation analysis, in which
one peptide is removed from the data set and its activity is
predicted by the derived 3D-QSAR models, and the cross-
validated correlation coefficient (Rcv

2) and optimal number of
components (Nc) were produced. In addition, non-cross-
validation with a column lter value of 1.0 kcal mol�1 (using
the optimal number of components) was then conducted to
derive the nal model, and the non-cross-validated correlation
coefficient (Rncv

2), standard error of estimation (SEE), and F-test
value (F) were computed.

The test set of the peptides was employed to evaluate the
robustness and statistical signicance of the derived 3D-QSAR
models.43 The predictive correlation coefficient (Rpred

2) was
calculated using the following formula:

Rpred
2 ¼ (SD � PRESS)/SD

where SD is the sum of squared deviations between the binding
activities of the test set and the mean activity of the training set.
PRESS is the sum of squared deviation between the actual and
predicted activity of each peptide in the test set.
2.4 Applicability domain analysis and MAE-based criteria
validation

In order to validate the scientic reliability of the developed
QSAR models, the applicability domain (AD) was calculated.44

The domain of applicability of compounds plays a signicant
role for estimating the uncertainty in the prediction of a specic
compound based on how similar it is to the compounds
employed to construct the model.45,46 Therefore, the prediction
of the model using developed QSAR is valid only if the
This journal is © The Royal Society of Chemistry 2020
compound falls within the AD of the model. In addition, there
are various approaches for determining AD of the QSARmodels.
An open access standalone application has been developed for
the calculation of the AD, which can be accessed from the
following link http://dtclab.webs.com/sowaretools or http://
teqip.jdvu.ac.in/QSAR_Tools/. The AD can be easily employed
for identication of outliers for the training compounds and
detection of the test compounds locating outside the AD.

Additionally, it has been shown that R2 based metrics for
external validation may be misleading, purely error based
measures like mean absolute error (MAE) can be employed to
determine the quality of the predictions, which the standard
deviation computed from the test set aer removing 5% high
residual data in order to obviate the inuence of any rarely
occurring high prediction errors. Therefore, in the present
work, the online tool (XternalValidationPlus) (http://
dtclab.webs.com/soware-tools and http://teqip.jdvu.ac.in/
QSAR_Tools/) was used to calculate the MAE based criteria for
external validation.47
2.5 Molecular docking

In this work, AutoDock program48was employed to comprehend
the interactions between this series of peptides and the ACE
receptor. The crystal structure of ACE (PDB code: 3BKK) was
obtained from the RCSB Protein Data Bank (https://
www.rcsb.org/). Before molecular docking, the receptor was
prepared by removing all water molecules and ions, and polar
hydrogen atoms and Kollman charges were added to the
receptor. A grid box with spacing of 0.375 Å and 60 � 60 � 60
points were generated using the auxiliary program AutoGrid.
The Lamarckian genetic algorithm and the pseudo-Solis and
Wets methods were used for minimization applying default
parameters. During molecular docking analysis, 100 confor-
mations were dened for the peptides on the basis of dock score
value, and the conformation with lowest binding energy was
further chosen for model developing.

Additionally, a redocking method was used to validate the
accuracy of molecular docking. The bound ligand in the X-ray
crystal structure was extracted and further docked into the
binding site of the ACE receptor, and the root-mean-square
deviation (RMSD) was 0.352, indicating that the procedure of
RSC Adv., 2020, 10, 35811–35819 | 35813



Table 2 Statistical data of optimal QSAR modelsa

Parameters CoMFA CoMSIA

Rcv
2 0.761 0.757

Rncv
2 0.953 0.969

SEE 0.243 0.210
F 86.617 78.174
Rpred

2 0.6257 0.6969
SEP 0.549 0.589
Nc 4 6

Field contribution
S 0.675 0.295
E 0.325 0.144
H — —
D — 0.354
A — 0.207

a Rcv
2 ¼ cross-validated correlation coefficient using the leave-one-out

methods; Rncv
2 ¼ non-cross-validated correlation coefficient; SEE ¼

standard error of estimate; F ¼ ratio of Rncv
2 explained to unexplained

¼ Rncv
2/(1 � Rncv

2); Rpred
2 ¼ predicted correlation coefficient for the

test set of compounds; SEP ¼ standard error of prediction; Nc ¼
optimal number of principal components; S ¼ steric, E ¼
electrostatic, H ¼ hydrophobic, D ¼ H-bond donor, A ¼ H-bond
acceptor.
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molecular docking was dependable, and the parameters were
applicable to this series of ACE peptides.
3. Results and discussion
3.1 3D-QSAR statistical results

The statistical results of the 3D-QSAR models are summarized
in Table 2. The CoMFAmodel gives a cross-validated correlation
coefficient (Rcv

2) value of 0.761 with optimal number of prin-
cipal components (Nc) value of 4, non-cross-validated correla-
tion coefficient (Rncv

2) of 0.953, standard error of estimate (SEE)
of 0.243, and F value of 86.617. The corresponding steric and
electrostatic contributions are 67.5% and 32.5%, respectively.
In addition, the CoMSIA model shows a reliable Rcv

2 of 0.757
and Nc of 6, high Rncv

2 of 0.969 with relatively lower SEE of 0.210
Fig. 2 The correlation plots of the actual versus the predicted pIC50 va
obtained from the activity for ACE.
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and relatively higher F value of 78.174 in the nal non-cross-
validated model. The contribution of steric, electrostatic,
hydrogen bond donor and hydrogen bond acceptor elds is
29.5%, 14.4%, 35.4% and 20.7%, respectively, indicating that
the steric and hydrogen bond donor elds play signicant roles
in the optimal CoMSIA model. The above values suggest a good
statistical correlation and a good internal predictive ability for
the derived models.

To further validate the external predictive ability of the
models, the activities of test set peptides were predicted. Both
CoMFA and CoMISA models exhibited satisfactory results in
term of the predictive correlation coefficient (Rpred

2) of 0.6257
and 0.6969, respectively. In addition, the prediction errors of
CoMFA and CoMSIA models in the form of a residual plot are
clear at a glance in Fig. 2, the residual values of the test set are
randomly distributed around zero, further indicating the good
external predictive capacity of the models.
3.2 3D-QSAR contour map analysis

To facilitate understanding the effects of elds on binding
activity in a structure-based manner, contour maps were
generated by showing the regions in which the energy variations
of the elds were consistent with changes in activities.
Compound 18 as the most potent peptide was used as reference
molecule to illustrate contour maps of the optimal models.

3.2.1 CoMFA contour maps. The steric contour map for the
CoMFA model is shown in Fig. 3A. The green contour maps
indicate areas where bulky group would favor activity while the
yellow contour maps show unfavorable effects by the intro-
duction of bulky groups. The cut-off energies for sterically
favored and disfavored regions are set to 80% and 20%,
respectively. A yellow region is observed around the rst amino
acid at N-terminal, suggesting that bulky substitution in this
area is unfavorable for the binding activity to ACE. This explains
the relatively low activities of peptides 2 and 14 with Leu, Val,
respectively, at this position when compared to peptide 18 (Gly)
and 3 (Ala). A big green contour around the second amino acid
residue (N-terminal) shows bulky groups are favored for the
activity. This is in agreement with the experimental data. For
lues using the training set based on the CoMFA and CoMSIA models

This journal is © The Royal Society of Chemistry 2020



Fig. 3 CoMFA StDev� Coeff contour plots for ACE inhibitors in combination of compound 18. (A) The steric contour map, where the green and
yellow contours represent 80% and 20% level contributions, respectively. (B) The electrostatic contour map, where the blue and red contours
represent 80% and 20% level contributions, respectively.
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example, the order of some peptides binding activity is: 1 (Glu) >
21 (Ala), 20 (Lys) > 5 (Glu). Another green contour region around
the third amino acid suggests that the steric eld gives positive
effect to the bioactivity. Careful analysis nds that in this series
of peptides, the amino acid residues at this site are all proline,
therefore, modications can be made at this position to
enhance the activity.

For the electrostatic eld, the blue and red regions represent
the electropositive favorable and electronegative favorable
properties, respectively. From Fig. 3B, the red (electronegative
Fig. 4 CoMSIA StDev�Coeff contour plots for ACE inhibitors in combina
yellow contours represent 80% and 20% level contributions, respectively
represent 80% and 20% level contributions, respectively. (C) The hydro
represent 80% and 20% level contributions, respectively. (D) The hydrog
represent 80% and 20% level contributions, respectively.

This journal is © The Royal Society of Chemistry 2020
groups favored) and blue (electropositive groups favored)
contour maps indicate the default 20% and 80% level contri-
butions, respectively. There is a blue contour map covering the
rst amino acid (N-terminal), implies that connecting to the
electropositive substituent is benecial to the activity of the
peptide. This can be proved by the comparison of compounds
15 (Ile) and 25 (Asp). As the electronegative group (Asp) con-
necting to the residue reduces the activity. A blue contour
covering the second amino acid indicates the importance of
electropositive groups in this region to the biological activity.
tion of compound 18. (A) The steric contour map, where the green and
. (B) The electrostatic contour map, where the blue and red contours
gen bond donor contour map, where the cyan and purple contours
en bond acceptor contour map, where the magenta and red contours

RSC Adv., 2020, 10, 35811–35819 | 35815
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Thus, peptide 20 with electropositive group Lys at this position
exhibits higher activity than peptide 5 (electronegative residue
Glu). Similarly, the order of the activity for peptides 18 (Lys) and
29 (Glu) (18 > 29) is indicative of the signicance of an elec-
tropositive group at this location. In addition, some red
contours located around the above blue contour show the
importance of electronegative atoms in imparting better bio-
logical activity, for example, peptide 1 (Glu) shows a substantial
increase in potency compared to peptide 21 (Ala). Also, the
binding activity of peptide 11 (Glu) is more potent than peptide
4 (Arg).

3.2.2 CoMSIA contour maps. CoMSIA contour plots with
steric, electrostatic, hydrogen bond donor and hydrogen bond
acceptor descriptors are shown in Fig. 4. The effects of steric
and electrostatic contribution in CoMISA is more or less similar
to those of the CoMFA model. For example, a green and a blue
contour map are located at the second amino acid, a blue
contour is positioned at the rst amino acid, and a red contour
map is near the blue contour map situated at the second amino
acid, suggesting that these properties are vital to the activity.
However, in the steric eld (Fig. 4A), there is a green contour at
the rst amino acid indicating that introduction of bulky
groups there would increase the activity. This contour map is
different from the CoMFA model. Therefore, the substituents
here should be carefully selected.

For the hydrogen bond donor eld (Fig. 4C), the cyan and
purple regions represent the donor atoms favorable and unfa-
vorable properties, respectively. A cyan region is observed
around the –NH2 group of the rst amino acid (N-terminal),
suggesting that the hydrogen bond donor groups in this
region are favorable for the activity. This is in consistent with all
peptides, which possess –NH2 at the N-terminal. A purple
contour is found close to –CO substitution of the peptide bond
(–CO–NH), indicating hydrogen bond donor groups are unfa-
vored. Furthermore, the substituents at the second amino acid
(N-terminal) are surrounded by a large cyan contour, suggesting
that hydrogen bond donor potential is preferred at this posi-
tion. The higher activity of peptide 20 (Lys) than peptide 5 (Glu)
is also in accordance with this conclusion.

Fig. 4D shows the hydrogen bond acceptor contour maps in
CoMSIA analysis, respectively. These contour maps are shown
Fig. 5 (A) The active site amino acid residues around compound 18. (
docking, which is displayed in stick, H-bonds are shown as dotted black

35816 | RSC Adv., 2020, 10, 35811–35819
in magenta (hydrogen bond acceptor groups are favorable) and
red (hydrogen bond acceptor groups are unfavorable). One
magenta contour map is located at the –CO group of the rst
peptide bond, indicating that the presence of hydrogen bond
acceptor groups may be more suitable. Additionally, a red
contour map near the second amino acid residue shows that the
hydrogen bond acceptor moieties are unfavorable, which is in
accord with the hydrogen bond donor contour maps.
3.3 AD analysis and MAE-based criteria validation

Analysis of the results from AD leads to conclude that on
compounds in the training set and in the external test set were
detected as the outliers, further indicating that the developed
3D-QSAR models (CoMFA and CoMSIA) are reliable, and the
predicted inhibitory activity can be considered reliable only for
those compounds that fall within the AD on which the model is
constructed.

The prediction errors for the test subset is dened as ‘good’
predictions as follows: MAE# 0.1� training set range and MAE
+ 3 � s # 0.2 � training set range. The MAE-based metrics
(MAE < 0.1 � training set range and MAE + 3 � s < 0.2 �
training set range) for CoMFA and CoMSIA models are all esti-
mated as “good”, further indicating that the developed models
have high credibility.
3.4 Molecular docking analysis

To investigate the probable binding mode between this series of
peptides and the ACE receptor as well as to support the rational
design of novel peptides, molecular docking study was per-
formed and the results of the simulated peptides are shown in
Fig. 5. Herein the most active peptide 18 is selected for more
detailed analysis. Docking results demonstrate that peptide 18
is placed into a binding pocket lined by Trp279, Gln281, His353,
Ala354, Ser355, Ala356, His383, Glu384, Glu411, Asp415,
Lys454, Phe457, Lys511, His513, Tyr520, and Tyr523 residues
(Fig. 5A). As depicted in Fig. 5B, the –CO group of the rst
peptide bond shows two hydrogen bonding interactions with
residues Gln281 and Lys511 (–O/HN, 2.02 Å, 161.0�) (H-1),
(–O/HN, 2.11 Å, 156.5�) (H-2), which is in consistence with
CoMSIA hydrogen bond donor and acceptor contour maps. At
B) The enlargement for the ligand in the binding site after molecular
lines, and the nonpolar hydrogens were removed for clarity.

This journal is © The Royal Society of Chemistry 2020



Fig. 6 (A) The active site amino acid residues around compound 4. (B) The enlargement for the ligand in the binding site after molecular docking,
which is displayed in stick, H-bonds are shown as dotted black lines, and the nonpolar hydrogens were removed for clarity.
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the same time, one more hydrogen bond (–O/HN, 2.13 Å,
149.1�) (H-3) formed between the –NH2 positioned at the second
amino acid and Glu384 may be favorable for further activity
improvement. Furthermore, the cyan and red contour maps
from CoMSIA model are fallen in a region close to the residue
Glu384, which is considered as a hydrogen bond donor.

It can be seen from Fig. 5B that the substituent at the rst
amino acid forms hydrogen bond with Gln281 and Lys511,
indicating that the distance is closer to the surrounding resi-
dues, therefore, the substituents at this location cannot be too
large, otherwise steric hindrance with the surrounding amino
acids would be formed. This is in coincide with the yellow
contour map (Fig. 3A). In addition, the substituents at the
second amino acid are anchored in a huge pocket made by
His353, His383, His387, Glu411 and Tyr523, illustrating that
bulky groups are sterically favorable in this direction. This
result is in concordance with the steric interactions shown in
Fig. 3A and 4A. It is shown that the groups at the third amino
acid, especially the pyrrolidine ring of proline, point almost
outside the binding pocket, thus bulky substituents are favor-
able for the ligand–receptor interactions, which can be
explained by the fact that the groups at this position are sur-
rounded by the green region (Fig. 3A and 4A). Furthermore,
Fig. 3B and 4B show a blue contour at the second amino acid,
Fig. 7 Structural superposition of 3BKK-18 and 3BKK-4. The projection h
4 (cyan), which are displayed in sticks.

This journal is © The Royal Society of Chemistry 2020
which is hydrogen bonded with electronegative amino acid
Glu384, suggesting that electropositive groups are favorable.

Therefore, the obtained results from molecular docking and
QSAR models are harmonious, further illustrating that the
procedure of molecular docking is feasible and the developed
QSAR models are reliable.
3.5 Analysis of different binding pose

In order to illustrate the binding pose of this series of peptides
to ACE and to predict specic binding interactions, the least
active peptide 4 was also selected for analysis. The docked
conformation of peptide 4 is shown in Fig. 6. Firstly, peptide 4 is
bounded by a binding pocket consisting of residues Asn277,
Trp279, Gln281, Thr282, His353, Ala354, Ser355, Ala356,
Val379, Val380, His383, Glu384, His387, Glu411, Asp415,
Phe457, Lys511, His513, Tyr520, Tyr523, and Phe527. Further-
more, peptide 4 binds to the receptor through some key
hydrogen bond interactions: (1) between the –NH2 of the rst
amino acid and Glu384 (–O/HN, 1.81 Å, 161.5�) (H-1); (2)
between the substituents at the second amino acid and residue
Asp415 (–O/HN, 1.99 Å, 143.5�) (H-2), (–O/HN, 2.47 Å, 107.3�)
(H-3); (3) between the third peptide bond and Gln281, Lys511
(–O/HN, 1.92 Å, 174.5�) (H-4), (–O/HN, 1.68 Å, 145.4�) (H-5);
ighlights the structure of the active site with compound 18 (green) and

RSC Adv., 2020, 10, 35811–35819 | 35817



Fig. 8 Structure–activity relationship revealed by QSAR studies for ACE peptides.

Table 3 Chemical structures of newly designed ACE inhibitory tri-
peptides based on 3D-QSAR models

No. Structure
Predicted pIC50

(CoMFA model)
Predicted pIC50

(CoMSIA model)

1 RHW 2.58 2.60
2 RHY 2.57 2.61
3 KRW 2.60 2.68
4 KRH 2.75 2.66
5 HRW 2.73 2.71

RSC Advances Paper
(4) between the –COOH group at the C-terminal and Lys511
(–O/HN, 2.05 Å, 138.1�) (H-6).

Fig. 7 shows the docking mode of the most potent peptide 18
that aligned with peptide 4. First of all, the two peptides bind to
the same site of the receptor. The substituents of peptide 4 at
the N-terminal are aligned well to the groups of peptide 18.
However, due to the differences in amino acid composition of
the two peptides, their orientations at the receptor binding site
are different, further resulting in differences in the binding
activities of the two peptides. In particular, the substituents at
the second amino acid and the third amino acid extend to
different directions, thereby leading to unequal interactions
with different amino acid residues, which is also the main
reason for the different activities.

3.6 Design novel peptides with ACE inhibitory activity

Based on the proposed CoMFA, CoMSIA, 3D-QSAR models and
docking studies, ve novel peptides have been designed to
enhance the inhibitory activity (Table 3). These peptides were
minimized and aligned to the database using peptide 18 as
a template. These peptides shows higher inhibitory activities
than the original potent compound.

4. Conclusions

In the present work, 3D-QSAR models have been developed
successfully with high Rcv

2, Rncv
2 and Rpred

2 values suggesting
35818 | RSC Adv., 2020, 10, 35811–35819
the satisfying reliability and predictive ability. This is followed
by molecular docking which would provide useful information
to better understand the binding mode and produce the
binding poses of this series of peptides into ACE receptor, in
addition to conrming those suggested information from 3D-
QSAR models. Overall ndings are summarized as follows
(Fig. 8):

(1) Some key residues such as Gln281, Glu384, and Lys511 as
well as hydrogen bonds between the selected peptide and the
residues are found.

(2) Minor, electropositive, and hydrogen bond donor groups
at the rst amino acid benet the activity of the dataset; bulky,
electropositive and hydrogen bond donor groups at the second
amino acid can increase the binding activity; bulky groups at
the third amino acid are helpful to the activity, which can be
validated by the results of molecular docking.

Overall, the above results would help us to better interpret
the structure–activity relationship of the ACE tri-peptides and
provide crucial information for lead optimization.
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