
molecules

Article

Identification of Broad-Spectrum MMP Inhibitors by
Virtual Screening

Aleix Gimeno 1,2 , Doretta Cuffaro 3, Elisa Nuti 3 , María José Ojeda-Montes 1, Raúl Beltrán-Debón 1 ,
Miquel Mulero 1,4 , Armando Rossello 3 , Gerard Pujadas 1,* and Santiago Garcia-Vallvé 1,*

����������
�������

Citation: Gimeno, A.; Cuffaro, D.;

Nuti, E.; Ojeda-Montes, M.J.;

Beltrán-Debón, R.; Mulero, M.;

Rossello, A.; Pujadas, G.;

Garcia-Vallvé, S. Identification of

Broad-Spectrum MMP Inhibitors by

Virtual Screening. Molecules 2021, 26,

4553. https://doi.org/10.3390/

molecules26154553

Academic Editor: Jean-Yves Winum

Received: 30 March 2021

Accepted: 22 July 2021

Published: 28 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Research Group in Cheminformatics & Nutrition, Departament de Bioquímica i Biotecnologia,
Campus de Sescelades, Universitat Rovira i Virgili, 43007 Tarragona, Catalonia, Spain;
aleix.givi2@gmail.com (A.G.); mjoseom88@gmail.com (M.J.O.-M.); raul.beltran@urv.cat (R.B.-D.);
miquel.mulero@urv.cat (M.M.)

2 Joint IRB-BSC-CRG Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona),
The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08020 Barcelona, Catalonia, Spain

3 Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy;
doretta.cuffaro@farm.unipi.it (D.C.); elisa.nuti@farm.unipi.it (E.N.); armando.rossello@farm.unipi.it (A.R.)

4 Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili,
43007 Tarragona, Catalonia, Spain

* Correspondence: gerard.pujadas@gmail.com (G.P.); santi.garcia-vallve@urv.cat (S.G.-V.)

Abstract: Matrix metalloproteinases (MMPs) are the family of proteases that are mainly responsible
for degrading extracellular matrix (ECM) components. In the skin, the overexpression of MMPs
as a result of ultraviolet radiation triggers an imbalance in the ECM turnover in a process called
photoaging, which ultimately results in skin wrinkling and premature skin ageing. Therefore, the
inhibition of different enzymes of the MMP family at a topical level could have positive implications
for photoaging. Considering that the MMP catalytic region is mostly conserved across different
enzymes of the MMP family, in this study we aimed to design a virtual screening (VS) workflow to
identify broad-spectrum MMP inhibitors that can be used to delay the development of photoaging.
Our in silico approach was validated in vitro with 20 VS hits from the Specs library that were not
only structurally different from one another but also from known MMP inhibitors. In this bioactivity
assay, 18 of the 20 compounds inhibit at least one of the assayed MMPs at 100 µM (with 5 of them
showing around 50% inhibition in all the tested MMPs at this concentration). Finally, this VS was
used to identify natural products that have the potential to act as broad-spectrum MMP inhibitors
and be used as a treatment for photoaging.

Keywords: photoaging; skin treatment; non-selective matrix metalloproteinases; natural products;
bioactivity prediction; in vitro validation

1. Introduction

The extracellular matrix (ECM) consists of a network of macromolecules which not
only provide physical support to the cell, but also transmit mechanical and molecular
signals to communicate with the surrounding cells [1]. The three major components of
the ECM are: (a) glycosaminoglycans, usually covalently linked to protein in the form
of proteoglycans, large and highly charged polysaccharides that form a highly hydrated
gel-like substance, which resists compressive forces and allows nutrients, metabolites
and hormones to diffuse; (b) fibrous proteins (primarily members of the collagen family),
which give the ECM both structure and elasticity; and (c) a large and varied assortment of
glycoproteins, which help cells migrate, settle and differentiate in the appropriate locations.
As important as the ability of cells to build and bind to the ECM is their ability to degrade
it. ECM degradation is required in many cellular processes as cells may need to stretch out
in order to divide, detach from other cells in order to migrate, or remove cellular material
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in order for the tissue to grow, be repaired, and be maintained in a continuous turnover of
ECM components [1].

Matrix metalloproteinases (MMPs) are the family of proteases that are mainly re-
sponsible for degrading ECM components. These enzymes are dependent on Ca2+ or
Zn2+ and degrade different components of the ECM with different specificity [1]. As
MMPs are expressed in different tissues and have different substrate specificities, their
uncontrolled activity, and thus the excessive degradation of different ECM components in
different tissues, plays a role in a wide range of pathologies, including vascular diseases [2],
inflammatory bowel disease [3,4], liver fibrosis [5], osteoarthritis [6,7] and cancer [8,9].
Therefore, MMP inhibition has been suggested as an important therapeutic tool to fight
these diseases [10–12].

The first approach to the design of MMP inhibitors was the development of pep-
tidomimetic inhibitors (e.g., batimastat and marimastat) that used a hydroxamic acid
moiety to block the cleavage of collagen by chelating the catalytic Zn2+. Next, a second
generation of small-molecule inhibitors was developed presenting different functional
groups (i.e., hydroxamates, carboxylates, thiols and phosphorous-based) as Zn2+ binding
groups [10]. Unfortunately, the administration of these non-selective MMP inhibitors
resulted in the development of a musculoskeletal syndrome (characterized by a variety of
clinical signs, including joint stiffness, inflammation and symptoms manifested as pain
in the hands, arms and shoulders) and failure in clinical trials [13–15]. Although none of
the explanations for the occurrence of the musculoskeletal syndrome proposed over the
years have been confirmed, this adverse effect is believed to be a result of broad-spectrum
MMP inhibition [16,17]. MMPs are also overexpressed in basal cell carcinoma, which is the
most common type of human skin cancer [18] and in cutaneous squamous cell carcinoma,
which is the most common metastatic skin cancer [19]. The daily oral administration of
marimastat was also assayed for melanoma treatment but phase 2 assays revealed limited
activity on this skin cancer [20]. Therefore, oral MMP selective inhibitors could be of
interest for the treatment of the different types of skin cancer while avoiding the secondary
effects of non-selective MMP inhibitors. In order to achieve such selectivity, drug discov-
ery efforts have focused on exploiting the differences at the S1′ pocket among different
MMPs [21]. Recently, a computational study demonstrated how the variability in the S1′

pocket characterizes each MMP in terms of hydrophobicity and electrostatic properties
and how this variability can be rationally exploited to obtain selective MMP inhibitors (i.e.,
hydrophobic interactions are relevant for the selectivity of MMP-12 inhibitors; that adding
a negative charge to the S1” pocket increases the selectivity of MMP-13 inhibitors; and
that the presence of a negative electrostatic environment in the S1′ pocket contributes to
inhibitor selectivity over MMP-3 and MMP-8) [21].

Ultraviolet radiation has been shown to increase the expression of MMPs in the
skin [22]. Overexpression increases the activity of these enzymes and ultimately increases
the degradation of ECM components, which develops into skin wrinkling, a characteristic
of premature skin ageing [23]. Therefore, this overexpression of MMPs has been proposed
as the main mechanism behind premature skin ageing caused by the action of ultraviolet
radiation (also referred to as photoaging) [24]. In this regard, compounds capable of
inhibiting MMP enzymes by binding to their catalytic site and reducing their activity may
restore the balance in the ECM turnover of the skin and should have beneficial effects on
the treatment of photoaging.

As mentioned before, the catalytic site of MMPs is highly conserved among the vari-
ous enzymes of the MMP family [12,25]. While this characteristic of the MMP binding site
has frustrated many attempts to develop selective systemic inhibitors directed at given
MMPs [10,26], it makes it possible to develop unselective MMP inhibitors that could be
applied topically to treat photoaging without triggering systemic side-effects [11]. There-
fore, in this study we aim to develop and experimentally validate a virtual screening (VS)
workflow for identifying broad-spectrum MMP inhibitors with the potential to delay the
development of photoaging by topical administration. Moreover, considering the impor-
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tance of natural bioactive compounds in the cosmetic industry nowadays, we have also
applied our VS workflow to a database of naturally occurring compounds and identified
potential non-selective MMP inhibitors of natural origin.

2. Results and Discussion

In order to obtain compounds that can simultaneously inhibit different MMP en-
zymes, we designed various VS workflows for MMP-1, -8, -9, -12 and -13 which targeted
the conserved catalytic region in each of their binding sites. We then extracted the hit
compounds that were obtained in two or more of these VSs and which, therefore, had
the potential to bind non-specifically to more than one MMP. The approach described
was applied to different compound libraries to: (a) validate the approach in silico (see
Section 2.1); (b) validate the approach in vitro (see Section 2.2) and (c) use the approach to
identify natural products that may be broad-spectrum MMP inhibitors (see Section 2.3).

2.1. VS Workflow Design and In Silico Validation

This section presents the steps of the various VS workflows that were performed for
each MMP and their in silico validation.

2.1.1. Random Forest Model

For each MMP, a random forest (RF) model based on circular fingerprints (FPs) was
developed to rule out compounds with little probability of being active given their struc-
tural characteristics. Circular or Morgan FPs are based on the Morgan algorithm and they
record the environment of each atom in the molecule up to a particular radius [27]. As
hashed topological fingerprints, circular fingerprints do not refer to the presence or absence
of a particular substructure specifically. Instead, they are built around each molecule so
any molecule can produce a meaningful FP. Circular FPs were chosen in this step to enrich
the compound library with actives for each MMP as they are one of the highest ranked FPs
in terms of performance [27].

As a supervised machine learning algorithm is based on fingerprints, in these RF
models, FP bits are related to bioactivity and the output probabilities are a function of the
presence of important structural characteristics for the bioactivity of known actives. There-
fore, the models should be capable of identifying molecules with structural characteristics
similar to known actives, but with different overall structures, recognizing compounds that
are most likely to be active. Because the RF model is not the last step of the VS workflows
(see Table 1), compounds with a less-than-20% probability of being active were excluded.
For this threshold, in a 5-fold cross-validation using actives and decoys, the RF models per-
formed well (see Table 2 and the material and methods section for additional details). Thus,
due to the low computational cost of FP calculations, these RF models enable compounds
with a low probability of being active for the corresponding MMPs to be rapidly discarded.

Table 1. VS workflow filters and number of compounds that surpassed each VS filter for each MMP.

Specs Reaxys NP

MMP-1 MMP-8 MMP-9 MMP-12 MMP-13 MMP-1 MMP-8 MMP-9 MMP-12 MMP-13

Initial library 45,711 105,050
Random forest 1344 4576 3334 3819 1584 5878 5811 11,070 17,684 2991

Protein-ligand docking - 3775 2760 3001 1314 - 2401 4970 6896 1285
Pharmacophore 1064 2762 785 1055 454 3358 958 905 987 209

Electrostatic similarity
analysis - 79 60 32 27 - 118 314 102 70

Hits of 2 or more VSs 54 183
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Table 2. Statistical parameters of the RF model validation for each MMP. The values correspond to the means of the 5-fold
cross-validation for each parameter.

MMP Sensitivity Specificity Precision Fall-Out False Negative
Rate

False Discovery
Rate Accuracy F1

Score

Matthews
Correlation
Coefficient

MMP-1 0.99 0.98 0.98 0.02 0.01 0.02 0.99 0.99 0.97
MMP-8 0.99 0.97 0.97 0.03 0.01 0.03 0.98 0.98 0.96
MMP-9 0.99 0.98 0.98 0.02 0.01 0.02 0.98 0.98 0.97
MMP-12 0.99 0.98 0.98 0.02 0.01 0.02 0.98 0.98 0.96
MMP-13 0.99 0.97 0.97 0.03 0.01 0.03 0.98 0.98 0.96

2.1.2. Protein-Ligand Docking

The compounds obtained from the RF step for MMP-8, -9, -12 and -13 were docked to the
corresponding protein structures. The structures from the PDB [28] used for protein-ligand
docking were 1ZVX [29], 4H2E [30], 1ROS [31] and 3KRY [32] for MMP-8, -9, -12 and -13,
respectively. Protein-ligand docking allowed us to (1) discard compounds that were not
expected to fit in the catalytic site of these MMPs and (2) generate docked poses or hypothetical
binding modes of the compounds of our library in the catalytic sites of each enzyme.

2.1.3. Pharmacophore

The next step in the workflow was a pharmacophoric filter. This step aimed to keep
only the compounds that could perform the minimum required interactions to bind to
the receptor [33]. For each MMP, a pharmacophore was built and validated using a set
of actives and decoys (see Table 3 and the material and methods section). In the cases of
MMP-8, -9, -12 and -13, the pharmacophores were built by docking a library of fragments
to the binding site of the respective MMP crystal structures in order to probe the binding
site and find the pharmacophoric sites that were most suitable for ligand binding [33]. In
the case of MMP-1, a structure-based pharmacophore was not used; instead, a ligand-based
pharmacophore was designed using compounds that were active towards MMP-1 [33]. The
different pharmacophore hypotheses that were obtained were validated with a set of known
active compounds for each MMP and a set of decoys obtained from the corresponding set
of actives and the pharmacophore hypothesis with the best performance were selected in
each validation for the screening of the compound library (see Table 3).

Once the hypotheses had been obtained and validated for each MMP, the successful
compounds in the RF step were screened through the corresponding pharmacophore.
In the case of MMP-8, -9, -12 and -13, the coordinates from the hypothetical binding
modes generated in the docking step for each compound were used as the input for the
pharmacophore screening so as to limit the results to only those conformations that should
be able to fit in the binding site. In the case of MMP-1, conformations were generated for
each compound and used as input for the pharmacophore screening.

2.1.4. Electrostatic Similarity Analysis

In the case of MMP-8, -9, -12 and -13, the electrostatic potential of the docked poses
remaining after the pharmacophore screening was compared to that of the co-crystallized
ligands of the corresponding MMP. By selecting the compounds that have an electrostatic
potential similar to that of a known active ligand, we aimed to keep the compounds
that were most likely to match the electrostatic environment of the binding site of the
corresponding MMP and bind to the corresponding binding site with greater affinity [33].

To perform these comparisons, the crystallized complexes of each MMP containing
inhibitors with IC50 or Ki activity values between 1 and 100 nM were used as a reference.
These crystallized complexes were superposed on the crystal structure that was used
during the protein-ligand docking step in each case, so that the reference ligands were
aligned to the docked poses obtained for each compound.
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Table 3. Pharmacophore hypotheses selected for each MMP and statistical parameters obtained in their validation. The letters “A”, “D”, “R” and “N” stand for acceptor, donor, aromatic and negative
pharmacophoric features, respectively, and the symbols “+” and “−” indicate whether they match the pharmacophoric site or not.

MMP Pharmacophore Hypothesis Sensitivity Specificity Precision Fall-Out False Negative
Rate

False Discovery
Rate Accuracy F1 Score

Matthews
Correlation
Coefficient

MMP-1 A (+) A (+) R (+) 0.89 0.33 0.57 0.67 0.11 0.43 0.61 0.70 0.26
MMP-8 A (+) A (−) D (−) D (−) D (−) D (−) R (+) 0.88 0.55 0.66 0.45 0.12 0.34 0.72 0.76 0.46
MMP-9 A (−) A(+) D (−) D (−) H (−) N (+) R (−) R (−) 0.67 0.86 0.84 0.14 0.33 0.16 0.76 0.74 0.54
MMP-12 A (−) D (−) D (−) N (+) R (+) R (−) 0.82 0.75 0.76 0.25 0.18 0.24 0.78 0.79 0.57
MMP-13 A (−) D (−) D (−) D (−) N (+) R (−) R (+) 0.82 0.74 0.76 0.26 0.18 0.24 0.78 0.79 0.56
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To validate in silico the use of these co-crystallized inhibitors as reference compounds
for the electrostatic potential comparison, a validation set containing actives and decoys
was prepared for each MMP and docked to the same protein structure used in the protein-
ligand docking step. The electrostatic Tanimoto (i.e., EON_ET_pb) coefficients between
the resulting docked poses and the set of experimental poses for the corresponding MMP
were then calculated and only the docked pose with the highest EON_ET_pb value was
kept regardless of the reference compound used for the comparison. After discarding all
other docking poses, histograms of the electrostatic Tanimoto coefficients for the actives
and the decoys in the validation set were plotted. The actives were separated into 3 groups
depending on whether their bioactivity had a pX value lower than 4, between 4 and 7 or
higher than 7. An EON_ET_pb cutoff was applied to each validation set on the basis of the
distribution observed in the corresponding histogram (0.6, 0.5, 0.75 and 0.6 for MMP-8, -9,
-12 and -13, respectively) so only the compounds whose electrostatic similarity was higher
than that of known active compounds were kept in each case (see Figure 1).

1 

 

 

Figure 1 

 

Figure 2 

Figure 1. Histogram representations of the highest electrostatic Tanimoto (i.e., EON_ET_pb) values obtained in the
comparison of the validation set with all queries. For each MMP, two histograms are shown: one for actives and one for
decoys. In the actives histogram, actives with a pX lower than 4 are in red, actives with a pX between 4 and 7 are in blue
and actives with a pX higher than 7 are in green. In the decoys histogram, decoys are in cyan. The EON_ET_pb cutoff is
represented as a red line.

2.2. In Vitro Validation

To validate this approach in vitro, a VS library was generated by collecting com-
pounds from Specs [34] with molecular weights between 300 and 600 Da and generating
a conformation for each compound with Omega [35]. This library was then subjected
to the VS workflow. The number of compounds that surpassed the filters in each VS
workflow can be found in Table 1. Despite the low threshold in the RF step, most of the
compounds were discarded in each VS, indicating that their structures were unlikely to
act as MMP inhibitors. Therefore, compounds that were not of interest were discarded
at an early stage, thus reducing the computational cost of the VSs. After protein-ligand
docking and the pharmacophoric filter many compounds remained, as sensitivity was
prioritized in the validation of the pharmacophore models (see Table 3). The strictest/most
demanding filter—the electrostatic similarity step—was applied last. It retained fewer than
100 compounds for each MMP and considerably reduced the number of hits.
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Finally, we extracted the hits obtained in two or more VSs and clustered them together
with the actives from the validation sets of all VSs steps using the HDBSCAN [36] algorithm
in order to exclude hit compounds that were grouped in the same cluster as known active
compounds. The clusters that contained only hit molecules were identified and 20 molecules
belonging to different clusters were selected for activity tests. During that selection process,
those molecules that had been hits in the highest number of VSs were prioritized relative to
others from the same cluster. Finally, the 20 selected molecules were visually inspected to
ensure that their structures were different. Figure 2 and Table S1 show the 2D structure, the
canonical SMILES and the PAINS-REMOVER [37] prediction for the 20 selected molecules.

After the 20 hit compounds had been selected, they were purchased from Specs [34]
and their activity for MMP-1, -8, -9, -12 and -13 was analyzed in vitro at a concentration
of 100 µM. While the activities of compounds 2 (the only one of the 20 VS hits predicted
as a PAIN [37]; see Table S1) and 13 could not be tested due to solubility and fluorescence
problems, respectively, the other compounds (1, 3–12, 14–20) were able to inhibit several
MMPs. Compounds 3, 6–8 and 15 displayed the highest inhibitory activities, showing
around 50% inhibition or more for all the MMPs tested (see Table 4). Next, the IC50 values
were obtained for MMP-1, -8, -9, -12 and -13 of compounds 3, 6–8 and 15 (see Table 5).
Compound 3 proved to be the best broad-spectrum inhibitor of the five, its IC50 for MMP-1,
-8, -9, -12 and -13 being 21, 23, 23, 24 and 35 µM, respectively.

Table 4. MMP inhibitory activity of the compounds tested (inhibition % at 100 µM) a.

Compound MMP-1 MMP-8 MMP-9 MMP-12 MMP-13

1 10.5% 19.6% 18.2% 16.1% 21.3%
2 b ND ND ND ND ND
3 84.2% 80.9% 80.1% 79.7% 69.5%
4 17.5% 19.8% 24.8% 17.8% 17.8%
5 25.2% 27.8% 32.0% 26.3% 22.4%
6 71.2% 68.5% 78.1% 70.4% 77.8%
7 74.0% 71.1% 72.7% 73.5% 60.0%
8 50.9% 53.1% 59.3% 56.5% 48.8%
9 17.6% 8.7% 14.9% 18.9% 16.8%

10 19.1% 21.7% 25.6% 31.5% 19.4%
11 5.5% 6.0% 27.8% 19.3% 18.8%
12 23.7% 10.8% 28.4% 31.2% 20.9%

13 c ND ND ND ND ND
14 18.9% 25.6% 26.1% 30.4% 31.2%
15 50.3% 66.5% 60.2% 51.8% 71.3%
16 15.3% 5.6% 20.5% 58.4% 20.0%
17 20.4% 22.6% 76.8% 35.5% 27.3%
18 10.0% 20.4% 32.3% 52.6% 28.4%
19 32.0% 30.3% 69.7% 32.6% 37.8%
20 6.4% 29.2% 27.2% 32.2% 26.9%

a Percent inhibition of MMPs observed at 100 µM concentration of the test compounds. Assays were performed
in triplicate. b Insoluble in DMSO. c Fluorescent at 430 nm. ND refers to “not determined”.

Table 5. MMP inhibitory activity a of the compounds tested (IC50 values in µM).

Compound MMP-1 MMP-8 MMP-9 MMP-12 MMP-13

3 21 ± 2 23 ± 2 23 ± 1 24 ± 1 35 ± 3
6 32 ± 4 31 ± 5 26 ± 2 33 ± 5 33 ± 4
7 41 ± 2 41 ± 5 31 ± 1 30 ± 2 62 ± 4
8 92 ± 9 103 ± 17 80 ± 4 107 ± 9 108 ± 10

15 b 70 ± 9 77 ± 10 47 ± 6 111 ± 1 46 ± 7
a Assays were run in triplicate. The final values given here are the mean ± SD of three independent experiments.
b Low solubility in buffer.
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1 

 

 

Figure 1 

 

Figure 2 

Figure 2. 2D structures of the 20 hit compounds. Each compound is identified with its Specs ID number. MarvinSketch [38]
was used to draw the structures.

Figure 3 and Figure S1 describe how compounds 3, 6–8 and 15 bind at the Zn2+ binding
site of MMP-8, MMP-9, MMP-12 and MMP-13 when this binding was predicted as possible
by the corresponding VS workflow. As expected, ligand moieties either negatively charged
(i.e., carboxylic acid in compounds 6 and 15) or with lone electron pairs (i.e., hydroxyl
group in compounds 3, 7 and 8) interact with the Zn2+ cation.

 

2 

 

Figure 3 

Figure 3. Conts.
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2 

 

Figure 3 

Figure 3. Best docking poses for hit compounds 3 and 6 at the Zn2+ binding site of MMP-8, MMP-9,
MMP-12 and MMP-13. The docked poses for the 3/MMP-13 pair is not shown because this was not
predicted to be possible by the corresponding VS workflow.

2.3. VS of Natural Products

Having validated this methodology both in silico and in vitro, we proceeded to
identify the natural compounds that can be used as broad-spectrum MMP inhibitors.
For this purpose, a VS library was generated by collecting all the natural products in the
Reaxys [39] database with a molecular weight between 300 and 600 Da and generating a
conformation for each compound with Omega [35]. Then, the VS workflow was applied
to this VS library and 183 compounds were obtained (see Table 1). Considering that 18
of the 20 compounds tested experimentally in the validation showed inhibitory activity
for more than one MMP, many of these natural products were also expected to follow this
pattern. Of these 183 natural products, 49 were hits by 3 or more VSs and were carefully
inspected. Two of these 49 compounds have already been reported to inhibit MMP-2 and
MMP-3, respectively (compounds with Reaxys [39] registry numbers 2169918 [40] and
19878945 [41]; see Figure 4), and we predicted that they could also inhibit other MMPs.
Interestingly, another two of these 49 natural products were dermatological agents that are
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already being used for skin applications (compounds with Reaxys [39] registry numbers
5186914 [42–52] and 8177094 [53,54]; see Figure 4) and, if their MMP inhibitory activity was
confirmed, this mechanism of action would explain their positive effects on skin ageing.
Therefore, it is plausible that a significant portion of the remaining 47 natural compounds
could also be useful for skin treatment (which will be investigated elsewhere).

 

3 

 

Figure 4 

Figure 4. 2D structures of the 4 natural hit compounds with either known MMP inhibitor bioactivity
(i.e., 2169918 and 19878945) or known application as dermatological agents for skin applications (i.e.,
5186914 and 8177094). Each compound is identified with its Reaxys register number (Reaxys RN).
MarvinSketch [38] was used to draw the structures.

Figures 5 and S2 describe how compounds 2169918, 19878945, 5186914 and 8177094
bind at the Zn2+ binding site of MMP-8, MMP-9, MMP-12 and MMP-13. As expected,
negatively charged ligand moieties (i.e., carboxylic acid in compounds 2169918, 19878945,
5186914 and 8177094) interact with the Zn2+ cation.

 

4 

 

Figure 5 

Figure 5. Conts.
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4 

 

Figure 5 

Figure 5. Best docking poses for natural compounds 2169918 and 19878945 at the Zn2+ binding site
of MMP-8, MMP-9, MMP-12 and MMP-13.

3. Materials and Methods
3.1. RF Model

In order to prepare the molecules for the RF classifier model, the ChemAxon Stan-
dardizer [55] was used to generate their canonical representations. Morgan fingerprints of
radius 2 were calculated with RDKit and were used as input descriptors to build the RF
classifier to distinguish actives from decoys [56]. The RF model was built and validated
with Scikit-learn and each MMP had a different set of actives and decoys [57]. The number
of actives and decoys for each MMP were, respectively, 9796 and 9692 for MMP-1; 2931
and 2923 for MMP-8; 8439 and 8410 for MMP-9; 2610 and 2596 for MMP-12; and 6295
and 6284 for MMP-13. The actives were obtained from ChEMBL [58] and Reaxys [39] and
are inhibitors of each human MMP whose bioactivity is in the 1–13 range for pX. Their
activity was determined by measuring IC50 or Ki. MW-based decoys were obtained from
the ZINC [59] database using Decoyfinder [60]. Each model was built using 100 trees, their
output classification probabilities were calibrated using Platt scaling [61] and they were
validated by a 5-fold cross-validation in which the training and the test sets consisted of
80% and 20% of the compounds, respectively (see Table 2 for performance details).

3.2. Ligand Setup for Docking

Before docking, molecules were prepared with LigPrep [62] with default parameter
values except in the following cases: (a) chiralities from input geometry were respected
when generating stereoisomers; (b) Epik [63] was used for ionization and tautomerization;
(c) metal binding states were added; (d) 7.0 was used as effective pH; and (e) 2.0 was used
as pH tolerance for the structures generated.

3.3. Protein Preparation

After verifying the fitting of the coordinates of the residues in the binding site relative
to their corresponding electron density map with VHELIBS [64], the crystal structures
of MMP-8, -9, -12 and -13 (1ZVX [29] A chain, 4H2E [30] B chain, 1ROS [31] A chain
and 3KRY [32] A chain, respectively) were obtained from the PDB [28] and prepared
using Maestro’s Protein Preparation Wizard [65] and the following procedure: (a) original
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hydrogens were removed; (b) termini were capped; (c) ionization and tautomeric states of
the ligand were generated with Epik [63]; (d) hydrogen bonds were assigned at pH 7 with
PROPKA; (e) force field OPLS_2005 was used to minimize the structure at 0.30 Å; and (f)
all water molecules were removed from the structure.

3.4. Grid Generation

The grid for protein-ligand docking was generated with Maestro [66] by using default
parameter values and the following settings: (a) the grid center coordinates were (−2.0,
24.5, 8.3) for MMP-8, (26.0, 8.1, 50.4) for MMP-9, (52.4, 82.6, 6.8) for MMP-12 and (−11.2,
−0.2, 2.1) for MMP-13; (b) the inner box size was (10, 10, 10) for all MMPs; and (c) the
outer box size was (27.6, 27.6, 27.6) for MMP-8, (25, 25, 25) for MMP-9, (28.6, 28.6, 28.6) for
MMP-12 and (28.7, 28.7, 28.7) for MMP-13.

3.5. Protein-Ligand Docking

Protein-ligand docking was performed with Glide [67] by using default parameter
values except for the following settings: (a) SP precision; (b) the planarity of conjugated π

groups was enhanced; (c) halogens were included as acceptors; (d) aromatic hydrogens
were included as donors; (e) at most 10 poses were written out per ligand; and (f) 50 poses
were included per ligand in post-docking minimization.

3.6. Pharmacophore Generation

To generate the pharmacophores for MMP-8, -9, -12 and -13, the Glide Fragment
Library [68] was docked to the grid used for protein-ligand docking for each MMP with the
default parameters and the following settings: (a) XP precision; (b) 50,000 initial poses were
kept per ligand; (c) scoring cutoff was set to 500; (d) 1000 minimized poses were generated
per ligand; and (e) expanded sampling was used. Next, the e-Pharmacophores [69,70] tool
was used to group the fragments into 15 clusters and develop pharmacophore hypotheses
with a maximum of 8 sites each. In the case of MMP-1, a ligand-based pharmacophore was
generated with Phase [71] using a set of 916 actives of pX ≥ 7 and 57 inactives of pX ≤ 4
with the default parameters and the following settings: (a) up to 10 conformations were
generated per ligand; (b) hypothesis should match at least 50% of actives; (c) number of
features in the hypothesis: 3–5; and (d) preferred minimum number of features: 5. The
resulting hypotheses were used to screen the validation library for each MMP with the
default parameters and the following settings: (a) as many results as possible were kept
and (b) in the case of MMP-8, -9, -12 and -13, the coordinates of the docked poses obtained
during docking were used and, in the case of MMP-1, a maximum of 10 conformations
were generated for each compound prior to screening. The respective number of actives
and decoys used in the pharmacophore validation for each MMP were the following: 1395
and 1385 for MMP-1, 598 and 591 for MMP-8, 1800 and 1650 for MMP-9, 305 and 304 for
MMP-12 and 938 and 906 for MMP-13. The results of the pharmacophore screening were
analyzed and the hypothesis with the best performance was selected (see Table 3).

3.7. Electrostatic Similarity Analysis

EON software [72] compares the poses of two compounds by calculating Tanimoto
coefficients associated to their electrostatic potentials (i.e., Poisson–Boltzmann electrostatics
and the coulombic part of the Poisson–Boltzmann electrostatics), to their shape, or to a
combination of both. The Poisson–Boltzmann electrostatics metric was used here to give
an electrostatic Tanimoto value (i.e., EON_ET_pb) that was in the −1/3 to 1 range (where
a value of 1 corresponds to identical electrostatic potential overlap and a negative value
corresponds to the overlap of opposite charges between the two poses). The validation
sets used in all electrostatic similarity comparisons consisted of the following numbers of
actives and decoys, respectively, for each MMP: 600 and 599 for MMP-8, 1973 and 1964
for MMP-9, 310 and 308 for MMP-12 and 942 and 921 for MMP-13. The actives were
obtained from Reaxys [39] and were inhibitors of human MMPs with a bioactivity between
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1 and 13 for pX. Their activity was determined by measuring IC50 or Ki. MW-based decoys
were obtained from the ZINC [59] database using Decoyfinder [60]. Prior to the analysis,
the docking of the validation set and the corresponding pharmacophore screening were
performed following the procedure described above.

In order to determine which crystallized ligands to use as references for the electro-
static similarity analysis, the MMP crystal structures containing ligands with IC50 or Ki
activity values between 1 and 100 nM (i.e., 6, 5, 18 and 19 crystal structures for MMP-8,
-9, -12 and -13, respectively) were obtained and superposed on the crystal structure used
for protein-ligand docking in each case (i.e., 1ZVX [29] for MMP-8, 4H2E [30] for MMP-9,
1ROS [31] for MMP-12 and 3KRY [32] for MMP-13). For each MMP, the validation set
was then used to perform separate validations (i.e., one for each crystallized ligand in
the superposed crystal structures) with the crystallized ligands as queries. In each vali-
dation, only the docked pose that presented the highest electrostatic Tanimoto with the
corresponding query was kept for each library compound. After the rest of the docked
poses had been discarded, histograms of the electrostatic Tanimoto coefficients for the
actives and the decoys in the validation set were plotted, and the actives were separated
into 3 groups depending on whether their pX value was lower than 4, between 4 and 7 or
higher than 7 (see Figure S3). The crystallized ligands for which the electrostatic Tanimoto
value distribution of the actives was very similar to that of the decoys were discarded,
as no electrostatic Tanimoto value could be used as a cutoff to differentiate between the
two groups in the validation set. The remaining crystallized actives for each MMP (i.e.,
ligands in crystal structures with the PDB [28] codes 1BZS [73], 1ZVX [29] and 3TT4 [74] for
MMP-8; 2OVZ [75] and 2OW2 [75] for MMP-9; 1ROS [31], 2WO9 [76], 3EHX [77], 3TS4 [74],
4EFS [74], 4GR0 [78], 4GR3 [78] and 4GR8 [78] for MMP-12; and 3ELM [79] and 3TVC [74]
for MMP-13) were selected as queries for the in silico validation of the electrostatic similar-
ity analysis for the respective MMP (i.e., 3, 2, 8 and 2 crystallized ligands for MMP-8, -9,
-12 and -13, respectively).

3.8. MMP Inhibition Assays

Pro-MMP-1, pro-MMP-8, pro-MMP-9 and pro-MMP-13 were purchased from Merck
Millipore. Pro-MMP-12 was purchased from Bio-Techne. p-Aminophenylmercuric acetate
(APMA) was from Sigma-Aldrich (Milan, Italy). Proenzymes were activated immediately
prior to use with APMA 2 mM for 2 h at 37 ◦C for MMP-1, APMA 2 mM for 1 h at 37 ◦C for
MMP-8, APMA 1 mM for 1 h at 37 ◦C for MMP-9, APMA 1 mM for 4 h at 37 ◦C for MMP-12
and APMA 1 mM for 30 min at 37 ◦C for MMP-13. For assay measurements, the purchased
compound stock solutions (10 mM in DMSO) were further diluted for each MMP in the
fluorometric assay buffer (FAB: Tris 50 mM, pH = 7.5, NaCl 150 mM, CaCl2 10 mM, Brij 35
0.05% and DMSO 1%). Activated enzyme (final concentration 2.0 nM for MMP-1, 1.4 nM
for MMP-8, 1.3 nM for MMP-9, 2.3 nM for MMP-12 and 0.3 nM for MMP-13) and inhibitor
solutions were incubated in the assay buffer for 3 h at 25 ◦C. After the addition of 200 µM
solution of the fluorogenic substrate Mca-Lys-Pro-Leu-Gly-Leu-Dap(Dnp)-Ala-Arg-NH2
(Merck Millipore) in DMSO (final concentration 2 µM), the hydrolysis was monitored
every 15 s for 15 min and the increase in fluorescence (λex = 325 nm, λem = 400 nm) was
recorded using a Molecular Devices SpectraMax Gemini XPS plate reader. The assays were
performed in triplicate in a total volume of 200 µL per well in 96-well microtiter plates
(Corning, black, NBS). The MMP inhibition activity was expressed in relative fluorescent
units (RFU). The percent of inhibition was calculated from control reactions without the
inhibitor. The inhibitory effect of the compounds tested was routinely estimated at a
concentration of 100 µM towards MMP-1, -8, -9, -12 and -13. Those compounds found to be
active were tested at additional concentrations and IC50 was determined using at least five
concentrations of the inhibitor, which caused an inhibition between 10% and 90%, using the
formula vi/vo = 1/(1 + [I]/IC50), where vi is the initial velocity of substrate cleavage in the
presence of the inhibitor at concentration [I] and vo is the initial velocity in the absence of
the inhibitor. Results were analyzed using SoftMax Pro software and Origin 6.0 software.



Molecules 2021, 26, 4553 14 of 17

4. Conclusions

In order to obtain potent unspecific MMP inhibitors, we developed a VS workflow
designed to identify compounds that simultaneously target the Zn2+ binding region in
different MMP enzymes. After validating the performance of this VS workflow in vitro
with some selected VS hits obtained from the Specs library, we applied it to a subset of
the Reaxys containing natural products with a molecular weight between 300 and 600 Da.
Our predictions found that 49 of the resulting VS hits could inhibit at least 3 different
MMPs and, interestingly, that 2 of these 49 compounds are already used for skin care
applications and another 2 are known MMP inhibitors. Consequently, our work paves the
way for the discovery of new non-selective MMP inhibitors of natural origin that could
be used as bioactive cosmetic compounds for the treatment of photoaging. Therefore, the
characterization of natural extracts containing any of these 49 compounds merits further
attention, and current work in this regard is underway. Finally, given that non-selective
MMP inhibitors have also been used to inhibit nematode-specific metalloproteases [80,81],
it is possible that our VS hits (either those from the Specs library or those from natural
origin) may also be useful as lead molecules to design more potent drugs to treat parasitic
nematode infection in humans and animals.

Supplementary Materials: The following are available online. Table S1: Canonical SMILES and
PAINS-REMOVER (https://www.cbligand.org/PAINS/) results for the 20 compounds selected for
in vitro validation. Figure S1: Best docking poses (when possible) for hit compounds 7, 8 and 15
at the Zn2+ binding site of MMP-8, MMP-9, MMP-12 and MMP-13. Figure S2: Best docking poses
for natural compounds 5186914 and 8177094 at the Zn2+ binding site of MMP-8, MMP-9, MMP-
12 and MMP-13. Figure S3: Histogram representations of the highest electrostatic Tanimoto (i.e.,
EON_ET_pb) values obtained when comparing the validation set to each query. Panels A, B, C and D
show the validations for each of the queries for MMP-8, -9, -12 and -13, respectively. For each query,
two histograms are shown: one corresponding to the actives and one corresponding to the decoys. In
the actives histogram, actives with a pX lower than 4 are in red, actives with a pX between 4 and 7 are
in blue, and actives with a pX higher than 7 are in green. In the decoys histogram, decoys are in cyan.
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5. Kurzepa, J.; Madro, A.; Czechowska, G.; Kurzepa, J.; Celiński, K.; Kazmierak, W.; Slstrokomka, M. Role of MMP-2 and MMP-9 and
their natural inhibitors in liver fibrosis, chronic pancreatitis and non-specific inflammatory bowel diseases. Hepatobiliary Pancreat.
Dis. Int. 2014, 13, 570–579. [CrossRef]

6. Li, H.; Wang, D.; Yuan, Y.; Min, J. New insights on the MMP-13 regulatory network in the pathogenesis of early osteoarthritis.
Arthritis Res. Ther. 2017, 19, 248. [CrossRef]

7. Takaishi, H.; Kimura, T.; Dalal, S.; Okada, Y.; D’Armiento, J. Joint Diseases and Matrix Metalloproteinases: A Role for MMP-13.
Curr. Pharm. Biotechnol. 2008, 9, 47–54. [CrossRef] [PubMed]

8. Solovуeva, N.I.; Timoshenko, O.S.; Gureeva, T.A.; Kugaevskaya, E.V. Matrix metalloproteinases and their endogenous regulators
in squamous cervical carcinoma (review of the own data). Biomeditsinskaya Khimiya 2015, 61, 694–704. [CrossRef] [PubMed]

9. Overall, C.M.; López-Otín, C. Strategies for MMP inhibition in cancer: Innovations for the post-trial era. Nat. Rev. Cancer 2002, 2,
657–672. [CrossRef]

10. Cathcart, J.M.; Cao, J. MMP Inhibitors: Past, present and future. Front. Biosci. 2015, 20, 1164–1178.
11. Vandenbroucke, R.E.; Libert, C. Is there new hope for therapeutic matrix metalloproteinase inhibition? Nat. Rev. Drug Discov.

2014, 13, 904–927. [CrossRef]
12. Pulkoski-Gross, A.E. Historical Perspective of Matrix Metalloproteases. Front. Biosci. 2015, 7, 125–149. [CrossRef] [PubMed]
13. Renkiewicz, R.; Qiu, L.; Lesch, C.; Sun, X.; Devalaraja, R.; Cody, T.; Kaldjian, E.; Welgus, H.; Baragi, V. Broad-spectrum matrix

metalloproteinase inhibitor marimastat-induced musculoskeletal side effects in rats. Arthritis Rheum. 2003, 48, 1742–1749.
[CrossRef] [PubMed]

14. Drummond, A.H.; Beckett, P.; Brown, P.D.; Bone, E.A.; Davidson, A.H.; Galloway, W.A.; Gearing, A.J.; Huxley, P.; Laber, D.; McCourt,
M.; et al. Preclinical and clinical studies of MMP inhibitors in cancer. Ann. N. Y. Acad. Sci. 1999, 878, 228–235. [CrossRef] [PubMed]

15. Hutchinson, J.W.; Tierney, G.M.; Parsons, S.L.; Davis, T.R. Dupuytren’s disease and frozen shoulder induced by treatment with a
matrix metalloproteinase inhibitor. J. Bone Jt. Surg. Br. 1998, 80, 907–908. [CrossRef]

16. Coussens, L.M.; Fingleton, B.; Matrisian, L.M. Matrix metalloproteinase inhibitors and cancer: Trials and tribulations. Science
2002, 295, 2387–2392. [CrossRef]

17. Fingleton, B. MMPs as therapeutic targets—Still a viable option? Semin. Cell Dev. Biol. 2008, 19, 61–68. [CrossRef] [PubMed]
18. Tampa, M.; Georgescu, S.R.; Mitran, M.I.; Mitran, C.I.; Matei, C.; Caruntu, A.; Scheau, C.; Nicolae, I.; Matei, A.; Caruntu, C.; et al.

Current Perspectives on the Role of Matrix Metalloproteinases in the Pathogenesis of Basal Cell Carcinoma. Biomolecules 2021, 11,
903. [CrossRef]

19. Riihilä, P.; Nissinen, L.; Kähäri, V.-M. Matrix metalloproteinases in keratinocyte carcinomas. Exp. Dermatol. 2021, 30, 50–61. [CrossRef]
20. Quirt, I.; Bodurth, A.; Lohmann, R.; Rusthoven, J.; Belanger, K.; Young, V.; Wainman, N.; Stewar, W.; Eisenhauer, E. National

Cancer Institute of Canada Clinical Trials Group Phase II study of marimastat (BB-2516) in malignant melanoma: A clinical and
tumor biopsy study of the National Cancer Institute of Canada Clinical Trials Group. Investig. New Drugs 2002, 20, 431–437.
[CrossRef] [PubMed]

21. Gimeno, A.; Beltrán-Debón, R.; Mulero, M.; Pujadas, G.; Garcia-Vallvé, S. Understanding the variability of the S1′ pocket to
improve matrix metalloproteinase inhibitor selectivity profiles. Drug Discov. Today 2020, 25, 38–57. [CrossRef]

22. Rittié, L.; Fisher, G.J. UV-light-induced signal cascades and skin aging. Ageing Res. Rev. 2002, 1, 705–720. [CrossRef]
23. Imokawa, G.; Nakajima, H.; Ishida, K. Biological mechanisms underlying the ultraviolet radiation-induced formation of skin

wrinkling and sagging II: Over-expression of neprilysin plays an essential role. Int. J. Mol. Sci. 2015, 16, 7776–7795. [CrossRef]
[PubMed]

24. Pittayapruek, P.; Meephansan, J.; Prapapan, O.; Komine, M.; Ohtsuki, M. Role of Matrix Metalloproteinases in Photoaging and
Photocarcinogenesis. Int. J. Mol. Sci. 2016, 17, 868. [CrossRef] [PubMed]

25. Tallant, C.; Marrero, A.; Gomis-Rüth, F.X. Matrix metalloproteinases: Fold and function of their catalytic domains. Biochim. Biophys.
Acta Mol. Cell Res. 2010, 1803, 20–28. [CrossRef]

26. Fabre, B.; Ramos, A.; de Pascual-Teresa, B. Targeting matrix metalloproteinases: Exploring the dynamics of the S1′ pocket in the
design of selective, small molecule inhibitors. J. Med. Chem. 2014, 57, 10205–10219. [CrossRef]

27. Cereto-Massagué, A.; Ojeda, M.J.; Valls, C.; Mulero, M.; Garcia-Vallvé, S.; Pujadas, G. Molecular fingerprint similarity search in
virtual screening. Methods 2015, 71, 58–63. [CrossRef] [PubMed]

28. Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank.
Nucleic Acids Res. 2000, 28, 235–242. [CrossRef] [PubMed]

http://doi.org/10.1038/nrd2308
http://doi.org/10.1097/01.mib.0000234133.97594.04
http://www.ncbi.nlm.nih.gov/pubmed/25611261
http://doi.org/10.1016/S1499-3872(14)60261-7
http://doi.org/10.1186/s13075-017-1454-2
http://doi.org/10.2174/138920108783497659
http://www.ncbi.nlm.nih.gov/pubmed/18289056
http://doi.org/10.18097/PBMC20156106694
http://www.ncbi.nlm.nih.gov/pubmed/26716740
http://doi.org/10.1038/nrc884
http://doi.org/10.1038/nrd4390
http://doi.org/10.2741/s429
http://www.ncbi.nlm.nih.gov/pubmed/25961691
http://doi.org/10.1002/art.11030
http://www.ncbi.nlm.nih.gov/pubmed/12794843
http://doi.org/10.1111/j.1749-6632.1999.tb07688.x
http://www.ncbi.nlm.nih.gov/pubmed/10415734
http://doi.org/10.1302/0301-620X.80B5.0800907
http://doi.org/10.1126/science.1067100
http://doi.org/10.1016/j.semcdb.2007.06.006
http://www.ncbi.nlm.nih.gov/pubmed/17693104
http://doi.org/10.3390/biom11060903
http://doi.org/10.1111/exd.14183
http://doi.org/10.1023/A:1020625423524
http://www.ncbi.nlm.nih.gov/pubmed/12448662
http://doi.org/10.1016/j.drudis.2019.07.013
http://doi.org/10.1016/S1568-1637(02)00024-7
http://doi.org/10.3390/ijms16047776
http://www.ncbi.nlm.nih.gov/pubmed/25856676
http://doi.org/10.3390/ijms17060868
http://www.ncbi.nlm.nih.gov/pubmed/27271600
http://doi.org/10.1016/j.bbamcr.2009.04.003
http://doi.org/10.1021/jm500505f
http://doi.org/10.1016/j.ymeth.2014.08.005
http://www.ncbi.nlm.nih.gov/pubmed/25132639
http://doi.org/10.1093/nar/28.1.235
http://www.ncbi.nlm.nih.gov/pubmed/10592235


Molecules 2021, 26, 4553 16 of 17

29. Pochetti, G.; Gavuzzo, E.; Campestre, C.; Agamennone, M.; Tortorella, P.; Consalvi, V.; Gallina, C.; Hiller, O.; Tschesche, H.;
Tucker, P.A.; et al. Structural insight into the stereoselective inhibition of MMP-8 by enantiomeric sulfonamide phosphonates.
J. Med. Chem. 2006, 49, 923–931. [CrossRef] [PubMed]

30. Antoni, C.; Vera, L.; Devel, L.; Catalani, M.P.; Czarny, B.; Cassar-Lajeunesse, E.; Nuti, E.; Rossello, A.; Dive, V.; Stura, E.A.
Crystallization of bi-functional ligand protein complexes. J. Struct. Biol. 2013, 182, 246–254. [CrossRef]

31. Morales, R.; Perrier, S.; Florent, J.M.; Beltra, J.; Dufour, S.; De Mendez, I.; Manceau, P.; Tertre, A.; Moreau, F.; Compere, D.; et al.
Crystal structures of novel non-peptidic, non-zinc chelating inhibitors bound to MMP-12. J. Mol. Biol. 2004, 341, 1063–1076.
[CrossRef] [PubMed]

32. Becker, D.P.; Barta, T.E.; Bedell, L.J.; Boehm, T.L.; Bond, B.R.; Carroll, J.; Carron, C.P.; Decrescenzo, G.A.; Easton, A.M.; Freskos, J.N.;
et al. Orally active MMP-1 sparing α-tetrahydropyranyl and α-piperidinyl Sulfone matrix metalloproteinase (MMP) inhibitors
with efficacy in cancer, arthritis, and cardiovascular disease. J. Med. Chem. 2010, 53, 6653–6680. [CrossRef] [PubMed]

33. Gimeno, A.; Ojeda-Montes, M.; Tomás-Hernández, S.; Cereto-Massagué, A.; Beltrán-Debón, R.; Mulero, M.; Pujadas, G.;
Garcia-Vallvé, S. The Light and Dark Sides of Virtual Screening: What Is There to Know? Int. J. Mol. Sci. 2019, 20, 1375. [CrossRef]

34. Specs.net. Available online: http://www.specs.net/ (accessed on 17 July 2021).
35. OMEGA 4.1.0.4: OpenEye Scientific Software, Santa Fe, NM, USA. Available online: https://www.eyesopen.com/omega

(accessed on 28 July 2021).
36. McInnes, L.; Healy, J.; Astels, S. hdbscan: Hierarchical density based clustering. J. Open Source Softw. 2017, 2, 1–3. [CrossRef]
37. Baell, J.B.; Holloway, G.A. New substructure filters for removal of pan assay interference compounds (PAINS) from screening

libraries and for their exclusion in bioassays. J. Med. Chem. 2010, 53, 2719–2740. [CrossRef]
38. MarvinSketch 21.12. ChemAxon. Available online: https://www.chemaxon.com (accessed on 28 July 2021).
39. Reaxys. Available online: http://www.reaxys.com (accessed on 17 July 2021).
40. Qi-Zhuang, Y.; Johnson, L.L.; Nordan, I.; Hupe, D.; Hupe, L. A Recombinant Human Stromelysin Catalytic Domain Identifying

Tryptophan Derivatives as Human Stromelysin Inhibitors. J. Med. Chem. 1994, 37, 206–209. [CrossRef]
41. Murata, T.; Sasaki, K.; Sato, K.; Yoshizaki, F.; Yamada, H.; Mutoh, H.; Umehara, K.; Miyase, T.; Warashina, T.; Aoshima, H.; et al. Matrix

metalloproteinase-2 inhibitors from Clinopodium chinense var. parviflorum. J. Nat. Prod. 2009, 72, 1379–1384. [CrossRef] [PubMed]
42. Albarano, T. Pharmaceutical Compositions. U.S. Patent 20200046627A1, 13 February 2020.
43. Sau, S.; Iyer, A.K.; Alsaab, H. Method of Treatment for Solid Tumors Containing Hypoxia and/or Stroma Features. WO2019133914,

29 December 2019.
44. Doss, J.C. Therapeutic Soap Product with UV Protection. U.S. Patent 20070071698A1, 29 March 2007.
45. Wang, W.; Tang, M.; Pang, F.; Fan, X. Wrinkle-Resistant Moisturizing Cream and Preparation Method Thereof. 109330915,

15 February 2019.
46. Raper, P.; Haig, C.; Ejifor, O.; Raper, R. Skin Enhancing Beverage Composition. WO/2014/114939, 23 January 2014.
47. Johansen, B.; Feuerherm, A.J. Combination Therapy Comprising a Polyunsaturated Ketone and a Folic Acid Partner. WO2017207820,

7 December 2017.
48. Michael, T.P. Composition for an Anti-Aging Treatment. U.S. Patent 9839604, 12 December 2017.
49. Neamati, N.; Xu, S.; Tamura, S. Compositions and Methods Relating to Inhibiting Serine Hyrdoxymethyltransferase 2 Activity.

WO2016085990, 24 November 2016.
50. Diaz, V.H. Composition Including Superoxide Dismutase and Prickly-Pear Cactus for Minimizing and Preventing Hangovers.

U.S. Patent 2008020071, 10 August 2008.
51. Lin, S.; Van Reeth, I. Personal Care Compositions Containing Silicone Elastomer Gels. WO2008085360, 19 December 2008.
52. Deperraz, F.; Baroth, V. Colloidal Solution. WO2008086953, 8 January 2008.
53. Lee Hye, J.; Kim Mi, S.; Lee Sang, H. Composition for Improving the Skin. KR20170073308, 3 August 2017.
54. Ko, E.A.; Jeon, J.H.; Hong, J.H. Cosmetic Composition Comprising Oleanolic Acid and Salvianolic Acid for Skin Whitening or

Wrinkle Preventing. WO/2019/103194, 24 November 2018.
55. Standardizer 16.10.10.0. ChemAxon. 2016. Available online: https://chemaxon.com/products/chemical-structure-

representation-toolkit (accessed on 28 July 2021).
56. RDKit: Open-Source Cheminformatics. Available online: https://www.rdkit.org/ (accessed on 18 July 2021).
57. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Louppe, G.; Prettenhofer, P.; Weiss, R.;

et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2012, 12, 2825–2830. [CrossRef]
58. Gaulton, A.; Hersey, A.; Nowotka, M.; Bento, A.P.; Chambers, J.; Mendez, D.; Mutowo, P.; Atkinson, F.; Bellis, L.J.; Cibrián-Uhalte,

E.; et al. The ChEMBL database in 2017. Nucleic Acids Res. 2017, 45, D945–D954. [CrossRef]
59. Sterling, T.; Irwin, J.J. ZINC 15—Ligand Discovery for Everyone. J. Chem. Inf. Model. 2015, 55, 2324–2337. [CrossRef] [PubMed]
60. Cereto-Massagué, A.; Guasch, L.; Valls, C.; Mulero, M.; Pujadas, G.; Garcia-Vallvé, S. DecoyFinder: An easy-to-use python GUI

application for building target-specific decoy sets. Bioinformatics 2012, 28, 1661–1662. [CrossRef]
61. Platt, J. Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. Adv. Large Margin

Classif. 1999, 10, 61–74.
62. Schrödinger Release 2018-1: LigPrep; Schrödinger, LLC.: New York, NY, USA, 2018.
63. Schrödinger Release 2018-1: Epik; Schrödinger, LLC.: New York, NY, USA, 2018.

http://doi.org/10.1021/jm050787+
http://www.ncbi.nlm.nih.gov/pubmed/16451058
http://doi.org/10.1016/j.jsb.2013.03.015
http://doi.org/10.1016/j.jmb.2004.06.039
http://www.ncbi.nlm.nih.gov/pubmed/15289103
http://doi.org/10.1021/jm100669j
http://www.ncbi.nlm.nih.gov/pubmed/20726512
http://doi.org/10.3390/ijms20061375
http://www.specs.net/
https://www.eyesopen.com/omega
http://doi.org/10.21105/joss.00205
http://doi.org/10.1021/jm901137j
https://www.chemaxon.com
http://www.reaxys.com
http://doi.org/10.1021/jm00027a027
http://doi.org/10.1021/np800781t
http://www.ncbi.nlm.nih.gov/pubmed/19711986
https://chemaxon.com/products/chemical-structure-representation-toolkit
https://chemaxon.com/products/chemical-structure-representation-toolkit
https://www.rdkit.org/
http://doi.org/10.1007/s13398-014-0173-7.2
http://doi.org/10.1093/nar/gkw1074
http://doi.org/10.1021/acs.jcim.5b00559
http://www.ncbi.nlm.nih.gov/pubmed/26479676
http://doi.org/10.1093/bioinformatics/bts249


Molecules 2021, 26, 4553 17 of 17

64. Cereto-Massagué, A.; Ojeda, M.J.; Joosten, R.P.; Valls, C.; Mulero, M.; Salvado, M.J.; Arola-Arnal, A.; Arola, L.; Garcia-Vallvé, S.;
Pujadas, G. The good, the bad and the dubious: VHELIBS, a validation helper for ligands and binding sites. J. Cheminform. 2013,
5, 36. [CrossRef]

65. Schrödinger Release 2018-1: Schrödinger Suite 2018-1 Protein Preparation Wizard, Epik; Schrödinger, LLC.: New York, NY, USA;
Impact, Schrödinger, LLC.: New York, NY, USA; Prime, Schrödinger, LLC.: New York, NY, USA, 2018.

66. Schrödinger Release 2018-1: Maestro; Schrödinger, LLC.: New York, NY, USA, 2018.
67. Schrödinger Release 2018-1: Glide; Schrödinger, LLC.: New York, NY, USA, 2018.
68. Glide Fragment Library. Schrodinger. Available online: http://www.schrodinger.com/Glide/Fragment-Library (accessed on

24 April 2014).
69. Salam, N.K.; Nuti, R.; Sherman, W. Novel Method for Generating Structure-Based Pharmacophores Using Energetic Analysis.

J. Chem. Inf. Model. 2009, 49, 2356–2368. [CrossRef] [PubMed]
70. Loving, K.; Salam, N.K.; Sherman, W. Energetic analysis of fragment docking and application to structure-based pharmacophore

hypothesis generation. J. Comput. Aided Mol. Des. 2009, 23, 541–554. [CrossRef] [PubMed]
71. Dixon, S.L.; Smondyrev, A.M.; Knoll, E.H.; Rao, S.N.; Shaw, D.E.; Friesner, R.A. PHASE: A new engine for pharmacophore

perception, 3D QSAR model development, and 3D database screening: 1. Methodology and preliminary results. J. Comput. Aided
Mol. Des. 2006, 20, 647–671. [CrossRef]

72. EON 2.2.0.5: OpenEye Scientific Software, Santa Fe, NM, USA. Available online: https://www.eyesopen.com/eon (accessed on
28 July 2021).

73. Matter, H.; Schwab, W.; Barbier, D.; Billen, G.; Haase, B.; Neises, B.; Schudok, M.; Thorwart, W.; Schreuder, H.; Brachvogel, V.; et al.
Quantitative structure-activity relationship of human neutrophil collagenase (MMP-8) inhibitors using comparative molecular
field analysis and X-ray structure analysis. J. Med. Chem. 1999, 42, 1908–1920. [CrossRef]

74. Devel, L.; Beau, F.; Amoura, M.; Vera, L.; Cassar-Lajeunesse, E.; Garcia, S.; Czarny, B.; Stura, E.A.; Dive, V. Simple pseudo-
dipeptides with a P2′ glutamate: A novel inhibitor family of matrix metalloproteases and other metzincins. J. Biol. Chem. 2012,
287, 26647–26656. [CrossRef]

75. Tochowicz, A.; Maskos, K.; Huber, R.; Oltenfreiter, R.; Dive, V.; Yiotakis, A.; Zanda, M.; Pourmotabbed, T.; Bode, W.; Goettig, P.
Crystal structures of MMP-9 complexes with five inhibitors: Contribution of the flexible Arg424 side-chain to selectivity. J. Mol.
Biol. 2007, 371, 989–1006. [CrossRef]

76. Holmes, I.P.; Gaines, S.; Watson, S.P.; Lorthioir, O.; Walker, A.; Baddeley, S.J.; Herbert, S.; Egan, D.; Convery, M.A.; Singh, O.M.P.;
et al. The identification of beta-hydroxy carboxylic acids as selective MMP-12 inhibitors. Bioorgan. Med. Chem. Lett. 2009, 19,
5760–5763. [CrossRef] [PubMed]

77. Dragoni, E.; Calderone, V.; Fragai, M.; Jaiswal, R.; Luchinat, C.; Nativi, C. Biotin-tagged probes for MMP expression and activation:
Design, synthesis, and binding properties. Bioconjug. Chem. 2009, 20, 719–727. [CrossRef] [PubMed]

78. Czarny, B.; Stura, E.A.; Devel, L.; Vera, L.; Cassar-Lajeunesse, E.; Beau, F.; Calderone, V.; Fragai, M.; Luchinat, C.; Dive, V.
Molecular determinants of a selective matrix metalloprotease-12 inhibitor: Insights from crystallography and thermodynamic
studies. J. Med. Chem. 2013, 56, 1149–1159. [CrossRef] [PubMed]

79. Monovich, L.G.; Tommasi, R.A.; Fujimoto, R.A.; Blancuzzi, V.; Clark, K.; Cornell, W.D.; Doti, R.; Doughty, J.; Fang, J.; Farley, D.;
et al. Discovery of potent, selective, and orally active carboxylic acid based inhibitors of matrix metalloproteinase-13. J. Med.
Chem. 2009, 52, 3523–3538. [CrossRef] [PubMed]

80. France, D.J.; Stepek, G.; Houston, D.R.; Williams, L.; McCormack, G.; Walkinshaw, M.D.; Page, A.P. Identification and activity of
inhibitors of the essential nematode-specific metalloprotease DPY-31. Bioorgan. Med. Chem. Lett. 2015, 25, 5752–5755. [CrossRef]
[PubMed]

81. Robertson, E.; Harcus, Y.; Johnston, C.J.C.; Page, A.P.; Walkinshaw, M.D.; Maizels, R.M.; Houston, D. Demonstration of the
anthelmintic potency of marimastat in the heligmosomoides polygyrus rodent model. J. Parasitol. 2018. [CrossRef]

http://doi.org/10.1186/1758-2946-5-36
http://www.schrodinger.com/Glide/Fragment-Library
http://doi.org/10.1021/ci900212v
http://www.ncbi.nlm.nih.gov/pubmed/19761201
http://doi.org/10.1007/s10822-009-9268-1
http://www.ncbi.nlm.nih.gov/pubmed/19421721
http://doi.org/10.1007/s10822-006-9087-6
https://www.eyesopen.com/eon
http://doi.org/10.1021/jm980631s
http://doi.org/10.1074/jbc.M112.380782
http://doi.org/10.1016/j.jmb.2007.05.068
http://doi.org/10.1016/j.bmcl.2009.07.155
http://www.ncbi.nlm.nih.gov/pubmed/19703773
http://doi.org/10.1021/bc8003827
http://www.ncbi.nlm.nih.gov/pubmed/19275207
http://doi.org/10.1021/jm301574d
http://www.ncbi.nlm.nih.gov/pubmed/23343195
http://doi.org/10.1021/jm801394m
http://www.ncbi.nlm.nih.gov/pubmed/19422229
http://doi.org/10.1016/j.bmcl.2015.10.077
http://www.ncbi.nlm.nih.gov/pubmed/26546217
http://doi.org/10.1645/18-33

	Introduction 
	Results and Discussion 
	VS Workflow Design and In Silico Validation 
	Random Forest Model 
	Protein-Ligand Docking 
	Pharmacophore 
	Electrostatic Similarity Analysis 

	In Vitro Validation 
	VS of Natural Products 

	Materials and Methods 
	RF Model 
	Ligand Setup for Docking 
	Protein Preparation 
	Grid Generation 
	Protein-Ligand Docking 
	Pharmacophore Generation 
	Electrostatic Similarity Analysis 
	MMP Inhibition Assays 

	Conclusions 
	References

