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Abstract: This article reviews recent developments in microfluidic systems enabling high-throughput
characterization of single-cell proteins. Four key perspectives of microfluidic platforms are included
in this review: (1) microfluidic fluorescent flow cytometry; (2) droplet based microfluidic flow
cytometry; (3) large-array micro wells (microengraving); and (4) large-array micro chambers (barcode
microchips). We examine the advantages and limitations of each technique and discuss future
research opportunities by focusing on three key performance parameters (absolute quantification,
sensitivity, and throughput).
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1. Introduction

Quantification of single-cell proteomics (e.g., functional proteins such as cytokines, and structural
proteins such as actin filaments) provides key insights in the field of cellular heterogeneity (e.g.,
immune response variations and tumor heterogeneity) [1–6]. Fluorescent flow cytometry is the
dominant workhorse in the field of single-cell protein quantification, featured with high throughput
and high levels of multiplexing [7–10]. However, this technique is a semi-quantitative approach,
reporting the intensity of fluorescence rather than the copy number of target proteins for individual
cells. Even within the incorporation of calibration beads, the capability of absolute quantification is
still questionable [11–15].

Microfluidics is the science and technology on the processing and manipulation of small amounts
of fluids (10´9 to 10´18 L) in channels with dimensions of tens of micrometers [16–18]. The micrometer
dimension matches well with the size of typical biological cells, making microfluidics an ideal
platform for cell studies [19–23], including the characterization of biochemical (e.g., gene [24,25]
and protein [6,26–31]) and/or biophysical properties (mechanical [32–36] and electrical [33,37–39])
of cells at the single-cell level [40–44]. More specifically, microfluidic systems can effectively confine
individual cells in droplets and/or micro wells, enabling the absolute quantification of secreted proteins
or cytosolic proteins of single cells, which cannot be easily quantified by conventional techniques such
as fluorescent flow cytometry [26–29].

Within the last ten years, we have witnessed huge developments in microfluidic platforms
enabling single-cell protein expressions (see Table 1), which can be classified into four major types as
follows: (1) microfluidic fluorescent flow cytometry; (2) droplet based microfluidic flow cytometry;
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(3) large-array micro wells (microengraving); and (4) large-array micro chambers (barcode microchips).
In this mini-review, we examine the advantages and limitations of each technique and discuss future
research opportunities by focusing on three key performance parameters (absolute quantification,
sensitivity, and throughput).

Table 1. Key developments of microfluidic systems enabling high-throughput single-cell
protein characterization.

Techniques Key Achievements References

Microfluidic Fluorescent
Flow Cytometry

Characterization of small numbers of cells, ranging from 20,000 to
625 per sample [45–47]

Droplet Based Microfluidic
Flow Cytometry

Detection of yellow fluorescent protein mutant “Venus” of single E. coli
encapsulated in microdroplets [48]

Droplet Based Microfluidic
Flow Cytometry

Detection of the activities of enzyme alkaline phosphatase secreted by
single E. coli encapsulated in microdroplets [49]

Droplet Based Microfluidic
Flow Cytometry

Detection of cytokine (IL-10) secretion of single CD4+ CD25+ regulatory
T cells in microdroplets over time [50]

Droplet Based Microfluidic
Flow Cytometry

Detection of intracellular proteins of HRas-mCitrine, expressed within
single HEK-293 cells and actin-EGFP expressed within single MCF-7
cells encapsulated in microdroplets

[51]

Droplet Based Microfluidic
Flow Cytometry

Detection of cytokine (IL-2, IFN-γ, TNF-α) secretion of single, activated
T-cells in microdroplets over time [52]

Large-Array Micro Wells
(Microengraving)

Detection of secreted cytokines (IL-6, IL-17, IFN-γ, IL-2, and TNF-α) of
primary T cells at the secretion rate from 0.5 to 4 molecules/s [53]

Large-Array Micro Wells
(Microengraving)

Detection of secreted cytokines (IFN-γ and IL-17) of individual CD4+
T cells with peptide-loaded MHC class II pre-coated on the surface of
micro wells for on-chip activation

[54]

Large-Array Micro Wells
(Microengraving)

~200-fold improvement in the limits of detection of secreted cytokines
using hybridization chain reactions [55]

Large-Array Micro Wells
(Microengraving)

Detection of serial, time-dependent secreted cytokines (IFN-γ, IL-2,
TNF-α) of primary human T cells, revealing that cells predominantly
release one cytokine at a time rather than actively secret multiple
cytokines simultaneously

[56]

Large-Array Micro Wells
(Microengraving)

Detection of secreted chemokines (ELR + CXC) from single colorectal
tumor and stromal cells with polyfunctional heterogeneity located [57]

Large-Array Micro Chambers
(Barcoding Microchips)

Detection of 12 proteins including TNF-α, IFN-γ, IL-2, IL-1α, IL-1β,
IL-6, IL-10, IL-12, granulocyte-macrophage colony-stimulating factor,
CCL-2, TGF-β and PSA of macrophages and cytotoxic T lymphocytes

[58]

Large-Array Micro Chambers
(Barcoding Microchips)

Detection of 11 proteins directly or potentially associated with PI3K
signaling of three isogenic cell lines representing the cancer
glioblastoma multiforme, at the basal level, under EGF stimulation,
and under erlotinib inhibition plus EGF stimulation

[59]

Large-Array Micro Chambers
(Barcoding Microchips) Detection of secreted proteins (IL-8 and VEGF) of circulating tumor cells [60]

2. Microfluidic Fluorescent Flow Cytometry

In microfluidics, the fluorescent micro flow cytometry is the first approach proposed to quantify
single-cell protein expressions, which is a miniaturized version of conventional flow cytometry [61–64].
As shown in Figure 1, single cells with surface (fluorescence labeled antibodies targeting surface
proteins) or intracellular staining (fluorescence labeled antibodies targeting cytosolic proteins) are
flushed into microfabricated flow channels. By integrating laser sources and fluorescent detection
units, the fluorescent intensities of labeled single cells are obtained and the copy numbers of targeted
proteins are quantified using the calibration curves obtained by calibration beads [46,47].

Compared to conventional flow cytometry, microfluidic flow cytometry is featured with a
reduction in cellular samples and reagents. As shown in Figure 1d, the proposed system was used
to analyze small numbers of cells, with the quantified number of cells decreased from 20,000 to 625.
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Thus, microfluidic flow cytometry is more suitable for protein quantification of small cell samples (e.g.,
primary cells or tumor cells obtained from biopsies). As to the capability of absolute quantification,
both approaches can assay cell surface markers with absolute quantification by combining calibration
beads. As to the measurement of intracellular proteins, due to the lack of effective calibration beads,
flow cytometry-based approaches are still qualitative rather than quantitative, which needs further
research efforts.
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with permission from [47]. 

3. Droplet Based Microfluidic Flow Cytometry 

Since microfluidic fluorescent flow cytometry cannot estimate the secreted proteins from single 
cells, droplet-based microfluidic flow cytometry [65–67] was modified to encapsulate single cells, 
enabling the quantification of specific proteins secreted by single cells [48–52,68–75]. As shown in 
Figure 2, single cells and functionalized capture beads are encapsulated in agarose-gel droplets, 
where beads function to bind cytokines secreted by single cells. Then, droplets are gelled and washed 
to break the emulsion, followed by incubation with fluorescently-labeled detection antibodies 

Figure 1. The commercially available microfluidic fluorescent flow cytometry enabling the
quantification of single-cell protein expressions. (a) Schematic of the instrument for the detection
of cellular fluorescence parameters; (b) chip layout of the microfluidic glass chip where each sample
channel is joined by a buffer channel in close proximity to the detection area, focusing sample solutions
to a portion of the microchannel in order to generate a single file cell stream; (c) the glass-based
microfluidic channels with channel dimensions of 25 ˆ 75 µm; and (d) low number of cells was loaded
into the microfluidic flow cytometry with specific membrane proteins quantified. Reproduced with
permission from [47].

3. Droplet Based Microfluidic Flow Cytometry

Since microfluidic fluorescent flow cytometry cannot estimate the secreted proteins from single
cells, droplet-based microfluidic flow cytometry [65–67] was modified to encapsulate single cells,
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enabling the quantification of specific proteins secreted by single cells [48–52,68–75]. As shown in
Figure 2, single cells and functionalized capture beads are encapsulated in agarose-gel droplets, where
beads function to bind cytokines secreted by single cells. Then, droplets are gelled and washed to
break the emulsion, followed by incubation with fluorescently-labeled detection antibodies targeting
cytokines bound on the beads. Subsequently, the signal intensities in the beads are quantified by flow
cytometry. Based on this approach, 7415 single cells were analyzed, revealing that (1) there was a
presence of eight different cellular subpopulations; and (2) 85% of all individual cells secreted one or
more cytokines [52].
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Figure 2. The droplet based microfluidic flow cytometry enabling the quantification of proteins released
from single cells. (a) device schematic where single cells and functionalized cytokine-capture beads
are encapsulated in monodisperse agarose droplets, which are then quantified by fluorescence flow
cytometry; and (b) 7415 single cells are analyzed, revealing the presence of eight different cellular
subpopulations where 85% of all individual cells secreted one or more cytokines. Reproduced with
permission from [52].

Although powerful, there are still several concerns for this technique, which need to be carefully
addressed. (1) The cell loading efficiency in individual droplets needs to be further quantified
and optimized. High concentrations of suspension cells before the emulsification process lead to
loading of more than one cell in each droplet, while low concentrations of cell suspensions result
in high percentages of empty droplets without single cells. Variations in fluorescent intensities
resulted from uncontrolled cell numbers per droplet may compromise the quantitative results; (2) The
local microenvironments of single cells trapped in individual droplets (e.g., nutrient levels and gas
permeability) may be significantly different from in vivo situations and, thus, there is a doubt on the
normal metabolism status of individual cells trapped in droplets. If these individual cells are confronted
with challenging environments, the secreted protein numbers cannot indicate the normal status of these
individual cells; and (3) the use of cytokine-capture beads also brings more issues. One consideration
is the bead loading evenness among individual droplets, which may lead to variations in protein
quantification. The second point is the calibration issue. Due to the use of cytokine-capture beads,
there is an uneven distribution of fluorescence among individual droplets (intensity peaks around
individual beads), which poses further obstacles in calibration.

In addition to the quantification of secreted proteins of single cells, droplet-based microfluidic
systems have also been used to quantify intracellular proteins of single cells. As shown in Figure 3,
cells are introduced into the device in suspension and are electrically lysed in situ. The cell lysate is
subsequently encapsulated together with antibody-functionalized beads into droplets, which are then
stored on-chip while the binding of intracellular proteins to the beads is monitored fluorescently. Based
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on this approach, the concentrations of specific intracellular proteins over five orders of magnitude
(~50 pM to 1 µM) can be characterized [51].Sensors 2016, 16, 232 5 of 12 
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Figure 3. Schematic (a) and experiment results (b) of droplet-based microfluidic flow cytometry
enabling the quantification of intracellular proteins of single cells including key steps of cellular lysis,
encapsulation of cell lysate, and antibody-functionalized beads to form droplets, on-chip storage, and
fluorescence reading. Reproduced with permission from [51].

Compared to conventional fluorescent flow cytometry, the droplet-based microfluidic flow
cytometry does not need the steps of intracellular staining when the numbers of cytosolic proteins
have to be measured. This advantage can address the issue of non-specific binding in the process
of intracellular staining, which is definitely beneficial in protein quantification. However, in droplet
based microfluidic flow cytometry, the dilution of targeted proteins occurs since the volume of droplets
is roughly 0.1–1 nL, two or three orders larger than individual cells (~pL). Thus, protein-capture
beads are required to enrich the concentration of targeted proteins, which, again, leads to the lack of
effective calibration.

4. Large-Array Microwells (Microengraving)

Both conventional and microfluidic flow cytometry cannot evaluate the same single cells at
multiple time points, which is of importance in immunology. To address this issue, Love et al. proposed
the design of large-array micro wells (“microengraving”, 0.1–1 nL each) to isolate individual cells
and quantify secreted proteins in a time sequence [53–57,76–82]. As shown in Figure 4, single cells,
suspended in media, are deposited onto a large array (~20 ˆ 50 µm2) of PDMS microwells. With
the removal of excess cells, the microwells are then inverted onto a glass slide coated with a specific
capture reagent. After an incubation period, the microwells are removed and applied to a second
glass slide coated with a different capture reagent. The resulting microarrays are interrogated with
laser-based fluorescence scanners.

After microengraving was initially proposed to quantify cellular protein expressions [76], several
technical improvements were further realized, which are (1) the coating of specific macromolecules
on the surface of PDMS wells to stimulate immune cells [54]; (2) the usage of the hybridization chain
reaction to amplify signals resulting from sandwich immunoassays [55]; and (3) the retrieval of targeted
single cells in specific micro wells [77].

Although microengraving can enable absolute quantification of multiple proteins secreted by
individual immune cells, compared to flow cytometry, it requires the careful manipulation of glass
slides without stimulating or even dislodging single cells within individual wells. In addition, it is
also questionable that the micro environments formed within each microwell may be different from
in vivo situations and, thus, the characterized protein levels cannot reflect the in vivo metabolisms of
immune cells.
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Figure 4. Large-array microwells (microengraving) enabling the quantification of secreted proteins
of single cells. (a) Illustration of key steps in microengraving to monitor cytokine secretion in time;
(b) representative micrographs of data evaluating cellular viability, phenotype, and secreted proteins;
and (c) cytokine secretion kinetics of 3015 viable T cells. Each row reflects the dynamic activity of an
individual T cell over time and the color wheel illustrates the type and relative magnitude of secreted
cytokines. Reproduced with permission from [56].

5. Large-Array Micro Chambers (Barcoding Microchips)

Although the microengraving setup can enable absolute quantification of secreted proteins of
single cells, this approach cannot be effectively used to measure cytosolic proteins. To address this
issue, Heath et al. proposed large-array micro chambers (single-cell barcoding microchips), which
can be used to assay both cytosolic and membrane proteins of single cells. As shown in Figure 5,
the single-cell barcoding microchips consist of thousands of individually addressed micro chambers
to conduct single-cell trapping, lysis, capture of targeted proteins by pre-printed antibodies on the
surface of the chambers, enabling quantitative measurement using fluorescent immunosandwich
assays [58–60,83–95] (see Figure 5).

The key feature of this technique is the preparation of spatially-encoded antibody barcodes
enabling the device multiplicity. Since antibodies suffer from long-term storage issues, the barcodes
were initially patterned as ssDNA barcodes. A cocktail of antibodies labeled with complementary
DNA oligomers were then used to transfer the DNA barcodes into antibody barcodes, just prior to
running experiments. This approach has been used to monitor multiple key cytokines of single cells,
locating significant cellular heterogeneities in both immunology [58] and tumor biology [59,88].

This approach is the most powerful microfluidic system enabling the absolute quantification of
both surface and cytosolic proteins of single cells in large arrays. However, there are also several
practical concerns. First, this microfluidic system is a leaky system and when running experiments,
large portions of single cells may stick to the bottom surfaces of cellular inlets. This limitation renders
the quantification of cell types with limited numbers (e.g., circulating tumor cells) full of challenges.
The second concern is the potential denature of targeted antibodies in the step of cellular lysis.
In addition, to form individual chambers for single-cell analysis, it cannot be easily further scaled up
to increase the throughput. Since this system requests complicated operation steps to form individual
chambers for single-cell analysis, it cannot be directly scaled up to further increase the throughput.
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cells trapped within individual chambers coated with antibody barcodes; (c) schematic of the barcode 
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used for the antibody barcode calibration measurements using spiked recombinant proteins; and  
(e) recombinant protein calibration curves for TNF-α, IL-1β, IL-6, IL-10, and GM-CSF. Reproduced 
with permission from [58]. 
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calibration beads have been widely used in the quantitative flow cytometry, they can only, to an 
extent, produce reliable results in quantifying membrane proteins, while we still lack effective 
calibration beads for absolute quantification of intracellular proteins in flow cytometry. 

As to the issue of ultra-high sensitivity, large-array microfluidic devices suffer from the issue of 
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higher than the volumes of single cells (~1 pL). Further volume decrease in the trapping wells or 
chambers is not appropriate since it may lead to higher percentages of empty wells without cells and 

Figure 5. Large-array micro chambers (barcoding microchips) enabling the quantification of both
cytosolic and surface proteins of single cells. (a) Image of the microfluidic device including flow
channels (red) and the control channels (blue) with input and output ports labeled; (b) an image of
cells trapped within individual chambers coated with antibody barcodes; (c) schematic of the barcode
arrays enabling the detection of secreted proteins from single cells; (d) scanned fluorescent images
used for the antibody barcode calibration measurements using spiked recombinant proteins; and
(e) recombinant protein calibration curves for TNF-α, IL-1β, IL-6, IL-10, and GM-CSF. Reproduced
with permission from [58].

6. Discussions and Future Development

In this study, we summarize key developments of microfluidic platforms enabling the
quantification of single-cell proteins. Although significant improvements have been made within
the last decade, there is still significant room for research since an ideal tool of single-cell protein
quantification featured with absolute quantification, ultra-high sensitivity, and throughput is still
not available.

Absolute quantification is a key requirement for single-cell protein assays. Without the capabilities
of absolute quantification, the protein levels measured by different approaches cannot be effectively
compared. For instance, microfluidic fluorescent flow cytometry can only provide semi-quantitative
results by reporting levels of fluorescent intensities of flowing single cells. Although calibration beads
have been widely used in the quantitative flow cytometry, they can only, to an extent, produce reliable
results in quantifying membrane proteins, while we still lack effective calibration beads for absolute
quantification of intracellular proteins in flow cytometry.



Sensors 2016, 16, 232 8 of 12

As to the issue of ultra-high sensitivity, large-array microfluidic devices suffer from the issue of
sample dilutions since the reaction volumes for single cells are roughly 0.1–1 nL, two or three orders
higher than the volumes of single cells (~1 pL). Further volume decrease in the trapping wells or
chambers is not appropriate since it may lead to higher percentages of empty wells without cells and
also affect the normal metabolisms of individual cells. To address this issue, fluorescent nanoparticles
with higher fluorescent intensities may be used to replace conventional fluorescent probes. In addition,
antibodies labeled with nuclear acids, which can be further amplified and quantified in digital PCR,
can be further incorporated in the field of single-cell protein quantification.

The third issue is the throughput. Although the current microfluidic devices are treated as
high-throughput approaches (e.g., ~1000 cells per second for flow cytometry), they are still not high
enough. Taking the study of tumor heterogeneity as an example, individual cells within biopsy samples
(~1 million cells) are preferred to be processed one by one. For the microfluidic flow cytometry, which
inherently functions as a serial processor, further development should extend the capabilities to parallel
processing. As for microfluidic large-array devices which are featured with parallel analysis of single
cells, more work should focus on the device scale-up issue, definitely, requiring extensive optimization.
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